JPS61286701A - Method for measuring curvature of mirror - Google Patents

Method for measuring curvature of mirror

Info

Publication number
JPS61286701A
JPS61286701A JP12805485A JP12805485A JPS61286701A JP S61286701 A JPS61286701 A JP S61286701A JP 12805485 A JP12805485 A JP 12805485A JP 12805485 A JP12805485 A JP 12805485A JP S61286701 A JPS61286701 A JP S61286701A
Authority
JP
Japan
Prior art keywords
mirror
curvature
measuring
measuring elements
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12805485A
Other languages
Japanese (ja)
Inventor
Takeo Matsumoto
武夫 松本
Kohei Matsuyama
松山 浩平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichikoh Industries Ltd
Original Assignee
Ichikoh Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichikoh Industries Ltd filed Critical Ichikoh Industries Ltd
Priority to JP12805485A priority Critical patent/JPS61286701A/en
Publication of JPS61286701A publication Critical patent/JPS61286701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and easily measure the curvature of a mirror with high accuracy, by contacting the respective lower ends of three measuring levers with the surface of the mirror in a vertical state under their own wt. and relatively moving said levers on the mirror. CONSTITUTION:The displacement meters 8a, 8b, 8c are mounted to an arm 7 and respectively vertically support lever shaped measuring elements 9a, 9b, 9c in a freely slidable manner while the slide table 10 on a base 5 has a structure capable of horizontally and reciprocally driving to the directions shown by a double arrow X-X' and a mirror 4 is mounted on said table 10 and three lever shaped measuring elements are contacted with the mirror 4 under their own wt. When the table 10 is moved to an X-axis direction, the measuring elements 9a, 9b, 9c are displaced in the up-and-down direction corresponding to the surface state of the mirror and, therefore, the displacement meters 8a, 8b, 8c respectively electrically measure the displacement quantities of said measuring elements to output the same. The output signals are inputted to a computer and radii at a large number of points are calculated to be displayed on CRT display.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はミラーの表面の曲率を測定する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of measuring the curvature of a mirror surface.

〔発明の背景〕[Background of the invention]

従来技術においてミラー表面の曲率を測定するには、一
般にダイヤルゲージを用いた球面計、若しくはこれに類
似した計測器を用いて行われる。
In the prior art, the curvature of a mirror surface is generally measured using a spherometer using a dial gauge or a similar measuring instrument.

第6図は従来技術に係る測定方法に用いられる器具の1
例を示し、台座lに2個の固定接触子2を固着すると共
に、ダイヤルゲージ3を取りつけである。
Figure 6 shows one of the instruments used in the measurement method according to the prior art.
As an example, two fixed contacts 2 are fixed to a pedestal l, and a dial gauge 3 is attached.

従来の測定方法は前記2個の固定接触子2をミラー4の
表面に押しつけ、ダイヤルゲージ3の可動接触子3aを
ミラー4の表面に当接せしめ、ダイヤルゲージ3の指度
を読み取ってミラー4の曲率を算定する。
The conventional measuring method is to press the two fixed contacts 2 against the surface of the mirror 4, bring the movable contact 3a of the dial gauge 3 into contact with the surface of the mirror 4, read the finger strength of the dial gauge 3, and then press the movable contact 3a of the dial gauge 3 against the surface of the mirror 4. Calculate the curvature of.

上記の従来方法によるミラー曲率の測定は、該ミラーが
充分の剛性を持っていると理論的には正確な曲率を算出
できるものであるが、実際の測定    −においては
、固定接触子2を強(ミラー4に押しつけると該ミラー
4に歪みを生じて測定結果が不正確になる。また、上記
の押しつける力が不充分であると、接触子の接触杖態が
不安定となって測定が不安定になり、誤差を生じる。
In measuring the mirror curvature using the conventional method described above, it is possible to theoretically calculate an accurate curvature if the mirror has sufficient rigidity, but in actual measurement, the fixed contact 2 must be (If it is pressed against the mirror 4, the mirror 4 will be distorted and the measurement results will be inaccurate. Also, if the above pressing force is insufficient, the contact rod state of the contact will become unstable and the measurement will be inaccurate. Becomes stable and produces errors.

