JPS61280187A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS61280187A
JPS61280187A JP60122931A JP12293185A JPS61280187A JP S61280187 A JPS61280187 A JP S61280187A JP 60122931 A JP60122931 A JP 60122931A JP 12293185 A JP12293185 A JP 12293185A JP S61280187 A JPS61280187 A JP S61280187A
Authority
JP
Japan
Prior art keywords
signal
solid
state imaging
imaging device
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60122931A
Other languages
Japanese (ja)
Inventor
Takaaki Hori
堀 高明
Satoru Mochizuki
哲 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60122931A priority Critical patent/JPS61280187A/en
Publication of JPS61280187A publication Critical patent/JPS61280187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To simply realize a simple video signal of a muse type high definition television system by shifting a solid state image pickup element by one picture element horizontally and by one picture element vertically and disposing, a changing a combination of the picture elements taking out a signal and successively reading four types of different field signals. CONSTITUTION:An incident optical image 6 forms the image on solid state image pickup elements 1, 2 disposed by shifting by one picture element pitch vertically and shifting by one picture element horizontally in the same brightness and the same magnification by a half mirror 7 and a total reflecting mirror 8. In the 4n-th field, a signal of the picture element of a white circle section is read by the solid state image pickup element 1 and a signal of a black circle section is subjected to a removing processing. In the next field, the signal of the picture element of the white square section is read by the solid state image pickup element 2 and the signal of the picture element of the black square section is removed. Further, the signal of the black circle section is read and the signal of the picture element of the black square is read. By successively repeating these four fields, a muse signal of the high definition television system and a similar video signal can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、帯域圧縮技術を利用する高品位テレビシス
テムのミューズ信号と類似の信号を簡易的に発生させる
固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device that easily generates a signal similar to a muse signal of a high-definition television system using band compression technology.

〔従来の技術〕[Conventional technology]

高品位テレビシステムでは1画像の走査線は従来の2倍
以上の1125本、画面の縦横比3対5、フレーム周波
数30Hz、輝度信号帯域20 MHz1広帯域色信号
帯域7MHz、狭帯域色信号帯域5.5MH2となって
いる。この結果、現行テレビの約5倍程度の情報量を伝
送する必要があり、高品位用撮像装置としては、周波数
特性の改善された撮像管を使った高品位用撮像装置が開
発され、使用されている。
A high-definition television system has 1,125 scanning lines per image, which is more than double the conventional one, a screen aspect ratio of 3:5, a frame frequency of 30 Hz, a luminance signal band of 20 MHz, a wide chrominance signal band of 7 MHz, and a narrow chrominance signal band of 5. It is 5MH2. As a result, it is necessary to transmit approximately five times as much information as current televisions, and high-definition imaging devices using image pickup tubes with improved frequency characteristics have been developed and used. ing.

従来の高品位用撮像装置の構成をtli6図に示す。The configuration of a conventional high-quality imaging device is shown in Fig. tli6.

図において1間は入射光gR%晴はレンズ、色分解光学
系、−は高品位用撮像管、−は信号処理回路、−はエン
コーダ、茜は偏向回路、間はレジストレーション調整回
路、fM3Iは同期信号発生回路、鉋は出力端子である
In the figure, between 1 and 1 is the incident light gR% Clear is the lens, color separation optical system, - is the high-quality image pickup tube, - is the signal processing circuit, - is the encoder, Akane is the deflection circuit, the space between 1 is the registration adjustment circuit, and fM3I is the The synchronous signal generation circuit and the plane are the output terminals.

また、第7図は高品位テレビシステムのミューズ信号発
生用のエンコーダ回路を示すブロック図であり、図にお
いて、民は入力端子、鋒υは信号処理回路、−4は出力
端子である。
Furthermore, FIG. 7 is a block diagram showing an encoder circuit for generating a muse signal in a high-definition television system. In the figure, numeral 1 is an input terminal, 鈥υ is a signal processing circuit, and 4 is an output terminal.

