JPS61275630A - Magnetostrictive torque detector - Google Patents

Magnetostrictive torque detector

Info

Publication number
JPS61275630A
JPS61275630A JP11682485A JP11682485A JPS61275630A JP S61275630 A JPS61275630 A JP S61275630A JP 11682485 A JP11682485 A JP 11682485A JP 11682485 A JP11682485 A JP 11682485A JP S61275630 A JPS61275630 A JP S61275630A
Authority
JP
Japan
Prior art keywords
torque
magnetic
measured
coils
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11682485A
Other languages
Japanese (ja)
Inventor
Toru Kita
喜多 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11682485A priority Critical patent/JPS61275630A/en
Publication of JPS61275630A publication Critical patent/JPS61275630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To detect stably torque applied to a body to be measured by arranging plural magnetic disks in parallel at intervals by linking their outer peripheries by a magnetic member and providing a coils for torque detection between the magnetic disks. CONSTITUTION:A magnetostrictive torque detector is provided with a couple of an exciting coil 20a and a detection coil 21a and another couple of an exciting coil 20b and a detection coil 21b. Then, the exciting coils 20a and 20b are connected in parallel and arranged so that magnetic flux produced by those exciting coils flow from a center magnetic disk to right and left in the opposite directions. Consequently, a magnetic circuit operates around the exciting coils 20a and 20b independently. The detection coils 21a and 21b have amplifiers 22 and 23 and rectifying and smoothing circuits 24 and 25 independently of each other to obtain analog voltages corresponding to induced electromotive forces generated by the respective coils and then obtain a differential outputs by a differential amplifier 26. Consequently, the direction and value of torque are detected with high sensitivity without being affected by the magnetic irregularity nor eccentricity of a shaft to be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆磁歪効果を利用してシャフトなどの被測定物
に加わるトルク、特に車両のクランクシャフトなどに加
わる軸トルクの検出に適した磁歪式トルク検出器に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention utilizes the inverse magnetostrictive effect to detect the torque applied to an object to be measured such as a shaft, particularly the shaft torque applied to the crankshaft of a vehicle. related to formula torque detectors.

(従来技術) 従来、シャフトなどの被測定物に加わるトルクを逆磁歪
効果を利用して測定するトルク測定法が特公昭31−9
42号公報などで知られている。
(Prior art) Conventionally, a torque measurement method that measures the torque applied to an object to be measured, such as a shaft, using the inverse magnetostriction effect was developed in Japanese Patent Publication No. 31-9.
It is known from Publication No. 42.

第9図はこのような従来公知のトルク測定法の原理を示
しており、被測定物(図ではシャフト)1の外周に励磁
コイル2と検出コイル3とを配置し、被測定物1を含む
磁路の透磁率が被測定物に加わるトルクにより生ずる応
力のために逆磁歪効果により変化するのを励磁コイル2
により発生される磁束の変化として検出コイル3の誘導
配電力により検出し、被測定物に加わるトルク値を測定
している。又励磁コイルおよび検出コイルは被測定物1
の周囲に巻くほかに、磁気ヘッド型として被測定物1の
表面に近接して設けてもよい。
FIG. 9 shows the principle of such a conventionally known torque measurement method, in which an excitation coil 2 and a detection coil 3 are arranged around the outer circumference of an object to be measured (shaft in the figure) 1, and The excitation coil 2 changes the magnetic permeability of the magnetic path due to the inverse magnetostriction effect due to the stress caused by the torque applied to the object to be measured.
The change in the magnetic flux generated by the sensor is detected by the induced power distribution of the detection coil 3, and the torque value applied to the object to be measured is measured. In addition, the excitation coil and the detection coil are connected to the object to be measured 1.
In addition to being wound around the object to be measured 1, it may also be provided as a magnetic head type close to the surface of the object to be measured 1.

このような従来のトルク検出器においては、検出コイル
から取り出される誘導起電力の大きさは被測定物に加わ
るトルクに対応し且つ被測定物の外周全面にわたっての
磁気的変化を検出するので検出コイルの出力が検出器と
被測定物との配置精度などに影響されないが、トルクの
方向が検出できないという致命的な欠点を有している。
In such conventional torque detectors, the magnitude of the induced electromotive force taken out from the detection coil corresponds to the torque applied to the object to be measured, and the detection coil detects magnetic changes over the entire outer circumference of the object to be measured. Although the output of this method is not affected by the accuracy of the arrangement of the detector and the object to be measured, it has the fatal drawback that the direction of torque cannot be detected.

