JPS61261263A - Manufacture of dielectric ceramic - Google Patents

Manufacture of dielectric ceramic

Info

Publication number
JPS61261263A
JPS61261263A JP61105065A JP10506586A JPS61261263A JP S61261263 A JPS61261263 A JP S61261263A JP 61105065 A JP61105065 A JP 61105065A JP 10506586 A JP10506586 A JP 10506586A JP S61261263 A JPS61261263 A JP S61261263A
Authority
JP
Japan
Prior art keywords
titanate
bismuth
calcined
sintering
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61105065A
Other languages
Japanese (ja)
Inventor
ガレブ・ハミド・マヘル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sprague Electric Co
Original Assignee
Sprague Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sprague Electric Co filed Critical Sprague Electric Co
Publication of JPS61261263A publication Critical patent/JPS61261263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4686Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on phases other than BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明はビスマスをドープした低温焼成チタン酸バリウ
ムネオジム誘電体の製法に関し、さらに詳細にはち密な
熟成セラ5ツク誘電体を得る最低焼結温度を大きく低下
するためきわめて少量のビスマスを出発材料に含ませる
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a method for producing a bismuth-doped low-temperature fired barium neodymium titanate dielectric, and more particularly to the minimum sintering temperature for obtaining a dense aged ceramic dielectric. It relates to a method in which a very small amount of bismuth is included in the starting material in order to significantly reduce the

従来の技術: セラミックコンデンサの多数のメーカが誘電率の温度係
数の低いたとえば±50 ppm /’Oの    翫
ボデーを製造するため種々の添加物を含むチタン酸バリ
ウムネオジムを使用している。公知技術で使用した添加
物にはアルカリ土金属のジルコニウム酸塩、スズ酸塩お
よびチタン酸塩がある。チタン酸ビスマスも添加される
。ビスマスや量は代表的には酸化物として計算してボデ
ー中のすべてのカチオンの酸化物の1.8〜4.7モル
チである。他のメーカは低い焼結温度を得るため焼結前
に前焼成またはカ焼したチタン酸バリウムネオジムの粉
末にビスマス、鉛およびケイ素の酸化物を添加した。
BACKGROUND OF THE INVENTION: Many manufacturers of ceramic capacitors use barium neodymium titanate with various additives to produce bodies with a low temperature coefficient of dielectric constant, for example ±50 ppm/'O. Additives used in the prior art include alkaline earth metal zirconates, stanniates and titanates. Bismuth titanate is also added. The amount of bismuth is typically 1.8 to 4.7 moles of oxide of all cations in the body, calculated as oxides. Other manufacturers added bismuth, lead, and silicon oxides to precalcined or calcined barium neodymium titanate powder before sintering to obtain lower sintering temperatures.

しかしかなり多数および多量の添加物を含む低温度係数
地方は製造の際組成および誘電性の制御が困難である。
However, low temperature coefficient regions containing significant numbers and amounts of additives are difficult to control in composition and dielectric properties during manufacture.

発明が解決しようとする問題点: 本発明の目的はとくに少量のビスマスドーピング剤によ
シセラミックの最低焼結温度を大きく低下する、ビスマ
スをドープしたチタン酸パ、リクムネオジムの製法を得
ることである。もう1つの目的はセラミック中のカチオ
ンの実際の酸化物を出発材料として使用し、出発成分の
左部によシ反応性をさらに確実に達成する方法を得るこ
とである。
Problem to be Solved by the Invention: The purpose of the present invention is to provide a process for producing bismuth-doped titanate, licumneodymium, which significantly reduces the minimum sintering temperature of the ceramic with a particularly small amount of bismuth doping agent. . Another objective is to use the actual oxides of cations in ceramics as starting materials and to obtain a method that more reliably achieves the left-side reactivity of the starting components.

問題点を解決するための手段: 本発明によれば焼成温度の低いチタン酸バリウムネオジ
ムはビスマスをドープしたチタン酸バリウムネオジムの
粉末前駆体の混合物をつくり、前駆体を反応させるため
カ焼し、カ焼した前駆体を微粉末にし、微粉末前駆体を
ボデーに成形し、1200℃以下で1teデーを焼結し
てち密な熟成セラミックボデーを形成することによって
製造される。微粉末にした前駆体すなわち出発材料はす
べて酸化物、または炭酸塩、水酸化物、水和物およびシ
ュウ酸塩のような酸化物等価物である。ビスマスを含む
前駆体の鴬は酸化物として計算して、酸化物として計算
したすべての前駆体のモル和の0.25〜1.5モルチ
である。
Means for solving the problem: According to the present invention, barium neodymium titanate having a low calcination temperature is prepared by preparing a mixture of powder precursors of barium neodymium titanate doped with bismuth, and calcining the precursors to react. It is manufactured by pulverizing the calcined precursor, forming the pulverized precursor into a body, and sintering the 1TE at less than 1200° C. to form a dense aged ceramic body. All of the micronized precursors or starting materials are oxides or oxide equivalents such as carbonates, hydroxides, hydrates and oxalates. The amount of bismuth-containing precursors, calculated as oxides, is 0.25 to 1.5 molar of the molar sum of all precursors calculated as oxides.