次に、上記従来の高品位用撮像装置の動作について説明
する0 第6図における入射光像(44)は、レンズ、色分解光
学系((2)を通シ、高品位撮像管−により電気信号に
変換される。その後、信号処理回路■、エンコーダーを
介して高品位テレビシステム用の信号として出力端子−
へ取シ出す。この場合、同期信号発生回路■よシ基準と
なる高品位テレビシステム用の基準信号を発生させ、一
方はレジストレーション調整回路W)Kより高品位用撮
像管−の特性に合った偏向電力を偏向回路−で発生させ
て前記高品位用撮像管−・\供給し、他方はエンコーダ
ー用の基準同期信号を作ることKよυ、規定の高品位テ
レビ信号を発生させ、出力端子−より出力として取り出
す。
Next, we will explain the operation of the conventional high-definition imaging device. The incident light image (44) in FIG. It is converted into a signal.Then, it goes through a signal processing circuit and an encoder to an output terminal as a signal for a high-definition television system.
Take it out. In this case, the synchronization signal generation circuit generates a reference signal for a high-definition television system that serves as a reference, and the registration adjustment circuit W) deflects deflection power that matches the characteristics of the high-definition image pickup tube. Generate it in the circuit and supply it to the high-definition image pickup tube, and generate a standard synchronization signal for the encoder on the other side. Generate a specified high-definition television signal and take it out as an output from the output terminal. .

上記のようにして得られた信号は、第7図の信号処理回
路151)の入力端子間へ入力され、高品位テレビシス
テムのミューズ信号を発生すべく信号処理をし、出力端
子−よシ取り出し、伝送出力とする0 ここで、ミューズ方式における伝送信号の信号パターン
を示せば第8図のようKなる0図において、水平線は水
平走査線を示し、黒丸、白丸、黒四角、白四角、X印は
撮像素子の受光面上のサンプリング位置を示している。
The signal obtained as described above is input between the input terminals of the signal processing circuit 151) shown in FIG. , the transmission output is 0 Here, the signal pattern of the transmission signal in the MUSE method is K as shown in Figure 8. In the diagram, the horizontal line indicates the horizontal scanning line, black circle, white circle, black square, white square, The marks indicate sampling positions on the light-receiving surface of the image sensor.

また、走査は一行飛びの飛び越し走査をしている0各走
査において信号を読み出すサンプル点が選択されておシ
、たとえば、次のような順序で選択され、信号が伝送さ
れる。
In addition, the scanning is performed by interlacing scanning, and in each scanning, sample points from which signals are read out are selected, for example, in the following order, and the signals are transmitted.

白丸は4n番目のフィールドで伝送される点、白四角は
4n+1番目のフィールドで伝送される点、黒丸は4n
+2番目のフィールドで伝送される点、黒四角は4n+
3番目のフィールドで伝送される点であり、x印は伝送
しないサンプル点である。すなわち、画素は4フィール
ドで全画面を構成する画素の信号を伝送することになる
が、ただし、画面上の半分のサンプル点に対応する信号
は伝送しないようKなっている。
The white circle is the point transmitted in the 4nth field, the white square is the point transmitted in the 4n+1st field, the black circle is the point transmitted in the 4nth field.
+The point transmitted in the second field, the black square is 4n+
These are the points that are transmitted in the third field, and the x marks are sample points that are not transmitted. That is, the pixels transmit the signals of the pixels constituting the entire screen in four fields, but the signals corresponding to half the sample points on the screen are not transmitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の高品位用撮像装置に使用される高品位用撮像
管は、超精密な部品加工技術、組立技術による超高解像
度、低残像の電子銃を製造しなければならず、また、高
電流密度のカソード材料の開発の必要性から、高度な材
料技術を必要とし、製品原価が高価なものとなるという
問題点があった0 また、上記の高品位撮像管は、熱電子放射の職種を持っ
た真空管の一種であるため、その寿命特性には大きな問
題があり、その保守のための費用も膨大なものKなるな
どの問題点があった。
The high-quality image pickup tube used in the conventional high-quality image pickup device described above requires ultra-high resolution and low afterimage electron guns to be manufactured using ultra-precise component processing technology and assembly technology. Due to the need to develop cathode materials with high density, advanced material technology was required and the product cost was high.In addition, the above-mentioned high-quality image pickup tubes were developed for the field of thermionic emission. Since it is a type of vacuum tube, its lifespan is a major problem, and its maintenance costs are enormous.