また、ダイヤルゲージの可動接触子が被測定物の面に押
しつけられる力は、JIS規定によれば150グラム重
以下とされているが、ミラーが薄手の場合は150グラ
ム重の押圧力によって無視し得ない程度の歪みを生じる
Also, according to JIS regulations, the force with which the movable contact of a dial gauge is pressed against the surface of the object to be measured is 150 grams or less, but if the mirror is thin, the pressing force of 150 grams can be ignored. This will cause distortion to an extent that is impossible to obtain.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、剛性の少
ないミラーであっても、有害な歪みを生じさせる虞れが
無く、迅速かつ容易に、しかも高精度てミラーの曲率を
測定し得る方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to quickly and easily measure the curvature of a mirror with high precision, without the risk of causing harmful distortion, even for mirrors with low rigidity. We are trying to provide a way to obtain it.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する為、本発明の測定方法は、3本の
測定杆を垂直に、かつ上下方向の摺動自在に、一定の間
隔で支承するとともに、上記3本の測定杆それぞれの下
端をミラー表面に対して自重で当接せしめ、上記3本の
測定杆それぞれの上下方向の位置を電気的に検出して、
その検出信号をコンピュータに入力せしめ、前記3本の
測定杆相互の間隔を一定に保ったままでこれらの測定杆
とミラーとを相対的に移動させながら前記のコンピュー
タによってミラーの曲率を算出することを特徴とする。
In order to achieve the above object, the measuring method of the present invention supports three measuring rods vertically and slidably in the vertical direction at regular intervals, and the lower ends of each of the three measuring rods are supported vertically and slidably in the vertical direction. is brought into contact with the mirror surface by its own weight, and the vertical position of each of the three measuring rods is electrically detected,
The detection signal is inputted to a computer, and the curvature of the mirror is calculated by the computer while the three measuring rods and the mirror are moved relative to each other while keeping the distance between the three measuring rods constant. Features.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の測定方法を実施する為に構成した曲
率測定装置の1例を示す概要的な正面図である。
FIG. 1 is a schematic front view showing an example of a curvature measuring device configured to carry out the measuring method of the present invention.

ベース部材5に対して、スタンド6を介してアーム7が
水平に固定的に支承されている。
An arm 7 is horizontally and fixedly supported on the base member 5 via a stand 6.

上記のアーム7に、3個の変位計3a、3b。The above arm 7 has three displacement meters 3a and 3b.

8Cを取り付けである。これらの変位計はそれぞれ、杆
状の測定子9a、9b、9cを摺動自在に、垂直(X軸
方向)に支承している。
8C is installed. Each of these displacement gauges supports rod-shaped measuring elements 9a, 9b, and 9c in a slidable manner vertically (in the X-axis direction).

杆状測定子9aと同9bとの間隔はL+、杆状測定子9
bと同9cとの間隔はLt、上記の間隔寸法L+、Lx
は一定である。本例ではL t = L tに構成しで
あるがこれらの間隔寸法は必ずしも等しくなくても良い
The distance between the rod-shaped measuring tip 9a and the same 9b is L+, and the rod-shaped measuring tip 9
The distance between b and 9c is Lt, the above distance dimension L+, Lx
is constant. In this example, L t =L t, but these spacing dimensions do not necessarily have to be equal.

一方、ベース5の上にはスライドテーブル10が設けら
れている。このスライドテーブル10は矢印x−x ’
の如く水平に往復駆動し得る構造で、その上にミラー4
を取り付けるようになっている。
On the other hand, a slide table 10 is provided on the base 5. This slide table 10 is indicated by the arrow x-x'
It has a structure that can be horizontally reciprocated like this, and a mirror 4 is mounted on it.
It is designed to be installed.

前記3本の杆状測定子はX軸方向に摺動自在であるため
、自重によってミラー4に当接している。
Since the three rod-shaped measuring elements are slidable in the X-axis direction, they abut against the mirror 4 due to their own weight.

前記の変位計8a、8b、8cは、それぞれ杆状測定子
9a、9b、9cの上下方向変位量を電気的に計測する
機能を備えている。
The displacement meters 8a, 8b, and 8c have a function of electrically measuring the amount of vertical displacement of the rod-shaped measuring elements 9a, 9b, and 9c, respectively.

