JPS61275646A - Multiple tomographic picking up method for mri device - Google Patents

Multiple tomographic picking up method for mri device

Info

Publication number
JPS61275646A
JPS61275646A JP60118061A JP11806185A JPS61275646A JP S61275646 A JPS61275646 A JP S61275646A JP 60118061 A JP60118061 A JP 60118061A JP 11806185 A JP11806185 A JP 11806185A JP S61275646 A JPS61275646 A JP S61275646A
Authority
JP
Japan
Prior art keywords
tomographic
magnetic field
deltaf
modulation
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60118061A
Other languages
Japanese (ja)
Inventor
Kimiharu Shimizu
公治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60118061A priority Critical patent/JPS61275646A/en
Publication of JPS61275646A publication Critical patent/JPS61275646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To distinguish tomographic surfaces and to obtain position resolution in a surface by applying a magnetic field perpendicular to tomographic surfaces, applying high frequency pulses corresponding to a position and exciting respective tomographic sections at the same time, and applying a magnetic field slanting from the perpendicular direction and imposing frequency modulation. CONSTITUTION:Tomographic surfaces #1 and #2 are parallel to an XY surface and are at positions Z1 and Z2. A magnetic field Gz is applied in a Z direction firstly and high frequency pulses of resonance frequencies f1+DELTAf and f1-DELTAf are applied to excite the tomographic surfaces #1 and #2 selectively at the same time. In this case, f1+DELTAf and f1-DELTAf are obtained by mixing f1 and DELTAf across a frequency band width corresponding to the thickness of a tomographic section. A magnetic field which slants by an angle theta determined by a magnetic field Gy, then a tomographic interval (b) and an X-directional visual field (a) and is generated by combining the Gx and Gy at the same time to receive a magnetic resonance video signal. This NMR signal is frequency-modulated in the slanting magnetic field, the quantity of modulation corresponds to the intensity of the magnetic field, and projections in the theta direction of each tomographic sections are obtained and never overlap with one another, so tomographic sections are distinguished from the quantity of modulation and the position in the X direction is known.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、MRI装置(磁気共鳴映像装置)における
多階層撮像法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an improvement in a multilayer imaging method in an MRI apparatus (magnetic resonance imaging apparatus).

従来の技術 MRI装置では従来より、多数の断層面を同時に撮像す
ることが行なわれている。第4図に示すように、縦磁化
の緩和のための待ち時間、つまりパルス反復時間TIの
間に、互いに平行な多数の断層面を、最初に断層面#l
、次に断層面#2゜・・・というように1次々に選択励
起し、それぞれの断層面からのNMR信号を各々別々に
受信している。
BACKGROUND OF THE INVENTION MRI apparatuses have traditionally imaged a large number of tomographic planes simultaneously. As shown in FIG. 4, during the waiting time for longitudinal magnetization relaxation, that is, the pulse repetition time TI, a number of mutually parallel tomographic planes are first
, then tomographic plane #2°, etc. are selectively excited one after another, and NMR signals from each tomographic plane are received separately.

この場合、得られる断層数NはTR/Ts以下である(
Tsは各断層面間のパルス間隔)。
In this case, the number of slices N obtained is less than or equal to TR/Ts (
Ts is the pulse interval between each tomographic plane).

発明が解決しようとする問題点 したがって従来では、90’パルスを与えた後1800
パルスを与えるというI R(InversionRe
coマery)法などのように、パルス系列が複雑なも
のでは各断層面間のパルス間隔が長くなるため、得られ
る断層数は少なくなる。
Problem to be Solved by the Invention Therefore, in the past, after applying a 90' pulse,
IR (InversionRe) to give a pulse
If the pulse sequence is complex, such as in the coma-ery method, the pulse interval between each tomographic plane becomes long, and the number of tomographic planes obtained becomes small.

また、高速に画像化したい場合や1反復時間の短縮によ
るT、強調画像を得たい場合では、反復時間が短いため
多数の断層像を同時に得ることができない。
Furthermore, when it is desired to perform high-speed imaging or to obtain T-enhanced images by shortening one repetition time, it is not possible to obtain a large number of tomographic images at the same time because the repetition time is short.

この発明は、同一反復時間内で得られる断層数を従来に
比較して大幅に増加でき、しかも、従来では多路層が得
られないような短い反復時間においても多路層を同時に
撮像できるMRI装置の多断層撮像法を提供することを
目的とする。
This invention is an MRI that can significantly increase the number of slices obtained within the same repetition time compared to conventional methods, and can simultaneously image multiple layers even in a short repetition time when conventional methods cannot obtain multiple layers. The purpose is to provide a multi-sectional imaging method for the device.