この発明は、上記のような問題点を解消するためKなさ
れたもので、寿命特性を大幅に改善し、保守の費用もか
からずかつ安価に製作することができる固体撮像装置を
得ることを目的とするものである。
This invention was made to solve the above-mentioned problems, and aims to provide a solid-state imaging device that significantly improves the life characteristics, requires no maintenance costs, and can be manufactured at low cost. This is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる固体撮像装置は、水平方向および垂直
方向に画素ピッチ間隔だけ離れた受光部を有する固体撮
像素子を2枚用意し、これらの固体撮像素子を水平方向
へ1画素分、垂直方向へ1画素分ずらせて配置し、前記
固体撮像素子により、信号を取9出す画素の組合せを変
えることにより、4フィールドを1周期として4種類の
異なるフィールド信号を順次読み出すようにしたもので
ある。
A solid-state imaging device according to the present invention prepares two solid-state imaging devices each having a light-receiving section spaced apart by a pixel pitch interval in the horizontal and vertical directions, and arranges these solid-state imaging devices by one pixel in the horizontal direction and one pixel in the vertical direction. By changing the combination of pixels arranged one pixel apart and taking out signals using the solid-state imaging device, four different field signals are sequentially read out with four fields as one cycle.

〔作用〕[Effect]

同一の固体撮像素子を2枚水平垂直方向に1画素ピッチ
ずらせて設置し、4フィールドを1周期として4種の異
なるフィールド信号を順次読出す。で、 高品位テレビ
システムミューズ方式の簡易映像信号を簡単に、得るこ
とができ、しかも固体撮像素子自体は高品位テレビシス
テムの1画面を構成する画素数のほぼ半分の画素数で実
現することができるので現行の半導体微細加工技術でも
十分対応できることになる。
Two identical solid-state image sensing devices are installed horizontally and vertically with a one-pixel pitch shift, and four different field signals are sequentially read out with four fields as one period. With this, it is possible to easily obtain a simple video signal using the Muse method for a high-definition television system, and the solid-state image sensor itself can be realized with approximately half the number of pixels that make up one screen of a high-definition television system. This means that current semiconductor microfabrication technology is sufficient.

〔実施例〕〔Example〕

第1図は、この発明の固体撮像装置の基本構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing the basic configuration of a solid-state imaging device of the present invention.

図においてs (1) 、(2)は固体撮像素子であっ
て、光学像に対し相対的に1画素ピッチ水平方向および
垂直方向にずらせて設置されている。(3)は固体撮像
素子(1) 、 (2)を駆動する駆動信号発生器、(
4)は固体撮像素子(1) 、 (2)の出力信号を合
成するための合成信号処理回路、(5)は出力端子%(
6)は入射光学像、(ηは入射光学像を2分割するハー
フミラ−1(3)はハーフミラ−(γ)に分割1反射さ
れた光学像を全反射させる全反射ミラーである。
In the figure, s (1) and (2) are solid-state image sensing devices, which are installed so as to be shifted by one pixel pitch in the horizontal and vertical directions relative to the optical image. (3) is a drive signal generator that drives the solid-state image sensors (1) and (2);
4) is a composite signal processing circuit for combining the output signals of solid-state image sensors (1) and (2), and (5) is an output terminal %(
6) is an incident optical image, (η is a total reflection mirror that divides the incident optical image into two, and the half mirror 1 (3) is a total reflection mirror that totally reflects the optical image that has been divided and reflected by the half mirror (γ).