作用: 総括的に本発明はチタン酸バリウムネオジム材料のパラ
エレクトリック(paraelectric )結晶の
中のとくに少量のビスマスの存在がこの材料の焼結温度
を劇的に低下するここの認識にに基く。さらに本発明の
認識によればカ焼したチタン酸バリウムネオジムと酸化
ビスマスおよびチタン酸ビスマスのようなビスマス含有
化合物の混合物を焼結すると反応はまったくまたはほと
んど生じない。このように本発明の方法の場合ビスマス
は所望の♂スマスドーぎングを有効にするため、チタン
酸バリウムネオジムを形成するための出発材料の中にビ
スマスを含ませることが重要である。
Operation: Overall, the invention is based on the recognition that the presence of particularly small amounts of bismuth in the paraelectric crystals of barium neodymium titanate material dramatically reduces the sintering temperature of this material. It is further recognized by the present invention that when a mixture of calcined barium neodymium titanate and bismuth-containing compounds such as bismuth oxide and bismuth titanate is sintered, no or little reaction occurs. Thus, in the method of the present invention, it is important to include bismuth in the starting materials for forming barium neodymium titanate, since bismuth enables the desired male doping.

実施例: 多数の第1図に示す実験用クエノ〜形コンデンサをρく
った。ウェハボデーをまず出発セラミック前駆体粉末の
組合せ、2時間の湿式j リング、乾燥、粒化および1
200℃2時間力焼の常用左部によって形成する。次に
粉砕および約1〜1.5μの平均粒度へのジェット粉砕
が続く。
EXAMPLE: A large number of experimental Queno-type capacitors as shown in FIG. 1 were assembled. The wafer body is first combined with ceramic precursor powder, wet j-ring for 2 hours, drying, granulation and 1
It is formed by the usual left side of power firing at 200°C for 2 hours. This is followed by milling and jet milling to an average particle size of about 1-1.5 microns.

微粉を有機ベヒクル中で組合せ、厚さ約0.625m 
(、25ミル)の正方形に流しこむ。この正方形または
ウェハは1100〜1350℃の最低焼結温度を有する
。銀の電極ペーストを各熟成セラミックウェハの2つの
広い面にIi布fる。
Combine fine powders in organic vehicle, approximately 0.625 m thick
Pour into a (25 mil) square. This square or wafer has a minimum sintering temperature of 1100-1350°C. Apply silver electrode paste to two wide sides of each aged ceramic wafer.

電極を付けたウェハを800℃で焼成し、それぞれ第1
図に示すよ・うにポデー10および電極11.12を有
するウェハ形コンデンサを形成した。
The wafers with electrodes were baked at 800°C, and the first
A wafer-shaped capacitor was formed having a podium 10 and electrodes 11, 12 as shown in the figure.

各セラミックのち密化のため50℃間隔で示し九最低焼
結温度は1連の実験ウェハ形コンデンサのセラミックの
相当する組成とともに表■に示される。焼結フラックス
は使用せず、すべての出発生成物は左部で同時反応した
The nine lowest sintering temperatures, indicated at 50° C. intervals for densification of each ceramic, are shown in Table 3 along with the corresponding composition of the ceramic for a series of experimental wafer capacitors. No sintering flux was used and all starting products reacted simultaneously on the left.

出発生成物はとくに炭酸ネオジム、炭酸バリウム、チタ
ニャ、6酸化ビスマス、酸化鉛および酸化亜鉛であった
。しかしこれらの材料が炭酸塩、水酸化物、水和物、シ
ュク酸塩または酸化物であるかに拘らず、これらはすべ
て有効に焼結後には反応した酸化物の群になる。これら
の前記出発材料から選択した特殊な形は焼結セラきツク
の組成および性質に影響をおよぼさない。表Iにはセラ
ミック組成が便宜上出発材料の酸化物の形のモル量で示
される。
The starting products were inter alia neodymium carbonate, barium carbonate, titania, bismuth hexaoxide, lead oxide and zinc oxide. However, whether these materials are carbonates, hydroxides, hydrates, succinates or oxides, they all effectively become a group of reacted oxides after sintering. The particular shape selected from these starting materials does not affect the composition and properties of the sintered ceramic. In Table I, the ceramic compositions are conveniently given in molar amounts in the oxide form of the starting materials.