問題点を解決するための手段 この発明のMRI装置の多断層撮像法では、断層面に直
交する方向に傾斜磁場な印加しながら、複数の断層面位
置に対応する複数の周波数成分を有する励起高周波パル
スを与えて複数の断層面を同時に励起し、信号受信時に
おいて、断層面に直交する方向から断層面内の1方向に
傾いた方向に傾斜しており、変調量が断層面内の上記の
方向で異なるとともに複数の断層面間で重ならないよう
な1周波数変調のための傾斜磁場を印加して、各断層面
からのNMR信号を同時に受信する。
Means for Solving the Problems In the multi-sectional imaging method of the MRI apparatus of the present invention, while applying a gradient magnetic field in a direction perpendicular to the tomographic plane, an excitation high frequency having a plurality of frequency components corresponding to a plurality of tomographic plane positions is applied. A pulse is applied to simultaneously excite multiple tomographic planes, and when the signal is received, it is tilted from a direction perpendicular to the tomographic plane to a direction tilted in one direction within the tomographic plane, and the amount of modulation is A gradient magnetic field for one-frequency modulation that differs in direction and does not overlap among a plurality of tomographic planes is applied, and NMR signals from each tomographic plane are received simultaneously.

作   用 複数の断層面を同時に励起しているので、これらのすべ
てからNMR信号が受信される。この受信時に、従来で
はX方向に傾斜している傾斜磁場Gxをかけるだけなの
で、X方向に位置分解能が得られるだけで断層面間の区
別はできないが、この発明では、Z方向から傾けた方向
に磁場の強さが変化している傾斜磁場をかけるようにし
ているため、断層面間の区別と、X方向の位置分解能と
が得られる。
Effect: Since multiple tomographic planes are excited simultaneously, NMR signals are received from all of them. At the time of receiving this, conventional methods only apply a gradient magnetic field Gx that is tilted in the Since a gradient magnetic field with varying magnetic field strength is applied to the cross section, it is possible to distinguish between tomographic planes and to obtain positional resolution in the X direction.

実施例 第1図に示すように2つの断層面$1.#2を同時に撮
像するものとする。この2つの断層面#1、#2はZ方
向に並べられており、互いに平行になっている。各断層
面#1. $2の面はX−Y平面に平行な面であり、こ
の面に直交する方向がZ方向ということになる。そして
断層面#l、#2はそれぞれZ方向の位置Zl、Z2に
位置している。
Example As shown in FIG. 1, two tomographic planes $1. #2 shall be imaged at the same time. These two fault planes #1 and #2 are arranged in the Z direction and are parallel to each other. Each fault plane #1. The $2 plane is a plane parallel to the X-Y plane, and the direction perpendicular to this plane is the Z direction. Fault planes #l and #2 are located at positions Zl and Z2 in the Z direction, respectively.

まず、Z方向の傾斜磁場Gzを印加して断層面#1、#
2を同時に選択励起する。そのため、位置Zl、Z2に
対応する周波数成分子l+Δf。
First, a gradient magnetic field Gz in the Z direction is applied to create fault planes #1 and #1.
2 are selectively excited at the same time. Therefore, the frequency components l+Δf corresponding to the positions Zl and Z2.

fl−Δfを有する高周波パルスを与える。このような
2つの周波数成分を有する高周波信号は、たとえば第2
図に示すように、混合器MIXによって周波数flの信
号と周波数Δfの信号とを混合するという、簡単な回路
で作ることができる。この周波数f1+Δf、fl−Δ
fはそれぞれ位置Zl、Z2に対応する共鳴周波数であ
り、実際には断層面#1、#2の厚さ分だけの周波数帯
域幅を有している。
Give a high frequency pulse with fl-Δf. Such a high frequency signal having two frequency components is, for example, a second
As shown in the figure, it can be made with a simple circuit in which a signal with a frequency fl and a signal with a frequency Δf are mixed by a mixer MIX. This frequency f1+Δf, fl−Δ
f is a resonance frequency corresponding to the positions Zl and Z2, respectively, and actually has a frequency bandwidth corresponding to the thickness of the tomographic planes #1 and #2.

次いで、2次元フーリエ変換法ではY方向に位相変調を
行なうため、Y方向傾斜磁場Gyを印加する。
Next, in the two-dimensional Fourier transform method, a Y-direction gradient magnetic field Gy is applied to perform phase modulation in the Y-direction.