第2図は上記3個の変位計8a、8b、8cの結線を示
すブロック図である。各変位計の出力信号はコンピュー
タ11に人力され、演算結果はCRTディスプレー12
.又はプリンタ(ブロックでも良い)13によって表示
される。
FIG. 2 is a block diagram showing the connections of the three displacement meters 8a, 8b, and 8c. The output signal of each displacement meter is input manually to the computer 11, and the calculation results are displayed on the CRT display 12.
.. Or it is displayed by the printer (which may also be a block) 13.

第3図は前記3個の変位計の検出値に基づいてミラー4
の曲率を算出する演算の説明図である。
Figure 3 shows how the mirror 4 is measured based on the detected values of the three displacement meters.
FIG. 2 is an explanatory diagram of calculation for calculating the curvature of

実線で示した4は被測定物としてのミラーであり、破線
で描いた4′はミラーの設計形状を表わしている。
4 indicated by a solid line is a mirror as an object to be measured, and 4' indicated by a broken line indicates the designed shape of the mirror.

前記3個の変位計3a、3b、F3cにより、3個の杆
状測定子9a、9b、9cを介してミラー4上の3点P
+ 、Pz 、P:t’  のx、  y座標を測定す
ると、それぞれの点の座標値P+(X+ 、Xz)、P
i(X2 、  )’z)、P3’(X+’+  y+
’)を円の一般式 %式%(1) に代入して、 上記の(2)式からコンピュータ11によって半径rを
算出することができる。
The three displacement meters 3a, 3b, F3c measure the three points P on the mirror 4 via the three rod-shaped measuring elements 9a, 9b, 9c.
+, Pz, P: When the x and y coordinates of t' are measured, the coordinate values of each point are P+(X+, Xz), P
i(X2, )'z), P3'(X+'+ y+
') into the general circle formula % formula % (1) The radius r can be calculated by the computer 11 from the above formula (2).

第1図に示したスライドテーブル10をX軸方向に移動
させながら上記の計算によって多数の点の半径rを算出
すると例えば第4図が得られる。本第4図の横軸はミラ
ー4上の測定個所を表わし、図表の左方がミラーの中心
部、右方がミラーの周辺部であって、横軸上の点Edg
はミラー4の周縁を示している。
If the radius r of a large number of points is calculated by the above calculation while moving the slide table 10 shown in FIG. 1 in the X-axis direction, for example, FIG. 4 is obtained. The horizontal axis of this figure 4 represents the measurement location on the mirror 4, the left side of the diagram is the center of the mirror, the right side is the peripheral area of the mirror, and the point Edg on the horizontal axis
indicates the periphery of the mirror 4.

本第4図の例においては、ミラーの中央部の区域Mにお
いては曲率半径が一定であり、周縁から距離りの範囲で
は曲率半径が変化して、周縁に近づくにつれて曲率半径
が減小していることが解る。
In the example shown in Fig. 4, the radius of curvature is constant in the area M at the center of the mirror, and the radius of curvature changes within a range of distance from the periphery, decreasing as it approaches the periphery. I understand that there is.

第3図に示した寸法Δyは設計上の点P、と実測点P3
′ とのy座標値の差を表わしている。
The dimension Δy shown in Figure 3 is the design point P and the actual measurement point P3.
′ represents the difference in y-coordinate value.

第5図は5例について上記のΔyを測定した結果を示す
図表で、本第5図の横軸は第4図におけると同様にミラ
ー4上の測定位置を表わしている。
FIG. 5 is a chart showing the results of measuring the above-mentioned Δy for five examples, and the horizontal axis in FIG. 5 represents the measurement position on the mirror 4, as in FIG. 4.

実線で示したカーブC1の如く、Δy、測定値がほぼ零
であると、ミラー中央部2周辺部ともに設計値どおりの
曲率であることを意味する。
As shown by the curve C1 shown by the solid line, when Δy and the measured value are approximately zero, it means that both the central portion and the peripheral portion of the mirror have the curvature as designed.

