JPS61279179A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS61279179A
JPS61279179A JP60122152A JP12215285A JPS61279179A JP S61279179 A JPS61279179 A JP S61279179A JP 60122152 A JP60122152 A JP 60122152A JP 12215285 A JP12215285 A JP 12215285A JP S61279179 A JPS61279179 A JP S61279179A
Authority
JP
Japan
Prior art keywords
semiconductor
electrode
photoelectric conversion
conversion device
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60122152A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Kunio Suzuki
邦夫 鈴木
Masayoshi Abe
阿部 雅芳
Susumu Nagayama
永山 進
Mikio Kanahana
金花 美樹雄
Takeshi Fukada
武 深田
Ippei Kobayashi
一平 小林
Masato Usuda
真人 薄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP60122152A priority Critical patent/JPS61279179A/en
Publication of JPS61279179A publication Critical patent/JPS61279179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain high conversion efficiency even if an area is large, by utilizing the self-bias property of a P-I-N junction on a glass substrate, oxidizing a shorted part with an oxidizing solution self-selectively, and insulating the shorted part. CONSTITUTION:A photoelectric conversion device is composed of a glass substrate 1, a light transmitting conducting film 2, a P-type SiC non-single crystal semiconductor 3, an I-type non-single crystal silicon semiconductor 4, an N-type silicon, silicon nitride (Si3N4-x(0<x<4)) or silicon carbide (SixC1-x(0<x<1)) semiconductor 5 and an ITO 6. A shorted part 8 is present in a semiconductor 7. A part between this device and another electrode 12 is filled with an electrolyte 14. A DC voltage 13 is applied across the film 2 and the electrode 12. As a result, the shorted part 8 is oxidized 10 and insulated. Thereafter, the device is washed with water and a remaining ion component is removed. After drying, aluminum 9 is provided as an electrode on the back surface.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、光電変換装置特に大面積の光電変換装置の作
製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a photoelectric conversion device, particularly a large-area photoelectric conversion device.

[従来技術1 従来、光電変換装置としてはIcm”または100cm
”の小面積のPIN接合を有する非単結晶半導体が用い
られている。また40cm X 60cmと大面積の光
電変換装置を作り、その晴位面積あたりの製造原価を下
げる試みがある。しかし、かかる光電変換装置における
光起電力を発生ずる非単結晶半導体は、プラズマCvl
′1法または光CVrl法で作られるため、その一部に
ピンホール、クラック等の短絡電流部(ショート)をい
くつか必ず有してしまった。そのため、大面積にする場
合、かかる短絡電流部でのショートによる変換効率の低
下を誘発し、製造歩留りが悪く、結局低価格化の成就が
困難になってしまった。
[Prior art 1 Conventionally, as a photoelectric conversion device, Icm” or 100cm
A non-single-crystal semiconductor having a PIN junction with a small area of A non-single crystal semiconductor that generates photovoltaic force in a photoelectric conversion device is a plasma Cvl
Because they are manufactured using the '1 method or the optical CVrl method, they always have some short-circuit parts (short circuits) such as pinholes and cracks. Therefore, when increasing the area, a short circuit in the short-circuit current portion induces a reduction in conversion efficiency, resulting in a poor manufacturing yield and ultimately making it difficult to achieve a reduction in price.

このため、かかる大面積の光電変換装置において、電流
短絡部のみを選択的に除去する方法が求められている。
Therefore, in such a large-area photoelectric conversion device, there is a need for a method of selectively removing only the current short-circuit portion.

その代表例として特開昭60−46080が示されてい
る。この発明は、PTN接合を有する半導体上に電極を
形成し、さらにその表面をエツチング溶液に浸し、加え
て電流を流すことにより電流短絡部のみを選択的に除去
することを特徴としている。そのため使用する溶液はエ
ツチング溶液であり、その具体例がその明細書376頁
左上欄L9〜右下欄L1に示されている。これによると
ショートシている半導体上のITOをil tR的にエ
ツチング除去する。そのための電解液としての0.01
〜1χの塩化水素、0.05モルのNaC1塩希釈溶液
を用いている。
As a representative example, Japanese Patent Laid-Open No. 60-46080 is shown. The present invention is characterized in that an electrode is formed on a semiconductor having a PTN junction, the surface of the electrode is immersed in an etching solution, and a current is applied to selectively remove only the current short-circuit portion. The solution used for this purpose is an etching solution, specific examples of which are shown in the upper left column L9 to the lower right column L1 on page 376 of the specification. According to this method, short-circuited ITO on a semiconductor is removed by etching in an iltR manner. 0.01 as an electrolyte for that purpose
~1x hydrogen chloride, 0.05 molar NaCl salt dilute solution is used.