これを改善するため、被測定物側に磁気的異方性をもた
せるように、たとえばシャフトのような被測定物の場合
はその軸線に対して45°の傾きを有する複数のスリッ
トを被測定物に入れることが提案されているが、加工の
難かしさ、あるいは、スリットを入れることによる軸の
剛性低下などの問題があり、実用的ではない。一方、磁
気ヘッド型のトルク検出器では、トルクの大小とともに
、トルクの印加方向も検出できる点がメリットでおるが
、被測定物の外周の局部的な一部における磁気的変化を
検出するため被測定物の磁気的不均一性や偏心あるいは
撓みなどの影響を強く受け、安定した検出ができないと
いう問題があった。
To improve this, in order to create magnetic anisotropy on the side of the measured object, for example, in the case of a measured object such as a shaft, multiple slits with an inclination of 45° to the axis of the measured object are installed. However, it is not practical due to problems such as the difficulty of machining and the reduction in shaft rigidity due to the slits. On the other hand, a magnetic head type torque detector has the advantage of being able to detect not only the magnitude of the torque but also the direction in which the torque is applied. There is a problem in that stable detection is not possible due to the strong influence of magnetic non-uniformity, eccentricity, or deflection of the object to be measured.

この問題を改善するためにはたとえば米国特許第410
0791に見られるように、磁気ヘッドを連続的に被測
定物の外周に沿って複数個配置する方法が考えられるが
、励磁用および検出用の各コアにそれぞれコイルが必要
であり、コイルのバラツキなどの問題も含め、生産性や
コストなどの面で実用的でないという問題があった。
In order to improve this problem, for example, US Patent No. 410
0791, a method of arranging a plurality of magnetic heads continuously along the outer periphery of the measured object is considered, but each core for excitation and detection requires a coil, and variations in the coils may cause problems. Including such problems, there were problems that it was impractical in terms of productivity and cost.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもので、簡潔な
構成の検出器を用いて被測定物に加わるトルクの大きざ
および方向を検出することを目的とし、この目的を達成
するために、被測定物挿入用の開口部を有し該開口部に
沿って複数の突起が所定ピッチで配列された磁性円板を
複数枚各班性円板の突起位置が突起の配列方向に所定距
離だけずれるように位置定めし、前記複数の磁性円板を
外周で磁性部材により連結して平行に離間配置するとと
もに、前記複数の磁性円板の間にトルク検出用のコイル
を設けて前記被測定物に加わるトルクを検出するように
構成した。
(Object and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to detect the magnitude and direction of torque applied to a measured object using a detector with a simple structure. In order to achieve this purpose, a plurality of magnetic disks each having an opening for inserting the object to be measured and in which a plurality of protrusions are arranged at a predetermined pitch along the opening are used. The plurality of magnetic disks are connected by a magnetic member at the outer periphery and spaced apart in parallel, and a coil for torque detection is provided between the plurality of magnetic disks. The device is configured to detect the torque applied to the object to be measured.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1図(イ)は本発明によるトルク検出器を被測定物で
あるシャフト(以下「被測定軸」という)に装着した状
態で示す断面図、(ロ)は(イ)に示したトルク検出器
の軸方向端面図である。トルク検出器5は第2図かられ
かるように、中央に所定形状の被測定軸挿入用開口5a
、7a、 8aを有する3枚の磁性円板6,7.8を所
定間隔離間して平行に配置し、その外周をフェライト、
パーマロイ、ケイ素鋼あるいは磁性軟鉄などの磁性材料
で形成した円筒ケース9で接合し、各磁性円板の間に形
成される円環状空間部に、プラスチックなどのボビンに
巻付けたコイル10および11を配置して成る。各磁性
円板6,7.8の被測定軸1と対向する内周面には、所
定ピッチで複数の突起が配列されている。たとえば第2
図に示すように、磁性円板6については突起(6−1>
、(6−2>、(6−3)、(6−4>、(6−5>が
、磁性円板7については突起(7−1)、(7−2>、
(7−3>、(7−4>、(7−5)が、また磁性円板
8については突起(8−1>、(8−2)、 (8−3
)、 (8−4)、 (8−5)がそれぞれ周方向に等
しいピッチで配置されている。
Figure 1 (A) is a cross-sectional view showing the torque detector according to the present invention attached to a shaft that is a measured object (hereinafter referred to as the "measured shaft"), and (B) is a torque detection diagram shown in (A). FIG. 3 is an axial end view of the vessel. As shown in FIG. 2, the torque detector 5 has an opening 5a in the center for inserting the shaft to be measured.
, 7a, 8a are arranged in parallel with a predetermined distance apart, and the outer periphery is made of ferrite,
They are joined by a cylindrical case 9 made of a magnetic material such as permalloy, silicon steel, or magnetic soft iron, and coils 10 and 11 wound around a bobbin made of plastic or the like are arranged in an annular space formed between each magnetic disc. It consists of A plurality of protrusions are arranged at a predetermined pitch on the inner peripheral surface of each magnetic disk 6, 7.8 facing the shaft 1 to be measured. For example, the second
As shown in the figure, the magnetic disk 6 has a protrusion (6-1>
, (6-2>, (6-3), (6-4>, (6-5>), but for the magnetic disk 7, the protrusions (7-1), (7-2>,
(7-3>, (7-4>, (7-5)), and for the magnetic disk 8, the protrusions (8-1>, (8-2), (8-3
), (8-4), and (8-5) are arranged at equal pitches in the circumferential direction.