続いて、X方向の視野をa、断層面#1、#2の間隔を
bとしたとき、 tanθ=b/a だけZ方向から傾いた方向(第3図参照)に傾斜する傾
斜磁場を印加する。このような傾斜磁場はX方向傾斜磁
場GxとZ方向傾斜磁場GVとを組み合せて同時に発生
することで容易に得られる。
Next, when the field of view in the X direction is a, and the interval between fault planes #1 and #2 is b, a gradient magnetic field is applied that is tilted in a direction tilted from the Z direction by tanθ = b/a (see Figure 3). do. Such a gradient magnetic field can be easily obtained by combining and simultaneously generating the X-direction gradient magnetic field Gx and the Z-direction gradient magnetic field GV.

そしてこの傾斜磁場を印加しながら、NMR信号を受信
する。
Then, while applying this gradient magnetic field, an NMR signal is received.

このNMR信号は上記の傾斜磁場によって周波数変調さ
れるが、その変調量は磁場の強さに対応する。そして、
磁場の強さが上記のような角度0の方向へ変化している
ので、変調量は各断層面#1、#2のX方向位置の角度
0方向への投影となる。つまり、第3FgJの場合、断
層面#1、#2での各位置の変調量は、互いに重なるこ
とがないので、この変調量より断層面#l、 #2にい
ずれであるかおよびそのそれぞれでのX方向位置を知る
ことができる。なお、角度θが上記より小さければX方
向位置の分解能が悪くなり、大きければ変調量が断層面
#1.#2で重なる部分が生じるので、断層面#1.#
2を区別できないことになる。
This NMR signal is frequency modulated by the gradient magnetic field, and the amount of modulation corresponds to the strength of the magnetic field. and,
Since the strength of the magnetic field is changing in the direction of angle 0 as described above, the amount of modulation is the projection of the X-direction position of each tomographic plane #1 and #2 in the direction of angle 0. In other words, in the case of the 3rd FgJ, since the modulation amounts at each position on the tomographic planes #1 and #2 do not overlap with each other, it is possible to determine which of the tomographic planes #1 and #2 is located based on the modulation amount and their respective values. The position in the X direction can be known. Note that if the angle θ is smaller than the above, the resolution of the X-direction position will be poor, and if it is larger, the modulation amount will be lower than that of the tomographic plane #1. Since there is an overlapping part in #2, the fault plane #1. #
It becomes impossible to distinguish between the two.

上記では2つの断層面#l、#2について説明したが、
より多数の断層面に拡張することは容易である。これに
より、従来の各断層面間のパルス間隔Ts内で多数(N
”とする)の断層面の撮像が可能であり、1つの反復時
間T、内で従来と同様にN回繰り返すとすれば、N’X
Nの多断層撮像が可能となる。
The two fault planes #l and #2 were explained above, but
It is easy to extend to a larger number of fault planes. As a result, a large number (N
”), and if it is repeated N times as in the conventional method within one repetition time T, then N'X
N multi-sectional imaging becomes possible.

なお、上記では、2次元フーリエ変換法について説明し
たが、これ以外に投影復元法などにも同様に適用できる
Note that, although the two-dimensional Fourier transform method has been described above, it can be similarly applied to other methods such as a projection restoration method.

発明の効果 この発明のMRI装置の多断層撮像法によれば、限られ
た反復時間内に得られる断層面の数を大幅に増加でき、
これにより、パルス系列による同時撮影断層数の制限を
解消できる。また、短い反復時間での撮像、すなわち短
時間撮像においても多断層撮像が可能になるので、特に
高速なスクリーニングが可能である。
Effects of the Invention According to the multi-tomographic imaging method of the MRI apparatus of the present invention, the number of tomographic planes obtained within a limited repetition time can be greatly increased.
This makes it possible to eliminate the limitation on the number of tomographic images simultaneously taken due to the pulse sequence. Moreover, since multiple tomographic imaging is possible even in short-time imaging, ie, short-time imaging, particularly high-speed screening is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はこの発明の一実施例にかかる
もので、第1図は複数の断層面の位置関係を説明する模
式図、第2図は2つの周波数成分を有する高周波信号を
得るための構成を示すブロック図、第3図は傾斜磁場の
傾斜方向を説明するための模式図、第4図は従来の多断
層撮影法でのパルスシーケンスを示すタイムチャートで
ある。 #1、#2・・・断層面 に!X・・・混合器
Figures 1, 2, and 3 are related to one embodiment of the present invention. Figure 1 is a schematic diagram explaining the positional relationship of a plurality of tomographic planes, and Figure 2 has two frequency components. FIG. 3 is a block diagram showing a configuration for obtaining a high-frequency signal, FIG. 3 is a schematic diagram for explaining the gradient direction of a gradient magnetic field, and FIG. 4 is a time chart showing a pulse sequence in a conventional multi-tomography method. #1, #2...on the fault plane! X...Mixer