しかし、かかる電解液でITOおよびその下のシコート
部の半導体を除去する従来公知の方法は、他の多くの欠
点を有する。即ちこの除去された領域に対しその後の工
程において選択的に絶縁物をコートしなければならない
However, the previously known methods of removing ITO and the underlying semiconductor of the coated portion with such electrolytes have many other drawbacks. That is, this removed area must be selectively coated with an insulator in a subsequent process.

また、裏面電極を用いない場合は、ショート箇所のみを
除去するに加えて、他のPまたはN型半導体層をも若干
エツチングされてしまう。そのため、その後の工程で裏
面電極を形成せんとするとこのPまたはN型半導体が十
分の厚さを41さす、その結果、低い開放電圧しか得ら
れない場合を有する。このため、引例に示される如く、
不良箇所(ショー1・箇所)を電解溶液を用いて除去し
てしまわんとしても実用的に適用することができない。
Furthermore, if a back electrode is not used, in addition to removing only the short-circuit portion, other P or N type semiconductor layers will also be slightly etched. Therefore, if a back electrode is to be formed in a subsequent step, this P or N type semiconductor may have a sufficient thickness, and as a result, only a low open circuit voltage can be obtained. For this reason, as shown in the cited example,
Even if the defective location (Show 1 location) is removed using an electrolytic solution, it cannot be practically applied.

「発明の]」的」 このため、本発明はかかる欠点を除去するためにショー
ト箇所をエツチングし除去するのでC3■なく、逆に選
択的に酸化して絶縁化してしまうものである。同時に他
のNまたはP型半導体表面がiπ択的に酸化されないよ
うに、その表面およびその近傍の半導体を5ixC+−
x (0<X<1)または5i3N4−x(0<X<4
)とし、耐酸化防止層とたものである。さらに、本発明
において、電解溶液側の半導体例えばN型半導体側を酸
化用電解溶液に浸し、直流電界を加える (P型側に正
の電圧(陽極化成)を加える)ことにより、自己選択的
にショート箇所のみを酸化絶縁化するものである。
Therefore, in order to eliminate such a defect, the present invention etches and removes the short-circuited portion, so that C3 is not removed, but on the contrary, it is selectively oxidized and insulated. At the same time, to prevent other N- or P-type semiconductor surfaces from being iπ selectively oxidized, the surface and nearby semiconductors are 5ixC+-
x (0<X<1) or 5i3N4-x (0<X<4
) and an anti-oxidation layer. Furthermore, in the present invention, the semiconductor on the electrolytic solution side, for example, the N-type semiconductor side, is immersed in an oxidizing electrolytic solution and a DC electric field is applied (a positive voltage (anodization) is applied to the P-type side), thereby self-selectively This oxidizes and insulates only the short-circuit area.

しかし、かかる陽極酸化法を用いる場合、このショー1
一箇所のみならず、他のN型半導体表面上に対してもも
しこのN半導体が微結晶の高い電気伝導度を有する珪素
半導体であるならば、この半導体全面に薄く酸化絶縁物
が形成されてしまう。
However, when using such an anodic oxidation method, this show 1
If this N-semiconductor is a microcrystalline silicon semiconductor with high electrical conductivity, a thin oxide insulator is formed not only in one place but also on other N-type semiconductor surfaces. Put it away.

かかる工程を防ぐため、本発明における酸化液にふれる
面倒を5ix(、−x (0<X<1)または5I3N
4−X (0<X<4)とし、耐酸化防止膜を有するN
型半導体を用いた。さらに必要ならば、この上面に金属
はどの電気伝導度を有さない、即ち、シート抵抗または
10〜1000Ω/口の酸化物導電膜または窒化物導電
膜例えばITO(酸化インジューム)または窒化インジ
ューム(InN)を予めこの全体に形成した。その結果
、N型半導体−Fに酸化物が形成されているため、ここ
での酸化を防ぐことができる。またこのITOは不良導
体であるため、不良ショート箇所に対しより電流を流し
得る。そのため、ショート箇所のみを選択的に酸化させ
得る。
In order to prevent such a process, the trouble of coming into contact with the oxidizing solution in the present invention can be avoided by using 5ix (, -x (0<X<1) or 5I3N
4-X (0<X<4), and N with an oxidation-resistant film
type semiconductor was used. Furthermore, if necessary, the metal on this top surface does not have any electrical conductivity, i.e. sheet resistance or an oxide conductive film or nitride conductive film of 10-1000 Ω/hole, such as ITO (indium oxide) or indium nitride. (InN) was previously formed on the entire surface. As a result, since an oxide is formed on the N-type semiconductor -F, oxidation here can be prevented. Furthermore, since this ITO is a defective conductor, more current can flow to defective short-circuit locations. Therefore, only short-circuit locations can be selectively oxidized.

