JPS61285834A - Optical transmission and reception equipment - Google Patents

Optical transmission and reception equipment

Info

Publication number
JPS61285834A
JPS61285834A JP60126318A JP12631885A JPS61285834A JP S61285834 A JPS61285834 A JP S61285834A JP 60126318 A JP60126318 A JP 60126318A JP 12631885 A JP12631885 A JP 12631885A JP S61285834 A JPS61285834 A JP S61285834A
Authority
JP
Japan
Prior art keywords
level
optical
section
reception
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60126318A
Other languages
Japanese (ja)
Inventor
Masamichi Kawagome
河込 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60126318A priority Critical patent/JPS61285834A/en
Publication of JPS61285834A publication Critical patent/JPS61285834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the transmission state in response to the reception state by allowing a transmission/reception equipment itself to apply a reception output from a reception section as a comparison setting value for APC of a transmission section. CONSTITUTION:Level detectors 19A, 29A are provided and amplifiers (main amplifiers) 29, 19 are provided in place of an AGC circuit to eliminate the need for a pad 4. On the other hand, the amplifier 19 is provided in place of the AGC circuit. The AGC circuit is excluded because the transmission power is controlled at the sending side through the level detector 19A. Since the level of the reception output by a reception section 1B is supervised and the reception level is set as the threshold level of the APC circuit 13, the transmission output is controlled in response to the reception level and since a negative feedback path comprised of transmission section 1A optical fiber 3 reception section 2A transmission section 2B optical fiber 3 reception section 1B transmission section 1A is formed, the entire system is stabilized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光送受信装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an optical transmitter/receiver.

〔従来技術〕[Prior art]

従来の光送受信装置には、「プラクティカル・45−メ
ガビット/秒・リジェネレータ・フオ・ライトウェーブ
・トランスミッションJ (Practica145−
Mb/s Regenerator for Ligh
twave Transmission)(BSTJ、
 Vol、 57. No、 6.7月〜8月 197
8年、P。
Conventional optical transmitter/receiver equipment includes ``Practical 45-Mbit/s Regenerator Lightwave Transmission J (Practica145-
Mb/s Regenerator for Light
Twave Transmission) (BSTJ,
Vol, 57. No, 6. July-August 197
8th year, P.

1837〜1856)がある。1837-1856).

この従来例をまとめて示した図が第4図である。FIG. 4 is a diagram that collectively shows this conventional example.

光送受信装置は、送受信器1と送受信器2とより成り1
両者は光ファイバ3を介して通信を行う。
The optical transceiver device consists of a transceiver 1 and a transceiver 2.
Both communicate via optical fiber 3.

送受信器1は、送信部IAと受信部IBとより成り、送
受信器2は、受信部2Aと送信部2Bとより成る。
The transceiver 1 consists of a transmitting section IA and a receiving section IB, and the transceiver 2 consists of a receiving section 2A and a transmitting section 2B.

送信部IAと2Bとは同一構成より成り、レーザダイオ
ード駆動回路10.24、レーザダイオード11.25
光モニタ回路12.26、自動電力制御回路(APC)
13、27、比較用設定器(電圧設定器)14.28よ
り成る。
The transmitting sections IA and 2B have the same configuration, including a laser diode drive circuit 10.24 and a laser diode 11.25.
Optical monitor circuit 12.26, automatic power control circuit (APC)
It consists of 13, 27, and comparison setting device (voltage setting device) 14.28.

受信部IBと2人とは同一構成より成り、受光ダイオー
ド15.20、プリアンプ16.21、AGC用アンプ
17.22、AGC帰還部18.23より成る。
The receiving section IB and the other two have the same configuration, and consist of a light receiving diode 15.20, a preamplifier 16.21, an AGC amplifier 17.22, and an AGC feedback section 18.23.

この構成の動作は以下となる。The operation of this configuration is as follows.

