JPS6127106B2 - - Google Patents

Info

Publication number
JPS6127106B2
JPS6127106B2 JP55156892A JP15689280A JPS6127106B2 JP S6127106 B2 JPS6127106 B2 JP S6127106B2 JP 55156892 A JP55156892 A JP 55156892A JP 15689280 A JP15689280 A JP 15689280A JP S6127106 B2 JPS6127106 B2 JP S6127106B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic fluid
fluid
concentrating
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55156892A
Other languages
Japanese (ja)
Other versions
JPS5781848A (en
Inventor
Sanemori Soga
Masami Nakagawa
Nobuo Sonoda
Wataru Shimoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55156892A priority Critical patent/JPS5781848A/en
Publication of JPS5781848A publication Critical patent/JPS5781848A/en
Publication of JPS6127106B2 publication Critical patent/JPS6127106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4

Description

【発明の詳細な説明】 本発明は効率的で低コストの磁性流体の濃縮方
法および濃縮装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an efficient and low cost method and apparatus for concentrating ferrofluids.

磁性流体は第1図に示すように、強磁性体材料
を界面活性剤で被覆た磁性粒子4が、液状の分散
媒3中に浮遊している超常磁性を示す液体2であ
る。
As shown in FIG. 1, the magnetic fluid is a superparamagnetic liquid 2 in which magnetic particles 4 made of a ferromagnetic material coated with a surfactant are suspended in a liquid dispersion medium 3.

これは強磁性体を粉砕して磁性粒子を得る粉砕
法と、鉄、亜鉛、マンガン、コバルト、ニツケル
等の金属塩水溶液から化学反応で磁性粒子を得る
湿式法などで製造されるが、磁性粒子体積濃度
(以下PVCと云う)で30〜40%のものが得られ
る。
This is manufactured by a pulverization method in which magnetic particles are obtained by pulverizing a ferromagnetic material, and a wet method in which magnetic particles are obtained through a chemical reaction from an aqueous solution of metal salts such as iron, zinc, manganese, cobalt, and nickel. A volume concentration (hereinafter referred to as PVC) of 30 to 40% can be obtained.

これを飽和磁化のより高い高濃度にするため
に、第2図のような容器1中の磁性流体2を加熱
する分散媒蒸発法、あるいは第3図のような密度
差を利用する重力法又は磁力法が用いられてい
た。
In order to achieve a higher concentration of saturation magnetization, a dispersion medium evaporation method that heats the magnetic fluid 2 in a container 1 as shown in Figure 2, a gravity method that utilizes the density difference as shown in Figure 3, or The magnetic method was used.

本願の発明はこれらよりすぐれた新規な磁性流
体の濃縮方法および濃縮装置を提供するものであ
る。
The present invention provides a novel method and device for concentrating a magnetic fluid that is superior to these.

その原理は磁性流体中の磁性粒子に重力と逆方
向の磁気力を作用させ、磁性粒子を磁気で抽出す
る方法であり、磁性粒子の濃度拡散の影響を少な
くして、より簡便に磁性流体を濃縮するものであ
る。以下実施例により本願を詳述する。
The principle is to apply a magnetic force in the opposite direction to gravity to the magnetic particles in the magnetic fluid, and extract the magnetic particles magnetically.This method reduces the influence of concentration diffusion of the magnetic particles, making it easier to extract the magnetic fluid. It concentrates. The present application will be explained in detail with reference to Examples below.

実施例 1 第4図に示すごとく、厚さ3mm、長さ50mm、巾
10mmのゴム磁石5を厚さ方向に表面磁束密度を約
100ガウスに着磁させ、これを懸垂する。この磁
石に約100Å径のマグネタイトがPVCで約40%含
有されたパラフインペースオイル系の磁性流体2
を(a)のように付着させる。
Example 1 As shown in Figure 4, the thickness is 3 mm, the length is 50 mm, and the width is
Approximate surface magnetic flux density of 10mm rubber magnet 5 in thickness direction
Magnetize it to 100 Gauss and suspend it. This magnet contains about 40% PVC magnetite with a diameter of about 100 Å, which is a paraffin paste oil-based magnetic fluid 2.
Attach it as shown in (a).

この状態で2時間放置すると(b)のように磁性流
体2は濃縮され、磁性流体2のうち希薄となつた
部分は磁化力の減少とともに落下する。さらに2
時間放置すると(c)のようになり、濃縮された磁性
流体2がゴム磁石5の表面に残る。(b),(c)に残つ
ている磁性流体2の濃度を密度測定法で求めたと
ころ、最初(a)でPVC約40%であつたものが、50
%,58%まで濃縮された。
When left in this state for 2 hours, the magnetic fluid 2 becomes concentrated as shown in (b), and the diluted portion of the magnetic fluid 2 falls as the magnetizing force decreases. 2 more
When left for a period of time, it becomes as shown in (c), and the concentrated magnetic fluid 2 remains on the surface of the rubber magnet 5. When the concentration of magnetic fluid 2 remaining in (b) and (c) was determined by density measurement, it was found that the concentration of PVC, which was initially about 40% in (a), was 50% PVC.
%, concentrated to 58%.