破線で示したカーブCtの如く、Δy、測定値が全域に
おいてプラスであると、中央部9周辺部ともにミラー曲
率が設計値よりも大きいことを意味する。その反対に、
1点鎖線で示したカーブC1のようにΔy、測定値が全
域においてマイナスであるとミラーの中央部周辺部とも
にミラー曲率が設計値よりも小さいことを意味する。
As shown by the curve Ct shown by the broken line, when Δy and the measured value are positive over the entire area, it means that the mirror curvature of both the central portion 9 and the peripheral portion is larger than the designed value. On the contrary,
If the measured value of Δy is negative over the entire region, as shown by the curve C1 indicated by a dashed-dotted line, it means that the mirror curvature is smaller than the design value in both the central and peripheral parts of the mirror.

2点鎖線で描いたカーブC4は、中央部においてミラー
曲率がほぼ設計値どおりであり、周辺部において過大に
なっていることを意味している。
A curve C4 drawn with a two-dot chain line means that the mirror curvature is almost the same as the design value at the center and is excessive at the periphery.

又、点線で描いたカーブCSは、中央部において設計値
どおり、周辺部において過小であることを意味している
Further, the curve CS drawn by a dotted line means that the central part is as designed, but the peripheral part is too small.

上に述べたミラー曲率の測定値においては、第1図から
容易に理解できるように、3本の杆状測定子9a、9b
、9cがそれぞれ自重によってその下端をミラー4の表
面に当接しているだけであってその当接圧力は小さく、
しかも、一定である。
In the measurement value of the mirror curvature described above, as can be easily understood from FIG.
, 9c only have their lower ends in contact with the surface of the mirror 4 due to their own weight, and the contact pressure is small.
Moreover, it is constant.

従って被測定物であるミラーの剛性が大きくなくでもこ
れに与える歪みは実用上無視し得る程度に小さい。また
、曲率の算出はコンピュータ11 (第2図)によって
行われるので、作業員に別設の計算能力を必要とせず、
迅速に測定が行われ、その上人為的な計算ミスが混入す
る虞れが無く、常に高い精度と信軌性が得られる。
Therefore, even if the rigidity of the mirror that is the object to be measured is not large, the distortion imparted to it is so small that it can be ignored in practice. In addition, since the calculation of the curvature is performed by the computer 11 (Fig. 2), there is no need for the operator to have separate calculation ability.
Measurements can be taken quickly, there is no risk of human calculation errors, and high accuracy and reliability can always be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の測定方法によれば、被測
定物であるミラーの剛性が小さくても有害な歪みを生じ
させる虞れ無く、迅速かつ容易に、しかも高精度でその
曲率を自動的に測定すること     1ができる。
As detailed above, according to the measurement method of the present invention, even if the rigidity of the mirror to be measured is small, the curvature of the mirror can be measured quickly, easily, and with high precision without the risk of causing harmful distortion. Can measure automatically 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の曲率測定方法を実施するた
めに構成しh曲率測定装置の1例を示し、第1図は概要
的な正面図、第2図は演算部付近のブロック図である。 第3図は本発明の曲率測定方法の1実施例における演算
の説明図、第4図及び第5図はそれぞれ上記実施例にお
ける測定結果を示す図表である。 第6図は従来の曲率測定に用いられた計測器具の外観図
である。 4・・・ミラー、5・・・ベース、6・・・スタンド、
7・・・アーム、8a、8b、8cm変位計、9a、9
b。 9C・・・杆状測定子、10・・・スライドテーブル、
12・・・CRTディスプレー、13・・・プリンタ。
1 and 2 show an example of a curvature measuring device configured to carry out the curvature measuring method of the present invention, FIG. 1 is a schematic front view, and FIG. 2 is a block diagram near the calculation section. It is a diagram. FIG. 3 is an explanatory diagram of calculations in one embodiment of the curvature measuring method of the present invention, and FIGS. 4 and 5 are charts showing measurement results in the above embodiment, respectively. FIG. 6 is an external view of a measuring instrument used for conventional curvature measurement. 4...Mirror, 5...Base, 6...Stand,
7... Arm, 8a, 8b, 8cm displacement meter, 9a, 9
b. 9C...rod-shaped probe, 10...slide table,
12...CRT display, 13...Printer.