送信信号を受けて駆動回路10は、レーザダイオード1
1を駆動し、送信出力をファイバ3に送出する。一般に
レーザダイオード11は発光出力が高く、又、比較的信
頼度の低いレーザダイオードを使用した場合出力のばら
つきが生ずる。そこで、ファイバ3の系路中にパッド(
減衰器)4を設けて。
Upon receiving the transmission signal, the drive circuit 10 drives the laser diode 1
1 and sends out the transmission output to fiber 3. Generally, the laser diode 11 has a high light emission output, and if a laser diode with relatively low reliability is used, variations in output will occur. Therefore, a pad (
Attenuator) 4 is provided.

受信部2Aによる受信出力の平準化をはかる。The receiving output by the receiving section 2A is leveled.

受信部2Aでは、光ファイバ3の出力を受光ダイオード
20で受光し1次いで、プリアンプ21で増巾し、AG
C回路22でAGCをかけ安定した受信出力を得る。
In the receiving section 2A, the output of the optical fiber 3 is received by a light receiving diode 20, firstly amplified by a preamplifier 21, and then sent to an AG.
The C circuit 22 applies AGC to obtain a stable reception output.

一方、送信部LAは、安定なレーザ出力を得るために、
モニタ回路12で発光出力を検知し、APC13を介し
て駆動回路10の駆動信号の調整をはかる。
On the other hand, in order to obtain stable laser output, the transmitter LA
The monitor circuit 12 detects the light emission output, and the drive signal of the drive circuit 10 is adjusted via the APC 13.

比較用設定器14は、APC13に対して、出力の閾値
レベルの設定用に供する。
The comparison setter 14 is provided to the APC 13 for setting an output threshold level.

送信部2Bと受信部IBとの間での動作も同じである。The operation between the transmitter 2B and the receiver IB is also the same.

かかる従来例は、光ファイバ3の系路中にパッド4を挿
入しなければならなかった。パッドを挿入した理由は、
前述の理由の他に、光ファイバ3の糸路が短い場合に、
受光ダイオード20への入力光が大きくなることを防ぐ
ためでもある。
In such a conventional example, a pad 4 had to be inserted into the path of the optical fiber 3. The reason for inserting the pad is
In addition to the above-mentioned reasons, when the yarn path of the optical fiber 3 is short,
This is also to prevent the amount of light input to the light receiving diode 20 from increasing.

また、比較用設定器14のレベルは固定であるため、レ
ーザダイオードの出力や受光ダイオードの受信能力に応
じたAPC制御がしにくい欠点もあった・ 〔発明の目的〕 本発明の目的は、受信状態に応じて送信状態を制御可能
とした光送受信回路を提供するものである。
In addition, since the level of the comparison setting device 14 is fixed, it is difficult to perform APC control according to the output of the laser diode and the reception capability of the photodetector diode. The present invention provides an optical transmitting/receiving circuit that can control the transmission state depending on the state.

〔発明の概要〕[Summary of the invention]

レーザダイオードを用いた光送受信回路は、光のダイナ
ミックレンジがかなり広く、大きな入力レベルでは、プ
リアンプが飽和してしまう。広いダイナミックレンジを
持ったAGCアンプを構成するには、回路が複雑、大き
な電源電圧が必要、規模が大きく小形化がはかれない等
の問題がある。
Optical transmitter/receiver circuits using laser diodes have a fairly wide optical dynamic range, and at high input levels, the preamplifier will become saturated. In order to configure an AGC amplifier with a wide dynamic range, there are problems such as a complicated circuit, a need for a large power supply voltage, and a large scale that cannot be miniaturized.

パッドで補正するにしても保守性が悪い。且つレーザダ
イオードに常時、余計な電流を流し寿命を短かくする。
Even if it is corrected with a pad, maintainability is poor. Moreover, unnecessary current is constantly passed through the laser diode, shortening its lifespan.