コイル10および11は直列接続されており且つコイル
に通電したときに、各々のコイルを収りかこむ形で円筒
ケース9と被測定軸1とで形成される2つの磁気回路に
おいて、それぞれのコイルにより生じる磁束の向きが互
いに逆方向となるように結線される。結線されたコイル
の両端は、円筒ケース9に開けた孔9aからリード線1
2により導出される。孔9aは接着剤13を充填しリー
ド線12が固定される。
The coils 10 and 11 are connected in series, and when the coils are energized, two magnetic circuits are formed by the cylindrical case 9 and the shaft 1 to be measured, enclosing each coil. The wires are connected so that the directions of the generated magnetic flux are opposite to each other. Both ends of the connected coil are connected to the lead wire 1 through the hole 9a made in the cylindrical case 9.
2. The hole 9a is filled with adhesive 13 and the lead wire 12 is fixed.

第3図には各々の磁性円板6.7.8に形成された突起
の位置関係を被測定軸外表面の展開図として示す。図中
A−Aは被測定軸1の軸線方向を示す。中央に位置する
磁性円板7の突起(7−1>、(7−2)、(7−3)
、(7−4>。
FIG. 3 shows the positional relationship of the protrusions formed on each magnetic disk 6, 7, 8 as a developed view of the outer surface of the shaft to be measured. A-A in the figure indicates the axial direction of the shaft 1 to be measured. Protrusions of the magnetic disk 7 located in the center (7-1>, (7-2), (7-3)
, (7-4>.

<7−5>に対して、左右の磁性円板6および8の突起
を図に示すごとくすなわち突起のピッチをLとしたとき
L1キL2でかつLl<1/2Lとなり、しかも左右の
突起と中央の突起とを結んでできる三角形が直角三角形
となるように(たとえば、磁性円板6の突起(6−2>
と磁性円板7aの突起(7−2>とを結ぶ直線と磁性円
板8の突起(8−2)と磁性円板7の突起(7−2>と
を結ぶ直線とが互いに直角となるように)配置される。
For <7-5>, the protrusions of the left and right magnetic disks 6 and 8 are as shown in the figure, that is, when the pitch of the protrusions is L, L1 x L2 and Ll<1/2L, and the left and right protrusions The triangle formed by connecting the central protrusion is a right triangle (for example, the protrusion (6-2>
The straight line connecting the protrusion (7-2> of the magnetic disk 7a and the straight line connecting the protrusion (8-2) of the magnetic disk 8 and the protrusion (7-2>) of the magnetic disk 7 are at right angles to each other. ) to be placed.