かくしてPIN接合を有する非単結晶半導体上に不良導
体電極を形成し、これを陽極酸化せしめることにより、
ショート箇所のみを選択的に絶縁化させることができた
Thus, by forming a defective conductor electrode on a non-single crystal semiconductor having a PIN junction and anodizing it,
We were able to selectively insulate only the shorted areas.

しかしこのままでは太陽電池ととしての裏面電極の電気
伝導度が十分でない。またこの裏面電極をTTOのみと
するならば、光電変換装置として動作させた時、長波長
光はそのまま裏面側より外部に放出されてしまう。かか
る欠点を防ぐため、このITOの上面にさらに金属電極
例えばアルミニューム、クロム、銀または銅を主成分と
した金属を導体電極として形成した。かかる金属電極は
゛裏面電極としてのシート抵抗を下げ、また半導体内へ
の光閉じ込めを助長させる。また前記したITOにより
裏面電極の金属例えばアルミニュームとN型半導体との
酸化反応を防ぐことができる等、それぞれが互いにその
特長を補完できる。
However, as it is, the electrical conductivity of the back electrode as a solar cell is not sufficient. Furthermore, if this back electrode is made of only TTO, when operated as a photoelectric conversion device, long wavelength light will be directly emitted to the outside from the back surface side. In order to prevent such defects, a metal electrode such as a metal mainly composed of aluminum, chromium, silver, or copper was further formed as a conductor electrode on the upper surface of this ITO. Such a metal electrode lowers the sheet resistance as a back electrode and also promotes light confinement within the semiconductor. Further, the aforementioned ITO can prevent the oxidation reaction between the metal of the back electrode, such as aluminum, and the N-type semiconductor, and each can complement each other's features.

さらに重要なことは、この金属電極を全面に形成した場
合、先に生じていたショート箇所は酸化により絶縁物化
し、そこには酸化物が充填されているため、このちとの
短絡電流部で金属が表面の導電性電極とショートするこ
とを防いでいる。
What is more important is that when this metal electrode is formed over the entire surface, the short-circuit area that previously occurred becomes an insulator due to oxidation, and since it is filled with oxide, the short-circuit current area after this becomes an insulator. This prevents short-circuiting with the conductive electrode on the surface.

以下に図面に従って本発明を示す。The present invention will be illustrated below according to the drawings.

実施例1 第1図(A)は本発明の光電変換装置を陽極化成せしめ
る概要を示す。
Example 1 FIG. 1(A) shows an outline of anodizing the photoelectric conversion device of the present invention.

図面において、ガラス基板(1)、酸化スズの透光性導
電膜(2)、P型Six自−X(0<X<1)非単結晶
半導体(3)(約200人)、I型珪素非単結晶半導体
(4)(約0.6μ)、N型徽結晶珪素半導体(500
人)さらにその上に他のN型窒化珪素(Si、N4.、
□、 (0<X<4))または炭化珪素(SixC4−
x (0<X4))半導体(5)(約200人)、IT
O(6)よりなっている。図面では上下面を省略しであ
る。この半導体(7)中に電流短絡箇所(ショート箇所
)(8)を有する。
In the drawing, a glass substrate (1), a transparent conductive film of tin oxide (2), a P-type Six auto-X (0<X<1) non-single crystal semiconductor (3) (approximately 200 people), and an I-type silicon Non-single crystal semiconductor (4) (approximately 0.6μ), N-type crystalline silicon semiconductor (500μ)
Furthermore, other N-type silicon nitride (Si, N4.,
□, (0<X<4)) or silicon carbide (SixC4-
x (0<X4)) Semiconductor (5) (approx. 200 people), IT
It consists of O(6). In the drawing, the top and bottom surfaces are omitted. This semiconductor (7) has a current short circuit point (8).

この光電変換装置と他方の電極(白金を使用)(12)
との間に電解溶液(14)を充填した。この溶液は半導
体を酸化するためO−イオンを発生することが望ましい
。このため、lO〜15χの濃度にテトラヒドロフルヒ
ルアルコールで希釈した過酸化水素、硝酸またはリン酸
を用いた。
This photoelectric conversion device and the other electrode (using platinum) (12)
An electrolyte solution (14) was filled between the two. This solution preferably generates O- ions to oxidize the semiconductor. For this purpose, hydrogen peroxide, nitric acid or phosphoric acid diluted with tetrahydrofurhylic alcohol to a concentration of 10 to 15x was used.