Claims (1)

【特許請求の範囲】[Claims] 3本の測定杆を垂直に、かつ上下方向の摺動自在に、一
定の間隔で支承するとともに、上記3本の測定杆それぞ
れの下端をミラー表面に対して自重で当接せしめ、上記
3本の測定杆それぞれの上下方向の位置を電気的に検出
して、その検出信号をコンピュータに入力せしめ、前記
3本の測定杆相互の間隔を一定に保ったままでこれらの
測定杆とミラーとを相対的に移動させながら前記のコン
ピュータによってミラーの曲率を算出することを特徴と
するミラーの曲率測定方法。
Three measuring rods are supported vertically and slidably in the vertical direction at regular intervals, and the lower ends of each of the three measuring rods are brought into contact with the mirror surface by their own weight. The vertical positions of the three measuring rods are electrically detected, the detected signals are input to the computer, and the three measuring rods and the mirror are moved relative to each other while keeping the distance between the three measuring rods constant. A method for measuring the curvature of a mirror, characterized in that the curvature of the mirror is calculated by the computer while moving the mirror.
JP12805485A 1985-06-14 1985-06-14 Method for measuring curvature of mirror Pending JPS61286701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12805485A JPS61286701A (en) 1985-06-14 1985-06-14 Method for measuring curvature of mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12805485A JPS61286701A (en) 1985-06-14 1985-06-14 Method for measuring curvature of mirror

Publications (1)

Publication Number Publication Date
JPS61286701A true JPS61286701A (en) 1986-12-17

Family

ID=14975344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12805485A Pending JPS61286701A (en) 1985-06-14 1985-06-14 Method for measuring curvature of mirror

Country Status (1)

Country Link
JP (1) JPS61286701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399207U (en) * 1986-12-19 1988-06-27
US4914828A (en) * 1988-08-09 1990-04-10 Ppg Industries, Inc. Surface inspection device and method
US6151791A (en) * 1998-03-20 2000-11-28 Mitsubishi Heavy Industries, Ltd. Method for measuring roll profile
EP1764578A2 (en) 2005-09-20 2007-03-21 Mondi Business Paper Services AG Method and apparataus for determining the curvature of a surface of a body, for example paper or cartoon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399207U (en) * 1986-12-19 1988-06-27
US4914828A (en) * 1988-08-09 1990-04-10 Ppg Industries, Inc. Surface inspection device and method
US6151791A (en) * 1998-03-20 2000-11-28 Mitsubishi Heavy Industries, Ltd. Method for measuring roll profile
EP1764578A2 (en) 2005-09-20 2007-03-21 Mondi Business Paper Services AG Method and apparataus for determining the curvature of a surface of a body, for example paper or cartoon
EP1764578A3 (en) * 2005-09-20 2008-05-28 Mondi Business Paper Services AG Method and apparataus for determining the curvature of a surface of a body, for example paper or cartoon

Similar Documents

Publication Publication Date Title
JP3447430B2 (en) Method of measuring coordinates of workpiece using coordinate measuring device and coordinate measuring device
JP2528664B2 (en) Article inspection method and device
JP3005681B1 (en) CMM calibration gauge and CMM calibration method
JP2988588B2 (en) Position measuring device
CN207963779U (en) A kind of laser displacement sensor calibrating installation
GB1498516A (en) Centre of gravity determination
JPS61286701A (en) Method for measuring curvature of mirror
KR850001282B1 (en) Method of making coordinate measurements with movable probe
JP2987607B2 (en) 3D coordinate measuring machine
CN209214495U (en) A kind of calibrator
JPS6256444B2 (en)
JP2002202103A (en) Oblique face angle measuring method of measuring object and its device
CN106052537A (en) Spectacle frame nose bridge deformation tester
JP3082812B2 (en) T-shaped material mounting height mounting angle measuring device
CN219714222U (en) Measurement system and measurement jig
CN209745251U (en) Calibrating device for three-coordinate measuring machine
JPH0363501A (en) Method and instrument for measuring nut seat diameter of wheel for vehicle
JPH0649918U (en) Steel pipe weld size measuring instrument
JPS582605A (en) Measuring method and apparatus
JPH0353111A (en) Measuring instrument
CN212133603U (en) Workbench and calibration device for calibration of torsional spring gauge type measuring tool calibration instrument
US4069589A (en) Work-master comparison gaging method and instrument
CN2523373Y (en) Adjustable medical CT ratio scales
JPS6385426A (en) Arithmetic unit for cutting quality testing device
JP3027773U (en) Lead frame package eccentricity indicator