すなわち、突起(6−2>と突起(7−2>とを結ぶ直
線が軸線A−Aに対し45°の傾きをもつとすれば、突
起(8−2>と突起(7−2>と結ぶ直線が軸線A−A
に対し一45°の傾きを持つような配置とする。
In other words, if the straight line connecting the protrusion (6-2> and the protrusion (7-2>) has an inclination of 45° with respect to the axis A-A, then the protrusion (8-2> and the protrusion (7-2>) The connecting straight line is axis A-A
The arrangement shall be such that it has an inclination of -45° to the

磁性円板6,7.8の突起をこのように配置することに
よって、たとえばコイル10で生じる磁束は、被測定軸
表面において、近接する突起間、すなわち(6−1> 
−(7−1>、(6−2>−(7−2>、(6−3>−
(7−3>、(6−4)−(7−4>、(6−5>−(
7−5)の経路を強く流れる形となり、言いかえれば、
軸線A−Aに対し45°方向の磁気的な変化に対して強
い感度を有することになる同様に、コイル11は軸線A
−Aに対して一45°方向に対して強い感度を有するこ
とになる。
By arranging the protrusions of the magnetic discs 6, 7.8 in this way, the magnetic flux generated in the coil 10, for example, is distributed between adjacent protrusions, that is, (6-1>
-(7-1>, (6-2>-(7-2>, (6-3>-
(7-3>, (6-4)-(7-4>, (6-5>-(
7-5), and in other words,
Similarly, the coil 11 will have a strong sensitivity to magnetic changes at 45° to the axis A-A.
-A has strong sensitivity in the -45° direction.

第4図は上記トルク検出器の各コイル10゜11の被測
定軸1に作用するトルクに対するインピーダンス(イン
ダクタンスと等価)の変化を示す。
FIG. 4 shows the change in impedance (equivalent to inductance) of each coil 10.degree. 11 of the torque detector with respect to the torque acting on the shaft 1 to be measured.

被測定軸にトルクが作用した場合、第3図に示すように
被測定軸の表面において軸線と±45゜方向に応力が発
生する。たとえば右方向トルクに対して+45°方向に
引張応力が生じるとすれば、−45°方向には圧縮応力
が生じることになる。
When torque is applied to the shaft to be measured, stress is generated on the surface of the shaft to be measured in a direction of ±45° with respect to the axis, as shown in FIG. For example, if tensile stress is generated in the +45° direction with respect to rightward torque, compressive stress will be generated in the −45° direction.

左方向トルクに対してはその逆となる。被測定軸に生じ
る応力と透磁率との関係は用いる磁性材料によって異な
るが、たとえば鉄系の材料の場合には引張応力が作用し
た方向で透磁率が増大し、圧縮応力が作用した方向で透
磁率が減少する。
The opposite is true for leftward torque. The relationship between the stress generated on the axis to be measured and magnetic permeability differs depending on the magnetic material used, but for example, in the case of iron-based materials, the permeability increases in the direction where tensile stress is applied, and the permeability increases in the direction where compressive stress is applied. Magnetic property decreases.

そこでいま前述した構成により、コイル10は軸線に対
して+45°方向に感度を有するため、右方向トルクに
よる被測定軸表面の透磁率の増加により、インダクタン
スすなわちインピーダンスの増加が生じ、逆に左方向ト
ルクに対しては透磁率の低下に対応したインピーダンス
の低下が生じる。コイル11は逆に一45°方向に感度
を有するため、これと逆の特性となり、第4図に示すよ
うな特性が得られる。
Therefore, with the above-described configuration, the coil 10 has sensitivity in the +45° direction with respect to the axis, so an increase in magnetic permeability on the surface of the shaft to be measured due to rightward torque causes an increase in inductance, that is, impedance, and conversely, in the leftward direction In response to torque, there is a decrease in impedance that corresponds to a decrease in magnetic permeability. On the contrary, since the coil 11 has sensitivity in the 1-45° direction, the characteristics are opposite to this, and the characteristics shown in FIG. 4 are obtained.

第5図は本発明によるトルク検出器を用いたトルク検出
回路の構成を示す。コイル10および11は、抵抗14
および15とともに交流ブリッジを構成し、上記トルク
に対するコイル10および11のインピーダンスの変化
に対応して発生する不平衡電圧を差動増幅器16により
増巾する。
FIG. 5 shows the configuration of a torque detection circuit using a torque detector according to the present invention. Coils 10 and 11 are connected to resistor 14
and 15 form an AC bridge, and a differential amplifier 16 amplifies the unbalanced voltage generated in response to the change in impedance of the coils 10 and 11 with respect to the torque.

