JPS61294757A - Battery - Google Patents

Battery

Info

Publication number
JPS61294757A
JPS61294757A JP60137220A JP13722085A JPS61294757A JP S61294757 A JPS61294757 A JP S61294757A JP 60137220 A JP60137220 A JP 60137220A JP 13722085 A JP13722085 A JP 13722085A JP S61294757 A JPS61294757 A JP S61294757A
Authority
JP
Japan
Prior art keywords
separator
battery
case
active material
microporous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60137220A
Other languages
Japanese (ja)
Inventor
Korenobu Morita
森田 是宣
Tadashi Sawai
沢井 忠
Kaoru Murakami
薫 村上
Koichi Sato
公一 佐藤
Shuichi Nishino
西野 秀一
Kunihide Miura
三浦 邦英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60137220A priority Critical patent/JPS61294757A/en
Publication of JPS61294757A publication Critical patent/JPS61294757A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To semipermanently maintain performance by using polytetra fluoroethylene microporous film as a separator. CONSTITUTION:A 0.05-0.1mm thick polytetrafluoroethylene (PTFE) microporous film is placed as a separator 6, and electrolyte such as propylene carbonate or gamma-butylolactone is poured. A negative case 1 and a positive case 4 are combined, and the opening of the positive case 4 is bent toward the negative case 1 to form a button type battery. As discharge reaction progresses, the positive active material 5 swells toward the negative case 1, and lithium 3 inside the negative case 1 gradually decreases. In the final stage of discharge, the separator 6 is strongly stretched by the swelling of the positive active material 5, but the PTFE microporous film generates no cracks because of its good ductility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電池、とくにそのセパレータに関する0従米の
技術 従来電池用のセパレータは、合成樹脂繊維の織布、不織
布などから微孔性フィルム、さらにはクラフト紙などの
材料が広く使用されている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to batteries, and in particular to separators thereof. Conventional battery separators can be made from woven fabrics of synthetic resin fibers, non-woven fabrics, microporous films, and even woven fabrics. Materials such as paper are widely used.

一般的には、各種電池の電気化学系によりその材料を使
い分けることがなされている。
Generally, different materials are used depending on the electrochemical system of each type of battery.

例えば、中性塩電解液のルクランシェ電池では、クラフ
ト紙を、水銀電池、酸化銀電池、アルカリマンガン電池
な′どのアルカリ電解液系の電池ではセロハン、ビニロ
ン、ポリエチレン微孔1[、ポリプロピレン微孔膜がセ
パレータとして使用されている。
For example, kraft paper is used in Leclanchier batteries using a neutral salt electrolyte, and cellophane, vinylon, polyethylene microporous membrane, and polypropylene microporous membrane are used in alkaline electrolyte batteries such as mercury batteries, silver oxide batteries, and alkaline manganese batteries. is used as a separator.

またリチウム電池などの非水溶液系電池においては、ポ
リプロピレン等の不織布が一般的にセパレータとして採
用されている0 そして、最近では、リチウムを負極活物質とした、電池
がその高エネルギー密度、軽量等の利点を活かして広く
開発されており、中でも正極活物質に酸化銅を使用した
電池が、時計等の小型電子機器の電源として注目されて
きている。
In addition, in non-aqueous batteries such as lithium batteries, non-woven fabrics such as polypropylene are generally used as separators. Recently, batteries using lithium as a negative electrode active material have been developed due to their high energy density, light weight, etc. It has been widely developed to take advantage of its advantages, and among them, batteries that use copper oxide as the positive electrode active material are attracting attention as power sources for small electronic devices such as watches.

酸化銅−リチウム系の非水溶液系電池は、電圧の面から
も、酸化銀電池と類似して互換を有しているため、その
性能が期待されている。
Copper oxide-lithium non-aqueous batteries are similar and compatible with silver oxide batteries in terms of voltage, and are therefore expected to have good performance.

発明が解決しようとする問題点 しかし酸化銅−リチウム電池は、電池放電が進むにつれ
て、金属リチウムのベレーットである負極は、消耗して
無くなっていくとともに、正極活物質である酸化銅主体
の正極合剤は、膨張していくという現象がある。
Problems to be Solved by the Invention However, in copper oxide-lithium batteries, as the battery discharge progresses, the negative electrode, which is a beret of metallic lithium, wears out and disappears. There is a phenomenon in which the agent expands.