表  I 組成(モルqb> 167.5 17.010.0 15.510.0 1
!+50℃2  ”  15.5 /1.5 15.5
 、/ll・0 1250#3  N  14.0 /
3,0 15.510.0 1300 〃4  N  
17.010.0 14.0 /1.5 1250 〃
5  #  17.010.0 12.515.0  
 #  〃6  N  17.010.0 11.0 
/4.5 1200 〃7  #  15.5/1.5
 12.5/!1.0   #  〃871.4414
.7!110.0 14.2B10.0 1250〃9
  //  12.7a/1.5 14.2810.0
 1150 〃10  ’  12.78/1.5 1
2.78/1.5 1200#BaO/ZnO 1171,4414,2a10.0 127a/1.5
 1250〃12  //  14.2+310.0 
11.28/3.0   〃#1!168.7515.
75/1.25 14.2510.0 1150〃例1
〜7のセラミックの主成分は(17Nd203)” (
15,5BaO) ” (67,5Ti02) テある
0例1.2および3の組成はNd2O3を置換したBi
2O3の量が次第に上昇する。例2による中間量のビス
マスドーピングによシ看して低い最低焼結温度1250
℃が得られる。
Table I Composition (mol qb> 167.5 17.010.0 15.510.0 1
! +50℃2 ” 15.5 /1.5 15.5
, /ll・0 1250#3 N 14.0 /
3,0 15.510.0 1300 〃4 N
17.010.0 14.0 /1.5 1250 〃
5 # 17.010.0 12.515.0
#〃6 N 17.010.0 11.0
/4.5 1200 〃7 # 15.5/1.5
12.5/! 1.0 # 〃871.4414
.. 7!110.0 14.2B10.0 1250〃9
// 12.7a/1.5 14.2810.0
1150 〃10' 12.78/1.5 1
2.78/1.5 1200#BaO/ZnO 1171,4414,2a10.0 127a/1.5
1250〃12 // 14.2+310.0
11.28/3.0 〃#1!168.7515.
75/1.25 14.2510.0 1150 Example 1
The main component of the ceramic of ~7 is (17Nd203)” (
15,5BaO) ” (67,5Ti02) The compositions of examples 1.2 and 3 are Bi substituted for Nd2O3.
The amount of 2O3 gradually increases. Lower minimum sintering temperature 1250 in view of the intermediate amount of bismuth doping according to Example 2
℃ is obtained.

例4. 5. 6の組成はビスマスを含まないけれど、
鉛がバリウムを置換して添加される。鉛ドーピングの量
の増加によっても最低焼結温度は低下するけれど、鉛の
最適量は明らかでない。
Example 4. 5. Although the composition of 6 does not contain bismuth,
Lead is added to replace barium. Increasing the amount of lead doping also reduces the minimum sintering temperature, but the optimal amount of lead is not clear.

鉛の添加による焼結温度の低下は小さいけれど、鉛の添
加は容量の温度係数を大きくする効果を有するので有用
である。例5の鉛P−ピング材料に対し例7のようにさ
らにビスマスを派別することは、鉛の存在しない例2に
示される最低焼結温度に比して小さい効果しか示さない
Although the reduction in sintering temperature due to the addition of lead is small, the addition of lead is useful because it has the effect of increasing the temperature coefficient of capacity. Adding more bismuth as in Example 7 to the lead P-ping material of Example 5 has a small effect compared to the lowest sintering temperature shown in Example 2 without lead.

例8のチタン酸バリウムネオジム(Nd203・BaO
・5 TiO2の組成を有する)はビスマスまたは鉛P
−ピング剤なしでも比較的低い焼結温度を有する。しか
し例9によるB12o31.5モル量の添加によりこの
焼結温度が100 ”O低下する。
Example 8 barium neodymium titanate (Nd203・BaO
・5 TiO2 composition) is bismuth or lead P
- Has a relatively low sintering temperature even without a pinging agent. However, the addition of 1.5 molar amounts of B12o3 according to Example 9 lowers this sintering temperature by 100"O.

例10のようにさらに鉛を添加すると意外にも焼結温度
は上昇する。例11および12に示すようにバリウムを
置換して鉛でなく亜鉛を添加することは焼結温度に明ら
かな効果を示さない。
When lead is further added as in Example 10, the sintering temperature unexpectedly increases. Substituting barium and adding zinc instead of lead, as shown in Examples 11 and 12, has no apparent effect on the sintering temperature.

チタン酸バリウムネオジムの前記すべての組成によりN
d2O3” BaO’ 4 TlO2のX線回折像を示
すセラ2ツクが得られる。この観察はネオジムの一部を
置換した酸化ビスマスを含む1・1・4セラミツ′りす
なわち14.4 Nd2O3・16.67BaO・66
.67 T1o2を製造する実験に導く。この材料は予
期した低い焼結温度を有し、走査形電子顕微鏡試験で高
チタン第2相をほとんど示さないことによシ第2相を主
とする他のすべての組成と異なる。このほぼ単−相組成
は確認のための研究がなお必要であるけれど他の組成に
比して特殊な利点を有する。
Due to all the above compositions of barium neodymium titanate, N
Ceramics showing an X-ray diffraction image of d2O3"BaO' 4 TlO2 are obtained. This observation shows that 1.1.4 ceramic containing bismuth oxide with a portion of neodymium substituted, that is, 14.4 Nd2O3.16. 67BaO・66
.. 67 This leads to an experiment to produce T1o2. This material has an expected low sintering temperature and differs from all other secondary phase-based compositions by showing almost no titanium-rich second phase in scanning electron microscopy examination. This nearly single-phase composition has particular advantages over other compositions, although confirmatory studies are still needed.