不平衡電圧は、トルクの大小に対応したレベルの変化を
すると同時にブリッジの励磁電圧を基準として不平衡電
圧の位相変化を検知するすなわち励磁電圧を基準信号と
して、不平衡電圧を位相検波回路17により位相検波し
、ざらに平滑回路18により平滑することにより、第6
図に示すようにトルクに対応した出力が得られ、トルク
の印加方向とともにその大きさが検出できる。ブリッジ
の励磁電圧は被測定軸1の材料、および磁性円板6゜7
.8ならびに円筒ケース9の材料によって適切な値に設
定され約200H2〜5QKH2程度である。
The unbalanced voltage changes in level corresponding to the magnitude of the torque, and at the same time detects the phase change of the unbalanced voltage using the excitation voltage of the bridge as a reference. In other words, the unbalanced voltage is detected by the phase detection circuit 17 using the excitation voltage as a reference signal. By detecting the phase and roughly smoothing it by the smoothing circuit 18, the sixth
As shown in the figure, an output corresponding to the torque is obtained, and the direction and magnitude of the torque can be detected. The excitation voltage of the bridge is determined by the material of the shaft 1 to be measured and the magnetic disk 6°7.
.. 8 and the material of the cylindrical case 9, it is set to an appropriate value and is about 200H2 to 5QKH2.

第7図は本発明によるトルク検出器の他の実施例を被測
定物に装着した状態を示す。この実施例の基本構造は第
1図に示した実施例の構造と全く同一であり、同一の構
成部分については同一の参照番号を付して示しである。
FIG. 7 shows another embodiment of the torque detector according to the present invention mounted on an object to be measured. The basic structure of this embodiment is exactly the same as that of the embodiment shown in FIG. 1, and the same components are designated by the same reference numerals.

この実施例はコイルを一組の励磁コイル20aおよび検
出コイル21aともう一組の励磁コイル20bおよび検
出コイル21bとを設けたことが特徴である。
This embodiment is characterized by providing one set of excitation coil 20a and detection coil 21a and another set of excitation coil 20b and detection coil 21b.

第8図に検出回路を示すが、励磁用コイル20aと20
bとを並列に接続し、これらの励磁コイルにより生じる
磁束が、第7図に実線および破線で示すように中央の磁
性円板7から左右方向に逆向きに流れるように配置する
ことにより、励磁コイル20aおよび20bの各々のま
わりの磁気回路が独立して作用することは第1図の実施
例と同じである。検出コイル21aおよび21bは各々
独立した形で、増巾器22.23と整流平滑回路24.
25とを有し、それぞれのコイルに発生する誘導起電力
に対応したアナログ電圧を得た後、差動増巾器26によ
り差動出力を得る。
The detection circuit is shown in FIG. 8, and the excitation coils 20a and 20
b are connected in parallel and arranged so that the magnetic flux generated by these excitation coils flows in opposite directions from the central magnetic disk 7 to the left and right as shown by solid lines and broken lines in FIG. As in the embodiment of FIG. 1, the magnetic circuits around each of coils 20a and 20b operate independently. The detection coils 21a and 21b are each independently connected to an amplifier 22, 23 and a rectifying and smoothing circuit 24.
25, and after obtaining an analog voltage corresponding to the induced electromotive force generated in each coil, a differential amplifier 26 obtains a differential output.

トルク検出の動作は第1図の実施例と同じであり、トル
クに対応した、それぞれの方向(±45°)での透磁率
の変化に応じて、検出コイル21a、21bに生じる誘
導起電力の差をとることにより、トルクの方向と大きさ
が、被測定軸の磁気的不均一や偏心の影響を受けること
なく高感度で検出できる。
The torque detection operation is the same as that in the embodiment shown in FIG. By taking the difference, the direction and magnitude of the torque can be detected with high sensitivity without being affected by magnetic non-uniformity or eccentricity of the axis to be measured.