酸化銅−リチウム電池は、その構成上セパレータは、負
極リチウムを内面に圧着した負極ケース周縁部と嵌着し
ている封口リングと、正極ケース内に・充てんされ加圧
成型された正極活物質層の周囲部との間で固定されてい
るため、電池放電の進行と共に体積の変化する正、負両
極の間をセパレータとして追随していかなくてはならな
い。
Due to its structure, a copper oxide-lithium battery has a separator consisting of a sealing ring fitted to the periphery of a negative electrode case with negative electrode lithium crimped onto the inner surface, and a positive electrode active material layer filled and pressure-molded within the positive electrode case. Since the battery is fixed to the surrounding area of the battery, it must be used as a separator to move between the positive and negative electrodes, whose volume changes as the battery discharge progresses.

このように放電と共に正極、負極の体積バランスの変化
する電池のセパレータとして、過去からいろいろ検討さ
れてき友が、前述した材質のセパレータでは、放電反応
と共に体積が変化する正。
As described above, various studies have been conducted in the past as separators for batteries in which the volume balance of the positive and negative electrodes changes with discharge.

負両極に十分追随することができなく、放電途中でセパ
レータに亀裂が入り、放電途中で短絡してしまう電池が
続出した。
A number of batteries were unable to follow the negative electrode sufficiently, cracks appeared in the separator during discharge, and a short circuit occurred during discharge.

本発明者らは、この現象を解決するために、前記の各種
セパレータ材料を複数枚使用し、セパレータの強度的強
化をはかるなどの努力をしてき友が、完全に良品と判定
される酸化銅−リチウム電池を得ることはできなかった
In order to solve this phenomenon, the present inventors have made efforts such as using multiple sheets of the various separator materials mentioned above to strengthen the strength of the separators, and have found that copper oxide, which has been determined to be a completely non-defective product, has been developed. It was not possible to obtain lithium batteries.

本発明は上記の問題点の解決のため、セパレータ材料を
探索し、放電によって正、負両極の体積変化が生じても
これに追随可能なセパレータを用いることで電池放電途
中での内部短絡現象を解決することを目的としている。
In order to solve the above problems, the present invention investigates separator materials and uses a separator that can follow the change in volume of both positive and negative electrodes due to discharge, thereby suppressing the internal short circuit phenomenon during battery discharge. It aims to solve the problem.

問題点を解決するための手段 本発明は上記の問題点を解決するために、引っ張り強度
がすぐれ、かつ化学的に非常に安定であるポリテトラフ
ルオロエチレン(FTFKkいう)の微孔性フィルムを
セパレータとして用いたものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a microporous film of polytetrafluoroethylene (FTFKk), which has excellent tensile strength and is extremely chemically stable, as a separator. It was used as

作用 PTFKの微孔性フィルムは、引きのばされてその面積
が2倍以上になり念場合で敷亀裂が発生することがない
The microporous film of working PTFK can be stretched to more than double its area and will not develop cracks in case of an accident.

従って電池のセパレータとして採用するに、放電の進行
とともに正極活物質層ン ても充分追随可能であり、放電末期においても、P T
 F K微孔性フィルムはセパレータの役割を損なうこ
とがなくできる。
Therefore, when used as a battery separator, it is possible to sufficiently follow the growth of the positive electrode active material layer as discharge progresses, and even at the end of discharge, P T
The FK microporous film can be produced without impairing its role as a separator.

実施例 以下、本発明の実施例を第1図、第2因で説明する。Example Hereinafter, an embodiment of the present invention will be explained with reference to FIG. 1 and the second factor.

第1図中の1は負極ケースであり、その周縁部にはポリ
プロピレン製の封口リング2が嵌着されている。
Reference numeral 1 in FIG. 1 is a negative electrode case, and a sealing ring 2 made of polypropylene is fitted to the peripheral edge of the negative electrode case.

負極ケース1の内側頂部には、負極活物質となる金属リ
チウム3が圧着されている0 4は正極ケースであり、その内底部には正極活物質層6
が固く加圧成型されている0 正極活物質層6は、酸化銅を主体とし、これに導電材と
して20重量%程度のアセチレンブラック全混入したも
のを加圧成型したベレット状のものである。
A metal lithium 3 serving as a negative electrode active material is crimped onto the inner top of the negative electrode case 1.04 is a positive electrode case, and a positive electrode active material layer 6 is formed at the inner bottom of the negative electrode case 1.
The positive electrode active material layer 6 is press-molded and is made of copper oxide as a main ingredient, in which approximately 20% by weight of acetylene black is mixed as a conductive material.