前記実験はチタン酸バリウムネオジムにB1−3を1.
25モルチ一ゾした場合、前記例によってはまだ十分に
明らかにされない何らかの異常な過程があることを示唆
している。
In the above experiment, 1.0% of B1-3 was added to barium neodymium titanate.
In the case of 25 moltizo, the above example suggests that there is some abnormal process that has not yet been fully elucidated.

セラミック組成に含まれるBi2O3の量の関数として
の最低焼結温度のグラフが第2図に曲線13で示される
。このグラフはそれぞれ例1〜7.13および8〜12
0群によって示されるチタン酸バリウムネオジムの3つ
の基本組成の最低焼結温度を考慮している。この順にと
った群はドーピング剤の与えられた種類および量ととも
に低下する最低焼結温度を有する。このように阻5ao
s 1−25 %ルチの添加で発生する最低焼結温度に
対する第2図のグラフの現象はNd、03およびTie
sをそれぞれ少なくとも・25重tS含む一般的なチタ
ンに富むクラスのすべてのチタン酸バリウムネオジムの
基本組成に帰せられる。第2図のグラフに使用した特殊
な垂直スケールは例1〜70基本材料を考慮している。
A graph of the minimum sintering temperature as a function of the amount of Bi2O3 contained in the ceramic composition is shown in FIG. 2 by curve 13. This graph shows Examples 1-7.13 and 8-12 respectively.
The lowest sintering temperatures of the three basic compositions of barium neodymium titanate indicated by the 0 group are considered. This ordered group has a minimum sintering temperature that decreases with a given type and amount of doping agent. In this way, 5ao
The phenomenon in the graph of Figure 2 for the lowest sintering temperature that occurs with the addition of s 1-25% Ti
The basic composition of all barium neodymium titanates of the general titanium-rich class contains at least 25 tS each. The special vertical scale used in the graph of FIG. 2 takes into account the base materials of Examples 1-70.

これらの実験によりチタン酸バリウムネオジムのビスマ
スドーピングが焼結温度におよぼす効果をもつと精密に
決定するもう1つの実験シリーズが必要となる。
These experiments necessitate another series of experiments to precisely determine the effect that bismuth doping of barium neodymium titanate has on sintering temperature.

へ 例1〜13のクエハボデー製造のため記載した方法を使
用して表■にモルチで材料組成を示す例14〜22の材
料をつくった。
Using the method described for the fabrication of the queha bodies of Examples 1-13, the materials of Examples 14-22, whose material compositions are shown in Table 1, were made.

表■ 14 68.75 17.0Q10.0 14.251
5  〃16.2510.85  ”16  〃15.
75/1.25  〃17     〃15.25/1
.75     〃18  〃14.75/2.25 
 #19  〃14.25/2.75  〃20 1/
  15.7515.25  /121  〃15.2
515.75  〃22  〃12.75/4.25 
 〃前記のようにビスマスは有利に基本チタン酸バリウ
ムネオジムの前駆体と最初から反応させる。しかし焼結
はそれぞれのはデーに対し1回に1つずつ実施し、その
際温度を6.7℃/min上昇し、1200℃に60分
保持し、次に同じ速度で1300℃に加熱する開缶ボデ
ーの厚さを膨張針で連続的に測定した。このように得た
焼結曲線を各側について第6図に示す。ここに各曲線の
番号は例の番号に相当する。曲線23は炉温を示す。
Table ■ 14 68.75 17.0Q10.0 14.251
5 〃16.2510.85 ”16 〃15.
75/1.25 〃17 〃15.25/1
.. 75 〃18 〃14.75/2.25
#19 〃14.25/2.75 〃20 1/
15.7515.25 /121 〃15.2
515.75 〃22 〃12.75/4.25
As mentioned above, the bismuth is advantageously reacted initially with a precursor of the basic barium neodymium titanate. However, sintering was carried out one at a time for each day, increasing the temperature by 6.7°C/min, holding at 1200°C for 60 minutes, and then heating to 1300°C at the same rate. The thickness of the opened can body was continuously measured with an inflatable needle. The sintering curves thus obtained are shown in FIG. 6 for each side. Here, the number of each curve corresponds to the example number. Curve 23 shows the furnace temperature.

各処方からの焼結メゾ−を走査形電子顕微鏡によって試
験する。酸化ビスマスドーピング量が3.25モモルよ
り大きい場合チタン酸ビスマスの第2相が、チタン酸バ
リウムネオジムのビスマスに対する非常に制限された溶
解度および親和力を示すように、現れ始める。
Sintered meso from each formulation is examined by scanning electron microscopy. When the bismuth oxide doping amount is greater than 3.25 moles, a second phase of bismuth titanate begins to appear, indicating a very limited solubility and affinity of barium neodymium titanate for bismuth.

第6図に示した実験情報からデータ点を第4および5図
のグラフにプロットした。第4図のグラフで曲線25は
6.5チの収縮が発生した焼結温度をBt205 p−
ピング剤含量の関数として示す。第5図のグラフで曲W
s27は6.5時間の焼結における収縮チをプロットし
たデータ点に適合する。これらの曲線はこのセラミック
系にBia03約1.2s*t−p−ゾするここの異常
に大きい利点を示している。
Data points from the experimental information shown in FIG. 6 were plotted in the graphs of FIGS. 4 and 5. In the graph of Fig. 4, curve 25 indicates the sintering temperature at which 6.5 inches of shrinkage occurred.
Shown as a function of pinging agent content. Song W in the graph of Figure 5
s27 is fitted to a data point plotting shrinkage at 6.5 hours of sintering. These curves show the unusually large advantage of Bia03 of about 1.2s*tp-zo in this ceramic system.