上記2つの実施例では、3枚の磁性円板のうち中央の磁
性円板の突起と開口の円周方向にずらせた左右の2枚の
磁性円板の突起とを結ぶ線が被測定軸の軸線となす角を
±45°としたが、この角度にすれば最高の検出感度が
得られるものの本発明はこの角度に限らず他の角度でも
検出感度こそやや低下するものの被測定軸の磁気的不均
一や偏心が平均化されてトルクの方向と大きざが検出で
きる。
In the above two embodiments, the line connecting the protrusion of the central magnetic disk among the three magnetic disks and the protrusions of the two left and right magnetic disks shifted in the circumferential direction of the opening is the axis to be measured. Although the angle between the axis and the axis is set to ±45°, although the highest detection sensitivity can be obtained at this angle, the present invention is not limited to this angle, and the detection sensitivity is slightly lowered at other angles as well. Nonuniformity and eccentricity are averaged out, and the direction and magnitude of torque can be detected.

(発明の効果) 以上説明したように、本発明においては、被測定物に対
し何ら手を加えることなく、被測定物の周囲の巻つけ配
置される単純な構造のコイルを用い、コイルに付帯する
磁性円板に設けた突起の位置を磁性円板どうしで所定距
離ずらすだけで、検出感度に方向性を持たせることがで
き、それによりトルクの方向判別が可能となり、且つ被
測定物の外周に沿った複数の位置で検出を行なっている
ため被測定物の磁気的な不均一や偏心なども平均化され
る形で影響が除去されるため、安定的に且つ実装面での
精度を問われることなくトルク検出ができる。また、構
造的には、ヨークを3枚の磁性円板と円筒で構成すれば
検出感度を一層向上させることができる。本発明による
トルク検出器は磁性円板の数が2枚であっても3枚であ
ってもまたそれ以上であっても構造が簡単であるので製
造加工が極めて容易でありまた検出器として一体化する
ことも容易であり、低コストで製造できる。
(Effects of the Invention) As explained above, in the present invention, a coil with a simple structure that is wound around the object to be measured is used without any modification to the object to be measured. By simply shifting the positions of the protrusions provided on the magnetic disks by a predetermined distance between magnetic disks, detection sensitivity can be given directionality. Since detection is carried out at multiple positions along the measurement target, magnetic non-uniformity and eccentricity of the object to be measured are averaged out and the effects are eliminated, allowing for stable and accurate mounting. Torque can be detected without being affected. Furthermore, structurally, if the yoke is composed of three magnetic disks and a cylinder, detection sensitivity can be further improved. The torque detector according to the present invention has a simple structure regardless of whether the number of magnetic discs is 2, 3, or more, so it is extremely easy to manufacture and process, and can be integrated as a detector. It is also easy to convert and can be manufactured at low cost.

上述したような利点を生かすことにより、本発明のトル
ク検出器をたとえば、自動車におけるステアリングの操
舵トルクやエンジン、あるいはトランスミッションなど
の出力トルクを検出するセンサとして実装するに適する
検出器が実現できるという効果が得られる。
By taking advantage of the above-mentioned advantages, it is possible to realize a torque detector of the present invention suitable for implementation as a sensor for detecting the steering torque of a steering wheel, the output torque of an engine, or a transmission, etc., in an automobile, for example. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明によるトルク検出器の一実施例を
示す断面図、(ロ)は第1図に示したトルク検出器の軸
方向端面図、第2図は第1図に示したトルク検出器の要
部分解斜視図、第3図は本発明によるトルク検出器の磁
性円板の突起の配置を示す図、第4図はトルクの方向と
インピーダンスの変化との関係を示す特性図、第5図は
本発明によるトルク検出器を用いたトルク検出回路の一
例、第6図は第5図に示したトルク検出器の出力特性、
第7図は本発明によるトルク検出器の他の実施例を示す
断面図、第8図は第7図に示したトルク検出器を用いた
トルク検出回路の一例、第9図は従来の磁歪式トルク検
出器の一例の断面図である。 1・・・被測定軸、5・・・トルク検出器、6,7.8
・・・円板、6a、7a、8a・・・開口、突起・・・
(6−1)〜(6−5>、(7−1)〜(7−5)、(
8−1)〜(8−5>、9・・・円筒ケース、10゜1
1・・・コイル。
FIG. 1(A) is a sectional view showing an embodiment of the torque detector according to the present invention, FIG. 1(B) is an axial end view of the torque detector shown in FIG. 1, and FIG. FIG. 3 is a diagram showing the arrangement of protrusions on the magnetic disk of the torque detector according to the present invention, and FIG. 4 is a characteristic showing the relationship between the direction of torque and the change in impedance. 5 shows an example of a torque detection circuit using the torque detector according to the present invention, and FIG. 6 shows the output characteristics of the torque detector shown in FIG.
FIG. 7 is a sectional view showing another embodiment of the torque detector according to the present invention, FIG. 8 is an example of a torque detection circuit using the torque detector shown in FIG. 7, and FIG. 9 is a conventional magnetostrictive type FIG. 3 is a cross-sectional view of an example of a torque detector. 1... Axis to be measured, 5... Torque detector, 6, 7.8
... Disk, 6a, 7a, 8a... Opening, protrusion...
(6-1) ~ (6-5>, (7-1) ~ (7-5), (
8-1) ~ (8-5>, 9... Cylindrical case, 10°1
1...Coil.