そこで、受光側でなく送信側で対処するべく、送受信器
自体で、受信部からの受信出力を送信部のAPC用の比
較用設定値として供給せしめることとした。
Therefore, in order to deal with this problem on the transmitting side rather than on the light receiving side, we decided to have the transmitter/receiver itself supply the received output from the receiving section as a comparative setting value for APC of the transmitting section.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の光送受信装置の実施例図を示す。本
実施例の特徴は、レベル検出器19A、 29Aを設け
たこと、AGC回路の代りにアンプ(メインアンプ) 
29.19を設けたこと、パッド4を不用としたことに
特徴を持つ。
FIG. 1 shows an embodiment of an optical transmitter/receiver according to the present invention. The features of this embodiment include the provision of level detectors 19A and 29A, and the use of an amplifier (main amplifier) instead of the AGC circuit.
It is characterized by the provision of 29.19 and the elimination of the need for pad 4.

APC回路13(27)の実施例を第2図に示す。AP
C回路13は、プリアンプ13A、クランプ回路13B
ローパスフイルタ(LPF)13C、アンプ13D、帰
還抵抗13Eより成る。プリアンプ13Aは、モニタ回
路■2で受けた受信出力を増巾する。クランプ回路13
Bでは、一定値以上のレベルをクランプする。
An embodiment of the APC circuit 13 (27) is shown in FIG. AP
The C circuit 13 includes a preamplifier 13A and a clamp circuit 13B.
It consists of a low pass filter (LPF) 13C, an amplifier 13D, and a feedback resistor 13E. The preamplifier 13A amplifies the received output received by the monitor circuit (2). Clamp circuit 13
In B, levels above a certain value are clamped.

LPF13Cでは、このクランプ出力を平滑化し。LPF13C smoothes this clamp output.

直流レベル信号を得る。アンプ130は、差動アンプで
あり、L P F 13Gの出力とレベル検出器19A
の出力との差分をとる。このレベル検出器19Aで検出
するレベルは、アンプ19の出力レベルである。
Obtain a DC level signal. The amplifier 130 is a differential amplifier, and has the output of the LPF 13G and the level detector 19A.
Take the difference with the output of . The level detected by this level detector 19A is the output level of the amplifier 19.

かくして得た差分出力は、駆動回路10の定電流源とな
る。この定電流源は、差分出力に応じた定電流をレーザ
ダイオード11に流し、発光を行う。
The differential output thus obtained becomes a constant current source for the drive circuit 10. This constant current source causes a constant current corresponding to the differential output to flow through the laser diode 11 to emit light.

一方、本実施例では、AGC回路17の代りにアンプ1
9を設けた。AGC回路17を排除できた理由は、送信
側でレベル検出器19Aを通じて送電電力が制御可能に
なったためである。
On the other hand, in this embodiment, instead of the AGC circuit 17, the amplifier 1
9 was set. The reason why the AGC circuit 17 could be eliminated is that the transmitted power can now be controlled through the level detector 19A on the transmitting side.

レベル検出器19Aは、送信伝送形式によって検出レベ
ルが異なる。第3図(イ)のNRZ方式による送信形式
であれば、ピーク検出を行う。第3図(ロ)のCMI方
式による送信形式によれば、CM工平均値レベルをレベ
ル検出する。
The level detector 19A has different detection levels depending on the transmission format. If the transmission format is the NRZ method shown in FIG. 3(a), peak detection is performed. According to the transmission format using the CMI method shown in FIG. 3(b), the CM engineering mean value level is detected.

本実施例によれば、受信部IBによる受信出力のレベル
を監視して、この受信レベルをAPC回路13の閾値レ
ベルとして設定させた。この結果、受信レベルに応じて
送信出力を制御できた。
According to this embodiment, the level of the reception output by the receiver IB is monitored, and this reception level is set as the threshold level of the APC circuit 13. As a result, it was possible to control the transmission output according to the reception level.

更に、本実施例によれば、レーザダイオードに流れる電
流を常に最適な状態にできるので、レーザダイオードの
出力が安定化する。例えば、伝送損失が5dB Lかな
いのに、最適受光レベルが一25dBの時に、出力が一
5dBとすると、15dBのバットが必要とするばかり
か、大きな出力をレーザダイオードに課して信頼度を下
げることになる。本実施例ではこのことがなくなる。
Furthermore, according to this embodiment, the current flowing through the laser diode can always be kept in an optimal state, so the output of the laser diode is stabilized. For example, if the transmission loss is less than 5 dB L, but the optimal light reception level is 125 dB, and the output is 15 dB, not only will a 15 dB batt be required, but a large output will be imposed on the laser diode, reducing reliability. It turns out. In this embodiment, this problem is eliminated.