第2図はこの発明の構成要素である固体撮像素子(1)
 、 (2)の構成例を示す説明図である。
Figure 2 shows a solid-state image sensor (1) which is a component of this invention.
, (2) is an explanatory diagram showing a configuration example of (2).

図において、(ロ)はフォトダイオード等で構成される
光電変換機能をもつ画素であシ、各画素(ロ)は水平方
向、垂直方向共に1画素ピッチの間隔で隣接の画素と離
れて配置されている。
In the figure, (b) is a pixel with a photoelectric conversion function composed of a photodiode, etc., and each pixel (b) is placed apart from adjacent pixels at an interval of one pixel pitch in both the horizontal and vertical directions. ing.

第3図は第1図に示した固体撮像素子(1) 、 (2
)を2枚用意し、相対的に水平方向、垂直方向に各1画
素ピッチ分ずらせて配置した状態を示す配置図である。
Figure 3 shows the solid-state image sensors (1) and (2) shown in Figure 1.
) are prepared and arranged so as to be relatively shifted by one pixel pitch in each of the horizontal and vertical directions.

第4図はこの発明の構成要素である駆動信号発生器(3
)の内部構成の一例を示すブロック図である。
FIG. 4 shows a drive signal generator (3) which is a component of this invention.
) is a block diagram showing an example of the internal configuration of the.

図においてs i!111は基本信号発振器、−は同期
信号発生器、開は分局器、開は水平駆動をする場合に画
素を1つ飛びに選択し、信号を取シ出すための水平駆動
選択回路、關は水平方向の駆動を行なわせるための信号
を発生させる水平駆動信号発生器、−は同期信号発生器
−の同期信号出力から奇、偶フィールドを判別するフィ
ールド判別器、(ロ)は垂直駆動信号発生器である。
In the figure s i! 111 is a basic signal oscillator, - is a synchronizing signal generator, open is a divider, open is a horizontal drive selection circuit for selecting one pixel at a time and extracting a signal when performing horizontal drive; A horizontal drive signal generator that generates a signal for directional driving, - is a synchronization signal generator - A field discriminator that discriminates between odd and even fields from the synchronization signal output, and (b) a vertical drive signal generator. It is.

上記の構成において、水平駆動信号は出力端子−よシ取
シ出し、垂直駆動信号は出力端子−よシ取シ出す。
In the above configuration, the horizontal drive signal is output from the output terminal and the vertical drive signal is output from the output terminal.

次に、この発明の固体撮像装置の動作について説明する
Next, the operation of the solid-state imaging device of the present invention will be explained.

第1図および第3図に示す構成において、入射光像(6
)はハーフミラ−(η、全反射ミラー(3)により同一
の倍率で同一の明るさく入射光像(6)の1/2)で垂
直方向に1画素ピッチ、水平方向に1画素ピッチずらせ
て設置された固体撮像素子(1)、(2)K結像される
In the configurations shown in FIGS. 1 and 3, the incident light image (6
) is a half mirror (η, 1/2 of the incident light image (6) with the same magnification and the same brightness due to the total reflection mirror (3)), and is installed with a 1 pixel pitch in the vertical direction and a 1 pixel pitch in the horizontal direction. K images are formed on the solid-state image sensors (1) and (2).

この発明に用いる固体撮像素子(1) # (2)は、
前述した如<S Z2図に示すように水平、垂直方向に
1画素ピッチづつ間隔を持った画素が配置されている。
The solid-state image sensor (1) # (2) used in this invention is:
As described above, as shown in FIG. 2, pixels are arranged at intervals of one pixel pitch in the horizontal and vertical directions.

この固体撮像素子(1) # (2)を駆動信号発生器
(3)により駆動することで信号を読み出し、合成信号
処理回路(4)により固体撮像素子(1) 、 (2)
から読み出した信号を合成し、高品位ミューズ信号とし
て出力端子(5)より取り出す。
The solid-state image sensor (1) # (2) is driven by the drive signal generator (3) to read out the signal, and the combined signal processing circuit (4) converts the solid-state image sensor (1), (2)
The signals read out from the synthesizer are synthesized and taken out from the output terminal (5) as a high-quality muse signal.