実施例 2 第5図に示すように約200mlの容器1中にPVC
が約30%の磁性流体を満たし、その中に実施例1
と同様な長さ150mmのゴム磁石を浸し、その先端
位置を上下させるとサイホンと同様に磁性流体が
流出する。ゴム磁石の先端位置を流量が約0.01
ml/分程度となるように調節すると、容器1′中
にPVCが約45%まで濃縮された磁性流体2′が得
られた。
Example 2 As shown in Figure 5, a PVC container 1 of approximately 200 ml was
is filled with about 30% ferrofluid, and Example 1 is contained in it.
If you dip a rubber magnet with a length of 150 mm similar to the above and move its tip up and down, the magnetic fluid will flow out, similar to a siphon. The tip position of the rubber magnet is adjusted so that the flow rate is approximately 0.01.
When adjusted to about ml/min, a magnetic fluid 2' containing PVC concentrated to about 45% was obtained in the container 1'.

実施例 3 第6図のように、約300ml容器1中にPVCが約
35%の磁性流体2を満たし、その中に図示のよう
なコイル7付きの棒状軟鋼6を浸し、コイルを60
Hz10V5Aで励振すると図示のように磁性流体2が
隆起する。この降起先端に非磁性のアルミニウム
製の樋8を接合させると、PVC50%に濃縮され
た磁性流体2′を容器1′中に得ることができた。
Example 3 As shown in Figure 6, approximately 300ml container 1 contains approximately 300ml of PVC.
Fill with 35% magnetic fluid 2, immerse a rod-shaped mild steel 6 with a coil 7 as shown in it, and set the coil to 60%.
When excited at Hz10V5A, the magnetic fluid 2 rises as shown in the figure. By joining a non-magnetic aluminum gutter 8 to this descending tip, a magnetic fluid 2' concentrated to 50% PVC could be obtained in the container 1'.

以上実施例1〜3で明らかなように、本発明の
方法は磁性粒子に重力と逆方向の磁気力を作用さ
せ、一方分散媒にはもつぱら重力が働くことによ
る抽出効果を利用するものであり、従来法のよう
な、分散媒揮発用の多大な熱エネルギー、あるい
は濃度拡散の障害もなく、効率的に磁性流体を濃
縮出来るものである。
As is clear from Examples 1 to 3 above, the method of the present invention applies a magnetic force in the opposite direction to gravity to the magnetic particles, while utilizing the extraction effect caused by gravity acting exclusively on the dispersion medium. This method allows the magnetic fluid to be efficiently concentrated without requiring a large amount of thermal energy to volatilize the dispersion medium or hindering concentration diffusion, which is the case with conventional methods.

さらに濃縮を促進する方法としては重力を遠心
力によつて高めた状態で、本発明にもとづいて磁
気抽出すると良い。また、本発明による濃縮装置
は、可動部分がないので、信頼性も高く、かつ低
コスト化ができる。なお磁気源は永久磁石、電磁
石いずれでも良いが、電磁石を用いると磁力調整
が容易であり、なかでも交流励振の場合は、磁性
流体も振動し、より効果的に濃縮可能である。
As a method for further promoting concentration, it is preferable to perform magnetic extraction based on the present invention in a state where gravity is increased by centrifugal force. Furthermore, since the concentrating device according to the present invention has no moving parts, it is highly reliable and can be manufactured at low cost. Note that the magnetic source may be either a permanent magnet or an electromagnet, but when an electromagnet is used, the magnetic force can be easily adjusted, and in particular, in the case of AC excitation, the magnetic fluid also vibrates, making it possible to concentrate more effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な磁性流体の状態を示す正面
図、第2図、第3図は従来の濃縮法を示す正面
図、第4図は本発明の原理的な構成を示す第1の
実施例装置、第5図は永久磁石を用いた濃装装置
の実施例、第6図は電磁石を用いた濃縮装置の実
施例をそれぞれ示す正面図である。 2……磁性流体、5……ゴム磁石。
FIG. 1 is a front view showing the state of a general magnetic fluid, FIGS. 2 and 3 are front views showing a conventional concentration method, and FIG. 4 is a first implementation showing the basic configuration of the present invention. An example device, FIG. 5 is a front view showing an embodiment of a concentration device using a permanent magnet, and FIG. 6 is a front view showing an embodiment of a concentration device using an electromagnet. 2...Magnetic fluid, 5...Rubber magnet.