この両者の部品の間にセパレータ6として厚さ0.05
〜(LlmmのPTFK微孔性74 k ムf介在させ
、グロピレンカーボネート、γ−ブチロラクトン等の電
解液を注入し、負極ケース1.正極ケース40両者を嵌
合して、正極ケース4の開口部を負極ケース1側へ屈曲
することで1個のボタン型電池が完成する。
A separator 6 with a thickness of 0.05 mm is placed between these two parts.
~(Llmm of PTFK microporous 74k mm is interposed, an electrolyte such as glopylene carbonate or γ-butyrolactone is injected, the negative electrode case 1 and the positive electrode case 40 are fitted together, and the opening of the positive electrode case 4 is inserted. By bending it toward the negative electrode case 1 side, one button type battery is completed.

このようにして構成した電池全放電すると、放電反応と
ともに正極活物質層6は、負極ケース1内部に向かって
膨張し、負極ケース1内の金属リチウム4は次第に減少
してい〈0 第2図はこの電池の放電末期の断面の一例である。放電
末期においては、正・極活物質層6が膨張するため、セ
パレータ6は、非常に強く引き伸ばされる。
When the battery constructed in this manner is fully discharged, the positive electrode active material layer 6 expands toward the inside of the negative electrode case 1 along with the discharge reaction, and the metallic lithium 4 in the negative electrode case 1 gradually decreases. This is an example of a cross section of this battery at the final stage of discharge. At the end of discharge, the positive electrode active material layer 6 expands, so the separator 6 is stretched very strongly.

通常のセパレータは、この際に亀裂が入り、正。Ordinary separators will crack at this time and cause damage.

負極の内部短絡を発生するが、本発明で使用したPTF
Kの微孔性フィルムは、その優れた延性のため亀裂が発
生することはない。
Although an internal short circuit occurs in the negative electrode, the PTF used in the present invention
The K microporous film does not crack due to its excellent ductility.

電池セパレータ用として使用するPTFI!の微孔性フ
ィルムは厚さ○・01〜0・2mm程度まで自由に加工
することができると共に、その孔径は0・1〜0・6μ
m程度に加工することができる。またその空孔率も20
〜eo%の幅広い範囲で製造可能であることから、その
電池の要求さnるセパレータ特性については、充分適切
な物性値を持つセパレータを選択することが可能である
PTFI used for battery separators! The microporous film can be freely processed to a thickness of 0.01 to 0.2 mm, and its pore diameter is 0.1 to 0.6 μm.
It can be processed to about m. Also, its porosity is 20
Since it can be manufactured in a wide range of ~eo%, it is possible to select a separator with sufficiently appropriate physical property values for the separator characteristics required by the battery.

またPTFKは、一般的にその製造工程で、未焼結タイ
プと焼結タイプとに分類することができる0 焼結タイプは、PTFXの融点である327℃以上の温
度を経文加熱処理工程を通って製造されたものであり、
このような焼結タイプは未焼結タイプのPTFKフィル
ムに比較して、その機械的強度は、著しく増大する。
In addition, PTFK can generally be classified into unsintered type and sintered type according to its manufacturing process.Sintered type undergoes a heat treatment process at a temperature of 327℃ or higher, which is the melting point of PTFX. It was manufactured by
The mechanical strength of such a sintered type PTFK film is significantly increased compared to an unsintered type PTFK film.

特に、電池放電反応の過程において、正、負両活物質の
体積変化の著しい電池の場合は、焼結タイプのPTFI
C微孔性フィルムが好適である0本発明者らは、従来の
セパレータであるポリプロピレンの微孔膜を使用し吹型
池(ム)と、本発明の焼結し2 P T F X微孔性
フィルムを使用した電池(B)と全酸化銅−リチウム系
電池として外径7・g mm。
In particular, in the case of batteries where the volume of both positive and negative active materials changes significantly during the process of battery discharge reaction, sintered type PTFI
The present inventors used a microporous membrane of polypropylene, which is a conventional separator, to form a blown mold and a sintered 2P T F X microporous film of the present invention. The battery (B) using a plastic film and the total copper oxide-lithium battery have an outer diameter of 7 g mm.

総高3.8mmノR41サイズ、理論容量20mAhの
電池を試作しその特性を比較した。その結果を次表に示
す。
A prototype battery with a total height of 3.8 mm, R41 size, and a theoretical capacity of 20 mAh was manufactured and its characteristics were compared. The results are shown in the table below.

米 試作電池20個の平均値 X米18mムh以上の電池数/放電・電池数発明の効果 表の結果かられかるように、PTFK微孔性フィルムよ
りなるセパレータは、電池容量を、理論容量の90係以
上引き出させるとともに、電池内部抵抗も、従来のポリ
プロピレン微孔膜と比較して、約40チ低くなる結果を
得た。
As can be seen from the results of the invention effect table, the average value of 20 prototype batteries x 18 mmh or more of batteries/discharge/number of batteries, the separator made of PTFK microporous film can increase the battery capacity by the theoretical capacity. In addition, the internal resistance of the battery was lowered by about 40 degrees compared to conventional microporous polypropylene membranes.