さらに曲#I25のBi2O3約1.25モモルを中心
とする谷は深くかつ非常に狭い。事実最高の性能は1.
5モル量とくに1.4モル量より低い量のドーピングで
達成される。Bi2O3ドーピング剤1.25モル慢は
第4図の曲線によって明らかなようにB12o、、 y
−ピング剤を他の量で使用し′て得られるより低い焼結
温度に相当する。
Furthermore, the valley centered at about 1.25 mmol of Bi2O3 in song #I25 is deep and very narrow. In fact, the best performance is 1.
This is achieved with a doping amount of less than 5 molar amounts, especially less than 1.4 molar amounts. Bi2O3 doping agent 1.25 molar is B12o,,y
- corresponding to lower sintering temperatures obtained using other amounts of pinging agent.

例1〜16の焼結ざデーの一部の電子顕微鏡およびマイ
ク・ロゾローデを使用した解析によれば、例13のボデ
ーに第2相が現れないのを除き、チタン酸バリウムネオ
ジムの主たる基地に高チタン酸塩第2相の小斑点が観察
された。基本チタン酸バリウムネオジム中のカチオンの
数Nは非常に近似的に 3(NNd十NB&)=2NT□ によって表わされ、それによってNdカチオンの一部を
置換しながら結晶中の除去した各Ndカチオンに代る多
数のBaカチオンはなお1相結晶組成を与えるc11相
成の使用(第2相の回避)により容易に理解しうる簡単
な系が得られるので、製造の制御も良好になり、有利で
ある。この6つの主要カチオンの1っのモル量の偏差を
前記1相関係によって示す量の5または6チ以内に保持
することは前記制御の利点を得るために十分と考えられ
る。
Electron microscopy and micro-Rozorode analysis of some of the sintered samples of Examples 1 to 16 show that the main base of barium neodymium titanate is Small spots of high titanate second phase were observed. The number N of cations in the basic barium neodymium titanate is very approximately represented by 3(NNd + NB&) = 2NT□, whereby each Nd cation removed in the crystal replaces a portion of the Nd cations. The use of a c11 phase formation (avoidance of a second phase) which still gives a one-phase crystalline composition instead of a large number of Ba cations provides a simple system that is easily understood and therefore provides better manufacturing control and is advantageous. It is. Maintaining one molar deviation of the six major cations within 5 or 6 inches of the amount indicated by the one-phase relationship is considered sufficient to obtain the control benefits.

前記最適にビスマスをドープしたチタン酸バリウムネオ
ジム組成を低価格銀−パラジウム電極を有するモノリシ
ックセラミックコンデンサの製造に使用するため、焼結
温度をさらに低下するように生のセラミックスラリ−に
フラックスを添加することが望まれる。常用合金70A
g/60pa(重鷺部)は1160℃の融点を有し、埋
設電極の融解を避けるためコンデンサ焼結温度は115
0℃以下でなければならない。、銀含量のもつと高い電
極はもつと低温で融解するけれど、もちろん高価である
In order to use the optimally bismuth-doped barium neodymium titanate composition in the production of monolithic ceramic capacitors with low cost silver-palladium electrodes, flux is added to the raw ceramic slurry to further reduce the sintering temperature. It is hoped that Commonly used alloy 70A
g/60pa (jusagi part) has a melting point of 1160℃, and the capacitor sintering temperature is 115℃ to avoid melting of the buried electrode.
Must be below 0°C. Electrodes with higher silver content melt at lower temperatures, but are of course more expensive.

種々の実験用モノリシックコンデンサのそれぞれを次の
常用工程で製造した。焼結温度の高いセラミック(すな
わち68.75 ’I’102−15−75 NdaO
s ・1−25 Bi25s ・14−25 Bad)
のカ焼および粉砕した微粉末を低融点フラックスおよび
場合によりもう1つの添加物とテレピン油、パイン油6
Toおよびレシチン5%のベヒクルおよびバインダ媒体
中で混合した。固体約70重量%を含むこのスラリーを
約6時間摩砕した。
Each of the various experimental monolithic capacitors was manufactured using the following conventional process. Ceramic with high sintering temperature (i.e. 68.75'I'102-15-75 NdaO
s ・1-25 Bi25s ・14-25 Bad)
The calcined and ground fine powder of
To and lecithin 5% were mixed in vehicle and binder medium. This slurry containing about 70% solids by weight was milled for about 6 hours.