この動作を第5図を用いてさらに詳細に述べる。This operation will be described in more detail using FIG.

図に示すように固体撮像索子(1) 、 (2)が相当
的に水平、垂直方向に1画素ピッチずらせて配置され、
駆動信号発生器(3)により次のよう駆動される。たと
えば4n番目のフィールドでは固体撮像素子(1)で白
丸部の画素の信号を読み出し、黒丸部の画素の信号は読
み出した後、捨て去る信号処理をする。
As shown in the figure, the solid-state imaging probes (1) and (2) are arranged substantially shifted by one pixel pitch in the horizontal and vertical directions,
It is driven by the drive signal generator (3) as follows. For example, in the 4nth field, the solid-state image sensor (1) reads out the signals of the pixels in the white circle area, and after reading out the signals of the pixels in the black circle area, signal processing is performed to discard them.

次の4n+1番目のフィールドにおいては固体撮像索子
(2)で自国角部の画素の信号を読み出し。
In the next 4n+1st field, the solid-state imaging probe (2) reads out the signal of the pixel in the native corner.

黒四角部の画素の信号は読み出した後、捨て去る信号処
理をする。
After reading out the signals of the pixels in the black square area, signal processing is performed to discard them.

さらに、次の4n+2番目のフィールドにおいては固体
撮像素子(1)で黒丸部の信号を読み出し。
Furthermore, in the next 4n+2nd field, the solid-state image sensor (1) reads out the signal in the black circle.

白丸部の画素の信号は読み出した後、捨て去る信号処理
をする。
After reading out the signals of the pixels in the white circle area, the signals are processed to be discarded.

最後に、4n+3番目のフィールドにおいては。Finally, in the 4n+3rd field.

固体撮像素子(2)で黒四角部の画素の信号を読み出し
、自国角部の画素の信号は読み出した後、捨て去る信号
処理をする。このようにして信号を選択抽出して送出す
ることは、従来例で説明した方式と全く同じ信号が得ら
れているととKなる。
The solid-state image sensor (2) reads out the signals of the pixels in the black square area, and after reading out the signals of the pixels in the native corner, performs signal processing to discard them. By selectively extracting and transmitting signals in this way, it is possible to obtain exactly the same signal as in the method described in the conventional example.

以上のような4つのフィールドを順次繰シ返すことによ
り、高品位テレビシステムのミューズ信号と類似の映像
信号を発生することができるようになる。
By sequentially repeating the four fields as described above, a video signal similar to the muse signal of a high-definition television system can be generated.

上記の動作では2フィールド蓄積期間の信号を読み出よ
うになっているが、1フィールド蓄積期間の信号を読み
出す場合には次のように動作させる0 すなわち、上記の4n番目のフィールドにおける固体撮
像素子(1)で白丸部の画素の信号を読み出し黒丸部の
画素の信号は読み出した後、捨て去る信号処理をすると
共に固体撮像素子(2)の白画角部。
In the above operation, the signal of 2 field accumulation period is read out, but when reading the signal of 1 field accumulation period, the operation is performed as follows. In (1), the signal of the pixel in the white circle is read out, and the signal of the pixel in the black circle is read out, and then signal processing is performed to discard it.

黒画角部の信号も読み出して捨て去る信号処理をする。Signal processing is performed to read out and discard signals from the black angle of view.

次の4n+1番目のフィールドにおいては固体撮像索子
(2)の白画角部の画素の信号を読み出し黒画角部の画
素の信号は読み出した後、捨て去る信号処理をすると共
に固体撮像素子(1)の白丸部および黒丸部の信号も読
み出して捨て去る信号処理をする。
In the next 4n+1st field, the signals of the pixels in the white angle of view of the solid-state imaging element (2) are read out, the signals of the pixels in the black angle of view are read out, and then signal processing is performed to discard them. ) is also read out and processed to discard the signals in the white and black circles.