ま7′2:P T F Xは電池の様々な活物質、様々
な電解液に対してその物性が劣化することは少なく、半
永久的にその特性を持続することが可能であるため、性
能的に優れた電池を提供できる0
7'2: PTF 0 that can provide excellent batteries for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による電池の半断面図、第2図
は同電池の放電末期の半断面図である01・・・・・・
負極ケース、2・・・・・・封口リング、3・・・・・
・負極活物質、4・・・・・・正極ケース、6・・・・
・・正極活物質/L 8・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a half-sectional view of a battery according to an embodiment of the present invention, and FIG. 2 is a half-sectional view of the same battery at the end of discharge.
Negative electrode case, 2... Sealing ring, 3...
・Negative electrode active material, 4...Positive electrode case, 6...
...Positive electrode active material/L 8...Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)放電の進行と共に、正極活物質又は負極活物質の
少なくとも一方の体積が変化する電池であって、セパレ
ータがポリテトラフルオロエチレンの微孔性フィルムか
らなることを特徴とする電池。
(1) A battery in which the volume of at least one of the positive electrode active material and the negative electrode active material changes as discharge progresses, and the battery is characterized in that the separator is made of a microporous film of polytetrafluoroethylene.
(2)セパレータがポリテトラフルオロエチレンの融点
以上の加熱工程で処理された微孔性フィルムである特許
請求の範囲第1項記載の電池。
(2) The battery according to claim 1, wherein the separator is a microporous film treated in a heating step above the melting point of polytetrafluoroethylene.
(3)セパレータの空孔率が50%以上である特許請求
の範囲第1項、または第2項記載の電池。
(3) The battery according to claim 1 or 2, wherein the separator has a porosity of 50% or more.
JP60137220A 1985-06-24 1985-06-24 Battery Pending JPS61294757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60137220A JPS61294757A (en) 1985-06-24 1985-06-24 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60137220A JPS61294757A (en) 1985-06-24 1985-06-24 Battery

Publications (1)

Publication Number Publication Date
JPS61294757A true JPS61294757A (en) 1986-12-25

Family

ID=15193590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60137220A Pending JPS61294757A (en) 1985-06-24 1985-06-24 Battery

Country Status (1)

Country Link
JP (1) JPS61294757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320365U (en) * 1986-07-24 1988-02-10
JPH01186751A (en) * 1988-01-16 1989-07-26 Nitto Denko Corp Separator for cell
JPH0246649A (en) * 1988-08-09 1990-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
EP0739046A1 (en) * 1995-03-20 1996-10-23 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320365U (en) * 1986-07-24 1988-02-10
JPH01186751A (en) * 1988-01-16 1989-07-26 Nitto Denko Corp Separator for cell
JPH0246649A (en) * 1988-08-09 1990-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
EP0739046A1 (en) * 1995-03-20 1996-10-23 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
US5851693A (en) * 1995-03-20 1998-12-22 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries

Similar Documents

Publication Publication Date Title
JP3568955B2 (en) Woven synthetic halogenated polymer fibers as separator materials for electrochemical cells
KR101292199B1 (en) Electrode Assembly of Novel Structure and Process for Preparation of the Same
KR101543055B1 (en) Stack and Folding-Typed Electrode Assembly Having Improved Safety Property and Method for preparation of the same
JPS61294757A (en) Battery
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JPH09241411A (en) Porous membrane, its production, and lithium ion secondary cell
US3485672A (en) Electric current producing cell
JPH0636801A (en) Rectangular shape nonaqueous electrolyte secondary battery
JPH0620671A (en) Separator for aprotic electrolytic battery
US4463070A (en) Cylindrical galvanic cells having a polygonal shaped anode disc
JPH03219552A (en) Lithium battery
JPH10302747A (en) Production for separator of battery
JPS61232560A (en) Lithium battery
JPH08102312A (en) Manufacture of battery diaphragm
JP2983732B2 (en) Multilayer separator for batteries
JP3573825B2 (en) Battery with current interruption function
JPH10199502A (en) Separator and battery using the same
JPH04342954A (en) Battery with spiral electrode
JPH04249855A (en) Manufacture of organic electrolyte battery
JPS6381763A (en) Enclosed type alkaline storage battery
JPH01241767A (en) Solid electrolyte secondary cell
JP3114466B2 (en) Non-aqueous electrolyte battery
JPS5832377A (en) Manufacture of button type air-zinc cell
JPH0462755A (en) Organic electrolyte battery
JPH02304863A (en) Nonaqueous electrolyte battery