摩砕したスラリーをガラス基板に逐次流延μ各層を順次
乾燥し、銀70%およびパラジウム30%の電極ペース
トを流延および乾燥した層へスクリン印刷した。次に続
く誘電層を流延する前に電極ペーストのスクリン印刷パ
ターンを乾燥した。第6図に示すように埋設電極31お
よび32を有するボデー30を積層体から切出し、熟成
まで1100℃で21/2時間焼成した。
The ground slurry was sequentially cast onto a glass substrate, each layer was dried in turn, and an electrode paste of 70% silver and 30% palladium was screen printed onto the cast and dried layers. The screen printed pattern of electrode paste was dried before casting the subsequent dielectric layer. As shown in FIG. 6, a body 30 having embedded electrodes 31 and 32 was cut out from the laminate and fired at 1100° C. for 21/2 hours until ripening.

次に埋設電極のエツジが露出するポデー30の両端に銀
ペーストを塗布した。銀ターミナル35および36を形
成するためポデーを750℃で数分間焼成した。
Next, silver paste was applied to both ends of the podium 30 where the edges of the buried electrodes were exposed. The pode was fired at 750° C. for several minutes to form silver terminals 35 and 36.

これら実験モノリシックコンデンサのセラミックボデー
の例26〜29の組成は表■にTCCおよびDFデータ
とともに示される。
The compositions of examples 26-29 of these experimental monolithic capacitor ceramic bodies are shown in Table 2 along with TCC and DF data.

表■ 2597 5  Cd()2ZnO・B2O3N650
.012495 5  CdO’2ZnO”B2O3N
500.0122      Bi2Ti20フ 2595 3  Cd0・2ZnO・B2O3P7 0
.0074  PbTiO3 26923Cd0・2ZnO−B203 N4  (L
O153PbTiO3 2BaTi03 2792 3  Cd0・2ZnOB203 N270
.0095  BaTiO3 2898,5L5 BaO・2B2C)s  N47 
CLOO32997−752,25BaO*B2O3N
540.0073068 29 8rTi03 5  Cd0−2ZnO−8203N7500.01こ
れらすべてのコンデンサボデーは1100℃で焼結して
ほぼ非多孔性かつち密である。すベてのボデーの誘電率
は75〜90であった。
Table ■ 2597 5 Cd()2ZnO・B2O3N650
.. 012495 5 CdO'2ZnO"B2O3N
500.0122 Bi2Ti20fu2595 3 Cd0・2ZnO・B2O3P7 0
.. 0074 PbTiO3 26923Cd0・2ZnO-B203 N4 (L
O153PbTiO3 2BaTi03 2792 3 Cd0・2ZnOB203 N270
.. 0095 BaTiO3 2898,5L5 BaO・2B2C)s N47
CLOO32997-752,25BaO*B2O3N
540.0073068 29 8rTi03 5 Cd0-2ZnO-8203N7500.01 All these capacitor bodies are sintered at 1100°C and are nearly non-porous and dense. The dielectric constants of all bodies were 75-90.

散逸ファクタ(DF)は1KHzで測定した。少量のチ
タン酸鉛および(または)バリウムは容量の温度係数(
TCC)を調節するための有効な手段と考えられる。
Dissipation factor (DF) was measured at 1 KHz. Small amounts of lead and/or barium titanate have a temperature coefficient of capacity (
It is considered an effective means for adjusting TCC).

高火度添加物、チタン酸鉛、チタン酸バリウム、チタン
酸ビスマスおよびチタン酸ストロンチウムは焼結時にカ
焼したチタン酸ネオジムこの反応性があるとしても少し
しかないようである。アルカリ出金属ジルコニウム酸塩
およびスズ酸塩を含む他の添加物を同様の効果で使用し
九。前記のようにこれらはボデーの温度係数を調節する
ため有用であるけれど、他の性質には比較的小さい効果
しか有しない。たとえば例23〜29のセラミックポデ
ーの誘電率は60〜80にわたシ、例60のそれは約9
0である。
The high-fired additives lead titanate, barium titanate, bismuth titanate, and strontium titanate appear to have little, if any, reactivity with neodymium titanate, which is calcined during sintering. Other additives including alkaline metal zirconates and stannate have been used with similar effect. As mentioned above, these are useful for adjusting the temperature coefficient of the body, but have relatively little effect on other properties. For example, the dielectric constant of the ceramic pods of Examples 23 to 29 ranges from 60 to 80, and that of Example 60 is about 9.
It is 0.

これら添加物の最低焼結温度におよぼす効果はほぼゼロ
である。
The effect of these additives on the minimum sintering temperature is almost zero.

もう1つの実験(・例26A)でビスマスをカ焼したチ
タン酸バリウムネオジムの成形に使用しない以外は例2
6と同様に1つの材料をつくった。代りにBi2O34
,25重f%をホウ酸亜鉛力P Rタムフラックス3重
量俤と組合せたので、この実施例23人の成分は例26
のセラミックボデーのそれと同じである(たとえば酸化
ビスマスはチタン酸バリウムネオジムの1.25モモル
になる)。2つの例26および23Aの生ポデーを10
50℃で21/[時間焼結した。例23Aのポデーは多
孔性で十分にち密化されず、低い電気的性質(たとえば
DF=o、14ts)を′有したけれど、例23のポデ
ーはち密であり、他の点も1100℃で焼結したこの同
じ群のそれと区肩できない。
Example 2 except that in another experiment (Example 26A) bismuth is not used to form calcined barium neodymium titanate.
One material was made in the same way as in step 6. Bi2O34 instead
, 25% by weight in combination with 3% by weight of zinc borate PR Tam flux, so the ingredients of this Example 23 were as follows: Example 26
(For example, bismuth oxide is 1.25 mole of barium neodymium titanate). 10 raw pods of two examples 26 and 23A
Sintered at 50° C. for 21 hours. Although the pode of Example 23A was porous and not well densified and had poor electrical properties (e.g. DF=o, 14ts), the pode of Example 23 was dense and otherwise sintered at 1100°C. It cannot be distinguished from that of this same group.