そして半導体側を正電極(陽極)(2)、白金側を負電
極(陰極) (13)として、この間に50Vの直流電
圧を加えた。すると初期状態において電流密度3mA/
(、m2を有したが、次第に流れる電流密度が減少し、
約1()分にて0.03mA/cm”までなった。この
ことにより、ショート箇所が時間とともに酸化して絶縁
化したものと推定される。
Then, the semiconductor side was used as a positive electrode (anode) (2), and the platinum side was used as a negative electrode (cathode) (13), and a DC voltage of 50 V was applied between them. Then, in the initial state, the current density is 3 mA/
(, m2, but the current density gradually decreases,
The voltage decreased to 0.03 mA/cm'' in about 1 () minutes.It is presumed that the short-circuited portion oxidized and became insulated over time.

この後、この基板を水にて水洗し、残留イオン成分を除
去した。さらに大気中150°Cに保持し、乾燥後、裏
面電極としてのアルミニューム(9)を0.2μの厚さ
に形成し、第1図(R)を得た。
Thereafter, this substrate was washed with water to remove residual ionic components. Further, the substrate was kept at 150° C. in the atmosphere, and after drying, aluminum (9) was formed as a back electrode to a thickness of 0.2 μm to obtain FIG. 1 (R).

かくすると、従来公知の陽極酸化プロセスをまったく用
いずに、裏面の電極としてITO(6) 、アルミニュ
ーム(9)を設は得る光電変換装置においては、入射光
(20)をA旧(100mW/cm2)とした時、その
変換効率は10cm口にて初期状態においては3〜9χ
にまでばらついてしまい、特に曲線因子の低下が著しい
In this way, in a photoelectric conversion device in which ITO (6) and aluminum (9) can be installed as back electrodes without using any conventionally known anodic oxidation process, the incident light (20) can be converted to A (100 mW/ cm2), the conversion efficiency is 3 to 9χ in the initial state at a 10cm opening.
In particular, the decrease in fill factor is remarkable.

しかし本発明を用いた第2図の構成においては、その特
性において低い変換効率の試料がなくなり、はとんどの
試料が8〜9χとほぼ一定の値を有せしめ得ることがで
きた。
However, in the configuration shown in FIG. 2 using the present invention, there were no samples with low conversion efficiency in terms of characteristics, and most of the samples were able to have a substantially constant value of 8 to 9χ.

「効果」 以上の説明より明らかなごとく、本発明は大面積の光電
変換装置において、特にガラス基板」−のPIN接合(
P型半導体がガラス側)の自己バイヤス性を利用し、自
己選択的にショート箇所を酸化して絶縁化したものであ
る。しかし、単にNIP接合(N型半導体がガラス側)
であっても、本発明を適用することが可能である。そし
てかかるNIP接合またはPIN接合の半導体における
酸化溶液に接する側のPまたはN型半導体を耐酸化性の
炭化珪素または窒化珪素で構成せしめるならば、ここで
のブロッキングにより絶縁性酸化物が作られていること
がない。またこの炭化珪素または窒化珪素は珪素のみの
場合に比べて、大きいエネルギバンド中を有するため、
光の透光性に優れ、耐酸化性のみならず、変換効率の向
上にも有効である。さらに裏面電極を形成した後におい
ても、長期間使用に対しても、半導体と電極との反応が
シリコンのみの場合に比べてされにり<、高信軌性をも
期待し得る。
"Effects" As is clear from the above explanation, the present invention is particularly useful for large-area photoelectric conversion devices, especially PIN junctions (
Utilizing the self-bias property of the P-type semiconductor (on the glass side), short-circuit locations are self-selectively oxidized and insulated. However, simply NIP junction (N-type semiconductor is on the glass side)
The present invention can be applied even if If the P or N type semiconductor on the side in contact with the oxidizing solution in the semiconductor of such an NIP junction or PIN junction is made of oxidation-resistant silicon carbide or silicon nitride, an insulating oxide is created by blocking here. I'm never there. Also, since silicon carbide or silicon nitride has a larger energy band than silicon alone,
It has excellent light transmittance and is effective not only in improving oxidation resistance but also in improving conversion efficiency. Furthermore, even after forming the back electrode, even after long-term use, the reaction between the semiconductor and the electrode is stronger than in the case of only silicon, and high reliability can be expected.