さらに、次の4n+2番目のフィールドにおいては固体
撮像素子(1)の黒丸部の信号を読み出し。
Furthermore, in the next 4n+2nd field, the signal of the black circle part of the solid-state image sensor (1) is read out.

白丸部の信号は読み出した後、捨て去る信号処理をする
と共に固体撮像素子(2)の黒画角部の画素の信号を読
み出し白画角部の画素の信号は読み出した後、捨て去る
化号処理をする。
After reading out the signals in the white circle area, signal processing is performed to discard them, and at the same time, the signals of the pixels in the black field corner of the solid-state image sensor (2) are read out, and after the signals of the pixels in the white field corner are read out, they are subjected to signal processing to be discarded. do.

以上のように同一の固体撮像素子を2枚水平垂直方向に
1画素ピッチずらせて設置し、1フイ一間がフィールド
期間となるため、被写体が高速に移動するような場合に
おいてもフリッカ状の現象が現われることなく、安定な
画像が再現できる。
As described above, two identical solid-state image sensors are installed with a one-pixel pitch shifted in the horizontal and vertical directions, and each frame is a field period, so even when the subject is moving at high speed, flicker-like phenomena can occur. Stable images can be reproduced without the appearance of

他方、前述のように2フィールド蓄積期間の信号を読み
出す場合は暗い所でも安定に動作する感度の高いものと
なる。
On the other hand, as mentioned above, when reading out signals during the two-field accumulation period, the device has high sensitivity and operates stably even in a dark place.

ところで、高品位テレビシステムの場合、1画面を構成
する画素数は、水平方向についてほぼ1900画素、垂
直方向くついてほぼ1000画素必要である。
By the way, in the case of a high-definition television system, the number of pixels constituting one screen is approximately 1900 pixels in the horizontal direction and approximately 1000 pixels in the vertical direction.

この発明の場合、この画素を2枚の固体撮像素子(1)
、(2)で構成することになシ、1枚の固体撮像素子は
水平方向、はぼ950画素、垂直方向、はぼ500画素
でよい0この程度の画素数に減らせると、半導体微細加
工技術の対応も容易になり、実現しやすくなる。また%
2枚の固体撮像素子(1)。
In the case of this invention, this pixel is connected to two solid-state image sensors (1).
, (2) is necessary. One solid-state image sensor has approximately 950 pixels in the horizontal direction and 500 pixels in the vertical direction. If the number of pixels can be reduced to this level, semiconductor microfabrication will be possible. Technological support will also become easier and realization will become easier. Also%
Two solid-state image sensors (1).

(2)は全く同様なものを製作すればよく、生産性も向
上する。
For (2), it is sufficient to manufacture exactly the same thing, which improves productivity.

さらに第2図から明らかなように、受光部の周辺部には
、水平方向、垂直方向、共に1画素に対応する間隔の非
受光部があるので、この部分を有効に使い信号処理、伝
送部として使用すれば、−元部は可能な限り広い面積を
確保することができ。
Furthermore, as is clear from Figure 2, there is a non-light-receiving area around the light-receiving area with an interval corresponding to one pixel in both the horizontal and vertical directions, so this area can be used effectively to perform signal processing and transmission. If used as a base, the area of the base can be secured as wide as possible.

開口率を向上させ、固体撮像素子の感度を向上すること
も可能となる。
It also becomes possible to improve the aperture ratio and improve the sensitivity of the solid-state image sensor.