例28および29のホウ酸バリウムフラックスは焼結温
度の低下および低いDFを得るためきわめて有効なこと
が明らかになった。試験した他のフラックスはホウ酸マ
グネシウムおよびケイ酸カドミウムである。ケイ酸塩は
焼結温度を低下する効果がもつとも低く、ホウ酸塩フラ
ックスが有利なことが明らかになっ九。
The barium borate fluxes of Examples 28 and 29 were found to be very effective in reducing sintering temperatures and obtaining low DF. Other fluxes tested were magnesium borate and cadmium silicate. Silicates were found to be less effective at lowering the sintering temperature, and borate fluxes were found to be advantageous9.

もう1つの実験でカ焼および粉砕したビスマスをドープ
したチタン酸バリウムネオジムすなわち17Nd2(C
O3)・16.75BaC03・1.25Bi203 
・68 TiO2をpb’rio34重量%および粉末
フラックスまたは焼結助剤Cd0・2 ZnO・B、0
33重量%と混合した。この混合物のスラリーをモノリ
シックセラミックコンデンサの1群の銹電部分を形成す
るため使用した。埋設電極は70Ag:/ 50 P(
1合金からなる。有機バインダを約700℃で除去し、
セラミックコンデンサを気密カバーを備えるアルミする
つぼへ装入11100℃で21/2時間焼結した。
In another experiment, calcined and ground bismuth-doped barium neodymium titanate or 17Nd2 (C
O3)・16.75BaC03・1.25Bi203
・68 TiO2 with 34% by weight of pb'rio and powder flux or sintering aid Cd0.2 ZnO.B, 0
33% by weight. A slurry of this mixture was used to form the galvanic portion of a group of monolithic ceramic capacitors. The buried electrode is 70Ag:/50P(
Consists of 1 alloy. The organic binder is removed at about 700°C,
The ceramic capacitor was placed in an aluminum crucible with an airtight cover and sintered at 11,100° C. for 21/2 hours.

各コンデンサの容量は1000 pF、でアル。The capacitance of each capacitor is 1000 pF.

lKH2でDFは0.01 % !り低く、10MHz
でDFは約0.051である。誘゛成率は80±2であ
る。絶縁抵抗は106メグオームより大きく、容量の温
度係数は一55〜+125℃で0±10ppm/℃であ
る。150℃で誘電体厚さミル(0,0251111)
当D 1604eルトのストレス200時間後これらの
性質の劣化は認められなかった。このチタン酸バリウム
ネオジムはネオジムおよびバリウム原子の和の6倍がチ
タン原子の数の2倍の6%以内にある前記規準に適合し
、このチタン酸塩成分はほぼ1相の材料である。
DF is 0.01% with lKH2! low, 10MHz
The DF is approximately 0.051. The induction factor is 80±2. The insulation resistance is greater than 106 megohms and the temperature coefficient of capacitance is 0±10 ppm/°C from -55°C to +125°C. Dielectric thickness mil (0,0251111) at 150℃
No deterioration of these properties was observed after 200 hours of stress in this D1604e bolt. This barium neodymium titanate meets the above criterion of 6 times the sum of neodymium and barium atoms being within 6% of twice the number of titanium atoms, and the titanate component is a substantially one-phase material.

前記実験は酸化ネオジム1モル当り酸化ビスマス1モル
の割合で置換することによシ出発成分に対し酸化ビスマ
スを種々の量で導入した種々のセラミック材料の性質を
比較した。酸化チタンの代シに等量の酸化ビスマスを導
入することによりこの同じビスマス添加は最低焼結温度
を低下する点でさらに有効なことが明らかになった。こ
のようにビスマスがチタンを置換する場合、化学量論量
は明らかにもつと近似的に保持され、焼結はさらに容易
に達成される。前記1 :1 :4の相に対して組成は
(1−X ’) Nd2O・lB1203・BaO11
4T102で表わされる。
The experiment compared the properties of various ceramic materials in which various amounts of bismuth oxide were incorporated into the starting components by substituting one mole of bismuth oxide per mole of neodymium oxide. By introducing an equal amount of bismuth oxide in place of the titanium oxide, this same bismuth addition was found to be even more effective in lowering the minimum sintering temperature. When bismuth replaces titanium in this way, stoichiometry is clearly maintained approximately and sintering is more easily achieved. For the above 1:1:4 phase, the composition is (1-X')Nd2O・lB1203・BaO11
It is represented by 4T102.