更に、レーザダイオードの出力を制御するので、受信側
プリアンプの飽和も起り得ないので、AGC回路が不用
となり、代りに普通のアンプを使用することができた。
Furthermore, since the output of the laser diode is controlled, saturation of the receiving side preamplifier cannot occur, so the AGC circuit is not needed and a normal amplifier can be used instead.

更に1本実施例よれば、送信部IA→光ファイバ3→受
信部2A→送信部2B→光ファイバ3→受信部IB→送
信部IAなる負帰還系路が形成できたため、系全体の安
定化をはかることができた。
Furthermore, according to this embodiment, a negative feedback path of transmitting part IA → optical fiber 3 → receiving part 2A → transmitting part 2B → optical fiber 3 → receiving part IB → transmitting part IA was formed, so that the entire system was stabilized. I was able to measure.

尚、レベル検出器19Aては、基準レベルVrを決めて
おき、この基準レベルVrにレベル検出器19Aの受信
検出レベルの変動分ΔVを重ね合わせて、Vr±ΔVを
得、このVr±ΔVをAPC回路13への入力とせしめ
てもよい。
Incidentally, for the level detector 19A, a reference level Vr is determined in advance, and a variation ΔV of the reception detection level of the level detector 19A is superimposed on this reference level Vr to obtain Vr±ΔV, and this Vr±ΔV is It may also be used as an input to the APC circuit 13.

本実施例は、送信部IAと受信部IBとが1つの回路基
板の上で形成されている回路構成に適用することが好ま
しい。
This embodiment is preferably applied to a circuit configuration in which the transmitting section IA and the receiving section IB are formed on one circuit board.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、受信入力に基づき送信出力を調整でき
ることとなった。
According to the present invention, the transmission output can be adjusted based on the reception input.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光送受信回路の実施例図、第2図はA
PC回路13の実施例図、第3図はレベル検出例を示す
図、第4図は従来の光送受信回路を示す図である。 1.2・・・送受信回路、3・・・光ファイバ、IA、
 2B・・・送信部、18.2A・・・受信部、19.
29・・・メインアンプ、19A、 29A・・・レベ
ル検出器、13.27・・・APC(自動電力制御器)
。 代理人 弁理士   秋  本  正  実第2図 第3図
Figure 1 is an embodiment of the optical transmitter/receiver circuit of the present invention, and Figure 2 is A
FIG. 3 is a diagram showing an example of level detection, and FIG. 4 is a diagram showing a conventional optical transmitting/receiving circuit. 1.2... Transmission/reception circuit, 3... Optical fiber, IA,
2B... Transmission section, 18. 2A... Receiving section, 19.
29... Main amplifier, 19A, 29A... Level detector, 13.27... APC (automatic power controller)
. Agent Patent Attorney Tadashi Akimoto Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、第1の光送受信器の送信部と第2の光送受信器の受
信部とが光ファイバで結合され、第2の光送受信器の送
信部と第1の光送受信器の受信部とが光ファイバで結合
され、該光ファイバを介して第1、第2の光送受信器と
が光通信を行う光送受信装置において、 第1、第2の光送受信器の送信部は、それぞれ、送信信
号に応じてレーザダイオード駆動を行う駆動回路と、該
駆動回路によって駆動されるレーザダイオードと、該レ
ーザダイオードの出力を監視する監視回路と、該監視回
路の出力と外部閾値とを入力し、その差分に応じた直流
レベルを出力する自動電力制御器と、該自動電力制御器
によって上記レーザダイオード駆動回路の定電流源を可
変にせしめる手段とより成ると共に、 上記外部閾値は、第1の送受信器にあっては自己の受信
部の受信レベルをもって設定し、第2の送受信器にあっ
ては自己の受信部の受信レベルをもって設定せしめるこ
ととした光送受信装置。 2、上記送信信号の伝送形式はCMI方式とする時には
受信部の受信レベルとは平均値レベルとする特許請求の
範囲第1項記載の光送受信装置。 3、上記送信信号の伝送形式はNRZ方式とする時には
受信部の受信レベルとはピークレベルとする特許請求の
範囲第1項記載の光送受信装置。
[Claims] 1. The transmitting section of the first optical transceiver and the receiving section of the second optical transceiver are coupled by an optical fiber, and the transmitting section of the second optical transceiver and the first optical transceiver In an optical transmitter/receiver device, the transmitter of the first and second optical transceivers is coupled to a receiving section of the optical transceiver via an optical fiber, and the first and second optical transceivers perform optical communication via the optical fiber. are a drive circuit that drives a laser diode according to a transmission signal, a laser diode driven by the drive circuit, a monitoring circuit that monitors the output of the laser diode, and an output of the monitoring circuit and an external threshold value. an automatic power controller that outputs a direct current level according to the difference therebetween, and means for making the constant current source of the laser diode drive circuit variable by the automatic power controller, and the external threshold value is An optical transmitting/receiving device in which the first transmitting/receiving device is set by the receiving level of its own receiving section, and the second transmitting/receiving device is set by the receiving level of its own receiving section. 2. The optical transmitting/receiving device according to claim 1, wherein when the transmission format of the transmission signal is a CMI method, the reception level of the receiving section is an average level. 3. The optical transmitting/receiving device according to claim 1, wherein when the transmission format of the transmission signal is an NRZ system, the reception level of the receiving section is a peak level.
JP60126318A 1985-06-12 1985-06-12 Optical transmission and reception equipment Pending JPS61285834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60126318A JPS61285834A (en) 1985-06-12 1985-06-12 Optical transmission and reception equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60126318A JPS61285834A (en) 1985-06-12 1985-06-12 Optical transmission and reception equipment