Claims (1)

【特許請求の範囲】[Claims] (1)断層面に直交する方向に傾斜磁場を印加しながら
、複数の断層面位置に対応する複数の周波数成分を有す
る励起高周波パルスを与えて複数の断層面を同時に励起
し、信号受信時において、断層面に直交する方向から断
層面内の1方向に傾いた方向に傾斜しており、変調量が
断層面内の上記の方向で異なるとともに複数の断層面間
で重ならないような、周波数変調のための傾斜磁場を印
加して、各断層面からのNMR信号を同時に受信するこ
とを特徴とするMRI装置の多断層撮像法。
(1) While applying a gradient magnetic field in a direction perpendicular to the tomographic plane, excitation high-frequency pulses having multiple frequency components corresponding to the positions of multiple tomographic planes are given to simultaneously excite multiple tomographic planes, and when receiving signals, , the frequency modulation is inclined from a direction perpendicular to the fault plane to a direction tilted in one direction within the fault plane, and the amount of modulation is different in the above-mentioned direction within the fault plane and does not overlap between multiple fault planes. A multi-sectional imaging method using an MRI apparatus, characterized in that NMR signals from each tomographic plane are simultaneously received by applying a gradient magnetic field for .
JP60118061A 1985-05-31 1985-05-31 Multiple tomographic picking up method for mri device Pending JPS61275646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118061A JPS61275646A (en) 1985-05-31 1985-05-31 Multiple tomographic picking up method for mri device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118061A JPS61275646A (en) 1985-05-31 1985-05-31 Multiple tomographic picking up method for mri device

Publications (1)

Publication Number Publication Date
JPS61275646A true JPS61275646A (en) 1986-12-05

Family

ID=14727043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118061A Pending JPS61275646A (en) 1985-05-31 1985-05-31 Multiple tomographic picking up method for mri device

Country Status (1)

Country Link
JP (1) JPS61275646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635732A (en) * 1986-06-26 1988-01-11 株式会社東芝 Pulse sequence method in mri

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635732A (en) * 1986-06-26 1988-01-11 株式会社東芝 Pulse sequence method in mri

Similar Documents

Publication Publication Date Title
DE19905720B4 (en) Fast spin echo pulse train for diffusion-weighted imaging
JP3515643B2 (en) Nuclear spin tomography equipment
JPH074352B2 (en) Operation method of nuclear magnetic resonance apparatus
JPH0233998B2 (en)
WO1995020909A1 (en) Slice profile stabilization for segmented k-space magnetic resonance imaging
KR100678872B1 (en) Magnetic resonance imaging method and apparatus
JPH0581137B2 (en)
JPS61275646A (en) Multiple tomographic picking up method for mri device
JPH03176031A (en) Method and device for magnetic resonance tomographing
US4757260A (en) Method of producing nuclear magnetic resonance of an object and an apparatus therefor
JP2001309900A (en) Rf coil and magnetic resonance imaging system
US4706028A (en) NMR imaging method
JPH0394731A (en) Method and device for magnetic resonance imaging
EP0207765A2 (en) Magnetic resonance imaging apparatus and method utilizing a composite RF pulse
JP3645896B2 (en) Magnetic resonance imaging system
US4857845A (en) Method for the application of gradient pulses in an imaging experiment using a nuclear magnetic resonnance machine
JPH02272379A (en) Method and device for generating high frequency pulse and exciting nuclear magnetic resonance of sample
US4661776A (en) Nuclear magnetic resonance diagnostic apparatus
JPS63122440A (en) Magnetic resonance imaging apparatus
JP3499927B2 (en) Magnetic resonance imaging system
JPH05103768A (en) Magnetic resonance imaging method
JPH08299299A (en) Method for simultaneously photographing plural slices for magnetic resonance diagnostic device
JPS63317143A (en) Collection of nmr data
JPS62167550A (en) Nmr three-dimensional tomographic image pickup apparatus
JPH024326A (en) Magnetic resonance picturing method