Claims (1)

【特許請求の範囲】 1 磁性流体中の磁性粒子に重力と逆方向の磁気
力を作用させ、磁性粒子を重力と逆方向に移動さ
せることを特徴とする磁性流体の濃縮方法。 2 磁気力が静的磁界による特許請求の範囲第1
項記載の磁性流体の濃縮方法。 3 磁気力が動的磁界による特許請求の範囲第1
項記載の磁性流体の濃縮方法。 4 磁性流体を満たした容器中に、一端が磁性流
体中にあり他端が露出した磁力手段を立て、前記
磁力手段の露出部の一部から濃縮された磁性流体
を導出することを特徴とする磁性流体の濃縮装
置。
[Claims] 1. A method for concentrating a magnetic fluid, which comprises applying a magnetic force in a direction opposite to gravity to magnetic particles in the magnetic fluid, thereby causing the magnetic particles to move in a direction opposite to gravity. 2 Claim 1 where the magnetic force is based on a static magnetic field
Method for concentrating magnetic fluid as described in Section. 3 Claim 1 where the magnetic force is due to a dynamic magnetic field
Method for concentrating magnetic fluid as described in Section. 4. A magnetic means having one end submerged in the magnetic fluid and the other end exposed is placed in a container filled with magnetic fluid, and the concentrated magnetic fluid is drawn out from a part of the exposed portion of the magnetic means. Ferrofluid concentrator.
JP55156892A 1980-11-06 1980-11-06 Method and apparatus for concentration of magnetic fluid Granted JPS5781848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55156892A JPS5781848A (en) 1980-11-06 1980-11-06 Method and apparatus for concentration of magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55156892A JPS5781848A (en) 1980-11-06 1980-11-06 Method and apparatus for concentration of magnetic fluid

Publications (2)

Publication Number Publication Date
JPS5781848A JPS5781848A (en) 1982-05-22
JPS6127106B2 true JPS6127106B2 (en) 1986-06-24

Family

ID=15637670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55156892A Granted JPS5781848A (en) 1980-11-06 1980-11-06 Method and apparatus for concentration of magnetic fluid

Country Status (1)

Country Link
JP (1) JPS5781848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314214A (en) * 1988-06-13 1989-12-19 Mitsubishi Cable Ind Ltd Optical semiconductor module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344512B2 (en) * 2002-03-15 2008-03-18 Sun Medical Technology Research Corporation Protector and blood pump system
JP7059358B2 (en) 2018-03-30 2022-04-25 富士フイルム株式会社 Separation device and separation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314214A (en) * 1988-06-13 1989-12-19 Mitsubishi Cable Ind Ltd Optical semiconductor module

Also Published As

Publication number Publication date
JPS5781848A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
DK1333932T3 (en) Method of separating a dispersed or dissolved substance and magnetic separator
ATE409523T1 (en) APPARATUS FOR RETENTION OF MAGNETIC PARTICLES IN A FLOW CELL
JPS60193546A (en) Ion exchange resin bed
Rida et al. Dynamics of magnetically retained supraparticle structures in a liquid flow
JPS6127106B2 (en)
Odenbach Ferrofluids-magnetisable liquids and their application in density separation
SE8101233L (en) DEVICE FOR RECOVERY OF ELECTRICAL ENERGY BY VARIATION OF THE MAGNETIC FLOW
Guo et al. Effect of patterned micro-magnets on superparamagnetic beads in microchannels
Andres Magnetic liquids
Ensafi et al. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead (II), cadmium (II) and zinc (II) ions using 1, 4-benzoquinone as an alternative pumping species
US2518635A (en) Magneto-mechanical movement
JPS5853926B2 (en) Jikibunrihouhou
JP2005140501A (en) Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance
CN217615277U (en) Gradient magnetic field generation system for guiding magnetic fluid movement
JP2018069216A (en) Water activation device and method for manufacturing the same
JPS58501662A (en) Apparatus and method for magnetic sorting
GB2122950A (en) Magnetic toner transfer apparatus
JPH11267546A (en) Method for magnetic separation
Zimmels Measurement of specific gravity and magnetic susceptibility of particulate materials by levitation in paramagnetic solutions
JP2022154020A (en) Purification device and method
Takeda et al. Development of a colloid chemical process for magnetic seeding to organic dye
JPH0366802B2 (en)
JPS5921666B2 (en) Separation method of ferromagnetic particles in liquid
JPS57207587A (en) Activating device for fluid
JPS59115435U (en) Magnetic device for liquids