Claims (1)

【特許請求の範囲】[Claims] 被測定物挿入用の開口部を有し且つ該開口部に沿って複
数の突起が所定ピッチで配列された磁性円板を複数枚各
磁性円板の突起位置が突起の配列方向に所定距離だけず
れるように位置定めし、前記複数の磁性円板を外周で磁
性部材により連結して平行に離間配置するとともに、前
記複数の磁性円板の間にトルク検出用のコイルを設けて
前記被測定物に加わるトルクを検出することを特徴とす
る磁歪式トルク検出器。
A plurality of magnetic disks each having an opening for inserting the object to be measured and having a plurality of protrusions arranged at a predetermined pitch along the opening. The plurality of magnetic disks are connected at the outer periphery by a magnetic member and spaced apart in parallel, and a torque detection coil is provided between the plurality of magnetic disks to apply torque to the object to be measured. A magnetostrictive torque detector characterized by detecting torque.
JP11682485A 1985-05-31 1985-05-31 Magnetostrictive torque detector Pending JPS61275630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11682485A JPS61275630A (en) 1985-05-31 1985-05-31 Magnetostrictive torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11682485A JPS61275630A (en) 1985-05-31 1985-05-31 Magnetostrictive torque detector

Publications (1)

Publication Number Publication Date
JPS61275630A true JPS61275630A (en) 1986-12-05

Family

ID=14696532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11682485A Pending JPS61275630A (en) 1985-05-31 1985-05-31 Magnetostrictive torque detector

Country Status (1)

Country Link
JP (1) JPS61275630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203744A (en) * 2018-05-22 2019-11-28 多摩川精機株式会社 Core and strain detector for detecting change of magnetic permeability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203744A (en) * 2018-05-22 2019-11-28 多摩川精機株式会社 Core and strain detector for detecting change of magnetic permeability

Similar Documents

Publication Publication Date Title
JP2545365B2 (en) Torque measuring device
KR900000660B1 (en) Noncontact torque sensor
US6698299B2 (en) Magnetoelastic torque sensor
US6823746B2 (en) Magnetoelastic torque sensor for mitigating non-axisymmetric inhomogeneities in emanating fields
US5889215A (en) Magnetoelastic torque sensor with shielding flux guide
JP4917662B2 (en) Force sensor device
US6330833B1 (en) Magnetoelastic torque sensor
JP2783118B2 (en) Torque detector
JPH0672825B2 (en) Torque measuring device
JP2007052019A (en) Magnetometer for enhancing demagnetization region
CA2373426C (en) Rotation sensor
JPH0422830A (en) Torque sensor
US4646576A (en) Torque detector
JPS61153535A (en) Torque meter
JP4305271B2 (en) Magnetostrictive torque sensor
US7622918B2 (en) Solenoid magentometer
JPS61275630A (en) Magnetostrictive torque detector
JPH07119657B2 (en) Torque detector
JP5094101B2 (en) Solenoid magnetometer
KR100416965B1 (en) Torque Sensor
JPS6390732A (en) Torque detector
JPH06241924A (en) Torque detector
JP2001004466A (en) Toque sensor
JPS60104230A (en) Torque detecting device
KR20080043007A (en) Solenoid magnetometer