なお、上記の実施例では、水平方向、垂直方向に1画素
ピッチ間隔を置いた受光部を有する2枚この例に限定さ
れるものではなく、受光部の間隔は正確に1画素ピッチ
でなくてもよく、また、2枚の固体撮像素子の相対撮像
素子の相対配置も正確に水平方向、垂直方向とも1画素
ピッチのずれでなくてもよい。
Note that in the above embodiment, the two sheets having light receiving sections spaced apart by one pixel pitch in the horizontal and vertical directions are not limited to this example, and the spacing between the light receiving sections may not be exactly one pixel pitch. Furthermore, the relative arrangement of the two solid-state image sensors does not have to be precisely shifted by one pixel pitch in both the horizontal and vertical directions.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、同一の構成の固体撮
像素子を2枚、水平方向、垂直方向に1画素ピッチずら
して設置し、画素の組合せを変えて4フィールドを1周
期として4種の異なるフィールド信号を順次読み出すの
で、高品位テレビシステムミューズ方式の簡易映像信号
を簡単に得ることができ、しかも固体撮像素子自体は高
品位テレビシステムの1画面を構成する画素数のほぼ半
分の画素数で実現することができるので、現行の半導体
微細加工技術でも十分対応でき、高性能、長寿命の固体
撮像装置を安価に製作できる等の効果がある。
As described above, according to the present invention, two solid-state image sensors with the same configuration are installed with a one-pixel pitch shift in the horizontal and vertical directions, and the pixel combinations are changed to create four types of four fields with one period. Since different field signals are read out sequentially, it is possible to easily obtain a simple video signal of the high-definition TV system Muse method, and the solid-state image sensor itself has approximately half the number of pixels that make up one screen of a high-definition TV system. Since it can be realized in numbers, it can be sufficiently handled using current semiconductor microfabrication technology, and has the advantage of being able to manufacture high-performance, long-life solid-state imaging devices at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による固体撮像装置の構成
を示すブロック図、第2図は上記固体撮像装置の構成要
素である固体撮像素子の構成例を示す説明図、第3図は
上記固体撮像素子の配置図、第4図は上記固体撮像装置
における駆動信号発生器の内部構成を示すブロック図、
第5図は2枚の固体撮像索子の信号域シ出しの様子を示
す配置図、第6図は従来の撮像装置の構成を示すブロッ
ク図、第7図は上記従来の撮像装置におけるミューズ信
号の信号配置図、第8図は上記従来の撮像装置の信号に
よりミユーズ信号を作るミューズエンコーダの信号パタ
ーン図である。 図において% (i) * (2)は固体撮像素子、(
3)は駆動信号発生器、(4)は合成信号処理回路、(
6)は出力端子、(6)は入射光学偉、(7)はハーフ
ミラ−1(3)は全反射ミラーである。 なお、図中、同一符号は同一まえは相当部分を示す。
FIG. 1 is a block diagram showing the configuration of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of the configuration of a solid-state imaging device that is a component of the solid-state imaging device, and FIG. 3 is the above-mentioned solid-state imaging device. FIG. 4 is a block diagram showing the internal configuration of the drive signal generator in the solid-state imaging device;
Fig. 5 is a layout diagram showing how the signal range of two solid-state imaging devices is developed, Fig. 6 is a block diagram showing the configuration of a conventional imaging device, and Fig. 7 is a muse signal in the above-mentioned conventional imaging device. FIG. 8 is a signal pattern diagram of a Muse encoder that generates a Muse signal from the signals of the conventional imaging device. In the figure, % (i) * (2) is the solid-state image sensor, (
3) is a drive signal generator, (4) is a composite signal processing circuit, (
6) is an output terminal, (6) is an input optical device, (7) is a half mirror, and (3) is a total reflection mirror. In the figures, the same reference numerals indicate corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)光学的に2分割した画像を垂直方向に1画素ピッ
チおよび水平方向に1画素ピッチ異なる位置に配置され
た2枚の固体撮像素子で光電変換し、ミューズ信号を取
り出す固体撮像装置において、駆動信号発生器により信
号を取り出す画素の組合せを変えることにより、4フィ
ールドを1周期として4種類の異なるフィールド信号を
順次読み出すようにしたことを特徴とする固体撮像装置
(1) In a solid-state imaging device that photoelectrically converts an optically divided image into two using two solid-state imaging devices placed at different positions vertically by one pixel pitch and horizontally by one pixel pitch to extract a muse signal, A solid-state imaging device characterized in that four different field signals are sequentially read out with four fields as one cycle by changing the combination of pixels from which signals are extracted by a drive signal generator.
(2)固体撮像素子は受光面を構成する画素の配置が水
平方向、垂直方向共に1画素ピッチの間隔で配列されて
なるものを用いた特許請求の範囲第1項記載の固体撮像
装置。
(2) The solid-state imaging device according to claim 1, wherein the solid-state imaging device uses a solid-state imaging device in which pixels constituting a light-receiving surface are arranged at intervals of one pixel pitch in both the horizontal and vertical directions.
(3)固体撮像素子の各画素の信号は2フィールド期間
蓄積した後読み出す様にした特許請求の範囲第1項また
は第2項記載の固体撮像装置。
(3) A solid-state imaging device according to claim 1 or 2, wherein the signal of each pixel of the solid-state imaging device is read out after being accumulated for two field periods.
(4)固体撮像素子の各画素の信号は1フィールド期間
蓄積した後読み出す様にした特許請求の範囲第1項また
は第2項記載の固体撮像装置。
(4) A solid-state imaging device according to claim 1 or 2, wherein the signal of each pixel of the solid-state imaging device is read out after being accumulated for one field period.
JP60122931A 1985-06-04 1985-06-04 Solid-state image pickup device Pending JPS61280187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122931A JPS61280187A (en) 1985-06-04 1985-06-04 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122931A JPS61280187A (en) 1985-06-04 1985-06-04 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS61280187A true JPS61280187A (en) 1986-12-10