その結果、大面積であっても、高い変換効率を得ること
ができた。
As a result, high conversion efficiency could be obtained even with a large area.

本発明の実施例は液体を用いた陽極酸化を記した。しか
しこの陽極酸化を気体、特に酸素プラズマイオンを用い
る気相陽極酸化方法にて行っても同様である。
Examples of the present invention describe anodization using a liquid. However, the same effect can be obtained even if this anodic oxidation is performed using a gas, particularly a gas phase anodic oxidation method using oxygen plasma ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための光電変換装置の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a photoelectric conversion device for implementing the present invention.

Claims (1)

【特許請求の範囲】 1、基板上の1つの電極上にPIN接合を少なくとも1
つ有する非単結晶半導体と、該半導体上のPまたはN型
半導体の表面またはその近傍にはSi_XC_1_−_
X(0<X<1)またはSi_3N_4_−_X(0<
X<4)が設けられるとともに、前記1型半導体には短
絡電流部を少なくとも1つ有する光電変換装置を酸化性
溶液に浸漬し、前記短絡電流部を選択的に酸化して絶縁
化せしめたことを特徴とする光電変換装置の作製方法。 2、特許請求の範囲第1項において、選択的に酸化処理
する工程として、前記P型半導体を陽極として連結する
ことによりイオン化した酸素または酸化物イオンを電流
短絡部に集中せしめ、該部を選択的に酸化せしめること
を特徴とする光電変換装置の作製方法。
[Claims] 1. At least one PIN junction on one electrode on the substrate
Si_XC_1_-_ on the surface of or near the P- or N-type semiconductor on the semiconductor
X (0<X<1) or Si_3N_4_-_X(0<
X < 4), and the photoelectric conversion device having at least one short circuit current portion in the type 1 semiconductor is immersed in an oxidizing solution, and the short circuit current portion is selectively oxidized to be insulated. A method for manufacturing a photoelectric conversion device characterized by: 2. In claim 1, the step of selectively oxidizing the P-type semiconductor by connecting the P-type semiconductor as an anode concentrates ionized oxygen or oxide ions on a current short circuit part, and selects the part. 1. A method for manufacturing a photoelectric conversion device, which comprises oxidizing the device.
JP60122152A 1985-06-04 1985-06-04 Manufacture of photoelectric conversion device Pending JPS61279179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122152A JPS61279179A (en) 1985-06-04 1985-06-04 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122152A JPS61279179A (en) 1985-06-04 1985-06-04 Manufacture of photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS61279179A true JPS61279179A (en) 1986-12-09

Family

ID=14828890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122152A Pending JPS61279179A (en) 1985-06-04 1985-06-04 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS61279179A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell
JPS6085578A (en) * 1983-10-17 1985-05-15 Fuji Xerox Co Ltd Manufacture of thin film photoelectric conversion element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell
JPS6085578A (en) * 1983-10-17 1985-05-15 Fuji Xerox Co Ltd Manufacture of thin film photoelectric conversion element

Similar Documents

Publication Publication Date Title
JP3809237B2 (en) Electrolytic pattern etching method
US7638707B2 (en) Photovoltaic cell, photovoltaic cell module, method of fabricating photovoltaic cell and method of repairing photovoltaic cell
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US6426235B1 (en) Method of manufacturing semiconductor device
US7517465B2 (en) Ultra lightweight photovoltaic device and method for its manufacture
EP0268272A2 (en) Method of removing electrical shorts and shunts from a thin-film semiconductor device
AU2015236207B2 (en) Conversion of metal seed layer for buffer material
JPH0473306B2 (en)
US5055416A (en) Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
US3271198A (en) Electrolytic semiconductor photocell
JPS61279179A (en) Manufacture of photoelectric conversion device
TW201411866A (en) Passivation local diffusion structure of solar cell rear and the manufacturing method thereof
JPS61279178A (en) Manufacture of photoelectric conversion device
JPS62213282A (en) Method for avoiding short circuit when amorphous silicon thin film solar battery is produced
JPS61279180A (en) Manufacture of photoelectric conversion device
JPS61199672A (en) Photovoltaic device
JP5978464B2 (en) Method for manufacturing solar cell element
JPH077168A (en) Photoeletcric conversion semiconductor device
JPH0137860B2 (en)
JPS59110175A (en) Manufacture of solar battery
JPH06310742A (en) Fabrication of photovoltaic element
JPH06112514A (en) Manufacture of photoelectric conversion semiconductor device
JPH0554274B2 (en)
JP4458697B2 (en) Photovoltaic device manufacturing method
JP3237125B2 (en) Anodizing method for conductive film