Publications (1)

Publication Number Publication Date
JPS61285834A true JPS61285834A (en) 1986-12-16

Family

ID=14932216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60126318A Pending JPS61285834A (en) 1985-06-12 1985-06-12 Optical transmission and reception equipment

Country Status (1)

Country Link
JP (1) JPS61285834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122083A (en) * 1994-03-18 2000-09-19 Fujitsu Limited Mobile communication system having a small base station and equipment for its system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122083A (en) * 1994-03-18 2000-09-19 Fujitsu Limited Mobile communication system having a small base station and equipment for its system

Similar Documents

Publication Publication Date Title
US4918396A (en) Monitoring and/or control of optical amplifiers
US6122084A (en) High dynamic range free-space optical communication receiver
US5703711A (en) In-line optical amplifier
US9007680B2 (en) Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US6219162B1 (en) Methods for equalizing WDM systems
EP0517503A2 (en) Optical amplifier
US5809049A (en) Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter
CA2062216C (en) Optical-to-electric transducer with extended dynamic range
JPS61285834A (en) Optical transmission and reception equipment
US5557265A (en) Method and system for indicating an optical transmit amplifier fault
JPS6377171A (en) Optical receiver
JPH0468830A (en) Light amplifying repeater
JPH0669890A (en) Light amplification repeating transmission system
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
JPH0730495A (en) Bidirectional optical communication equipment
JP2940194B2 (en) Optical direct amplification method
JPH07177099A (en) Optical reception equipment
JP3189976B2 (en) Laser diode driving method, laser diode driving circuit, and optical transmission system using the same
JPH0856200A (en) Agc method for optical receiver for catv
JP2000307518A (en) Optical signal transmission system
JPS591019B2 (en) Optical communication method
JPH0758702A (en) Optical receiving circuit
JPH0697887A (en) Optical reception equipmnent
JPS62142438A (en) Optical reception equipment
JP2001053682A (en) Optical amplification device and optical communication system