Family

ID=14848154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122931A Pending JPS61280187A (en) 1985-06-04 1985-06-04 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS61280187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418564A (en) * 1992-09-04 1995-05-23 Asashi Kogaku Kogyo Kabushiki Kaisha Dual-type imaging device having multiple light sensitive elements
US5745171A (en) * 1994-04-14 1998-04-28 Asahi Kogaku Kogyo Kabushiki Kaisha Device for generating a luminance signal from a single field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418564A (en) * 1992-09-04 1995-05-23 Asashi Kogaku Kogyo Kabushiki Kaisha Dual-type imaging device having multiple light sensitive elements
US5543837A (en) * 1992-09-04 1996-08-06 Asahi Kogaku Kogyo Kabushiki Kaisha Dual-type imaging device having multiple light sensitive elements
US5648817A (en) * 1992-09-04 1997-07-15 Asahi Kogaku Kogyo Kabushiki Kaisha Dual type imaging device having multiple light sensitive elements
US5745171A (en) * 1994-04-14 1998-04-28 Asahi Kogaku Kogyo Kabushiki Kaisha Device for generating a luminance signal from a single field

Similar Documents

Publication Publication Date Title
JP3380913B2 (en) Solid-state imaging device
KR900007052B1 (en) Solid-state image pickup device
JPH0147073B2 (en)
US5764285A (en) Imaging apparatus having area sensor and line sensor
JPH0946600A (en) Image pickup device
US4516154A (en) Solid state color imaging system
JPS6141467B2 (en)
JPS61280187A (en) Solid-state image pickup device
JP3223103B2 (en) Imaging device
JP3648638B2 (en) Color imaging device
JPH10189930A (en) Solid-state image sensor
JPH052033B2 (en)
JP2612222B2 (en) Composite image display method and device
JPH08307649A (en) Image pickup device
JP3055809B2 (en) Electronic endoscope device
JPH0316476A (en) Image pickup element
JP2552399B2 (en) Electronic endoscopic device
JPS643262Y2 (en)
JP2655698B2 (en) Electronic endoscope device
KR100247779B1 (en) Video indication device using a low resolving power element and method thereof
JPS63283354A (en) Image input device
JPS61234686A (en) Color solid-state image pickup device
JPH0364277A (en) Charged coupled image pickup device
JPH0319481A (en) Image pickup device
JPH04137890A (en) Solid-state image pickup device