チタンの代りにビスマスを導入すること以外は例1〜1
6のクエハポデーを製造するため記載したと同じ方法を
使用して表■に示すセラミツク組成を有する例61〜6
5に相当するセラiツククエハの5群を製造した。
Examples 1-1 except that bismuth is introduced instead of titanium.
Examples 61 to 6 having the ceramic composition shown in Table 1 using the same method as described for preparing the ceramics of Example 6
Five groups of ceramic wafers corresponding to No. 5 were prepared.

表■ 31 14.25 17.00 68.7510.00
62  ・II   #  68.0Q10.7555
  〃”  67.50/1.2534  #   〃
67、OG/1.7565〃   “ 66.50/2
.25各鮮からのウェハを別個のるつぼですべてのウェ
ハが確実にち密化する1250℃で焼結した。ビスマス
添加物がネオジムを置換した実施例14〜18から代表
的ウェハを同様に焼結した。収縮度を焼結したウェハの
それぞれに対し測定し、それぞれの理論密度に対するチ
を理論密度の100チがこれらの材料の場合5.67 
g/cIcjであるこの測定に基いて計算した。
Table■ 31 14.25 17.00 68.7510.00
62 ・II # 68.0Q10.7555
〃” 67.50/1.2534 # 〃
67, OG/1.7565 “ 66.50/2
.. The wafers from each sample were sintered in separate crucibles at 1250° C. to ensure densification of all wafers. Representative wafers from Examples 14-18 in which bismuth additive replaced neodymium were similarly sintered. The degree of shrinkage was measured for each sintered wafer, and the value for each theoretical density was 5.67 for 100 inches of theoretical density for these materials.
Calculations were made based on this measurement in g/cIcj.

第7図には例14〜18(表■)のウェハの理論密度に
対するチを示す曲線29がプロットされる。例31〜6
5(表■)のウェハに対する同様の7°ロツトが第7図
の曲線30によって示される。これらの曲線からチタン
のビスマス置換(曲11iI30)のほうが有効であり
、曲線29によって示すネオジムを置換した例によって
示されるよりビスマスのドーぎング量が少なくて4hi
Ik低焼結温低焼結下が著しいことが明らかである。実
際に理論密度の約85%でBi2O。
In FIG. 7, a curve 29 is plotted showing the curve 29 for the theoretical density of the wafers of Examples 14 to 18 (Table 2). Examples 31-6
A similar 7° lot for the wafer No. 5 (Table ■) is shown by curve 30 in FIG. These curves show that bismuth substitution of titanium (track 11iI30) is more effective and results in less doping of bismuth than that shown by the neodymium substitution example shown by curve 29.
It is clear that the Ik low sintering temperature significantly lowers the sintering temperature. Actually Bi2O at about 85% of the theoretical density.

はネオジムを置換する丸め0.5チ必要とするけれど、
焼結が適当と考えられる同じ密度を得るため、約0.2
5モモルのBi2O3でチタンを置換すればよい。この
ように酸化ビスマスは0.25モモルの量で本発明の特
徴である焼結温度の大きい低下を達成することができる
requires rounding 0.5 inch to replace neodymium, but
To obtain the same density considered suitable for sintering, approximately 0.2
Titanium may be replaced with 5 moles of Bi2O3. Thus, the large reduction in sintering temperature, which is a feature of the present invention, can be achieved with an amount of 0.25 mmol of bismuth oxide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のボデーを有するウェハ形コンデンサの
断面図、第2図はビスマスドーピング量と最低焼結温度
の関係を示す図、II、5図は焼結時間および温度と収
縮の関係を示す図、第4図は第3図からとったビスマス
ドーピング量と焼結温度の関係を示す図、第5図は同様
第6図からとつ九ビスマスt−”−をング量と収縮の関
係を示す図、第6図は多層コンデンサの断面図、第7図
はビスマスドーピング量と理論密度に対するチ密度の関
係を示す図である。 10.30・・・ボデー、11,12,31゜32・・
・電極、35.36・・・ターオナル焼結時間(h)
Figure 1 is a cross-sectional view of a wafer-type capacitor having the body of the present invention, Figure 2 is a diagram showing the relationship between bismuth doping amount and minimum sintering temperature, and Figures II and 5 are diagrams showing the relationship between sintering time and temperature and shrinkage. Figure 4 shows the relationship between the bismuth doping amount and sintering temperature taken from Figure 3, and Figure 5 shows the relationship between the amount of bismuth doping and shrinkage taken from Figure 6. 6 is a cross-sectional view of a multilayer capacitor, and FIG. 7 is a diagram showing the relationship between the bismuth doping amount and the theoretical density. 10.30...Body, 11, 12, 31° 32・・・
・Electrode, 35.36...Terminal sintering time (h)

Claims (1)

【特許請求の範囲】 1、ビスマスをドープしたチタン酸バリウムネオジムの
それぞれ酸化物または酸化物等価物である粉末前駆体の
混合物を調製し、このビスマスの量がBi_2O_3と
して計算して前駆体酸化物のモル和の0.25〜1.5
モル%であり、チタン酸バリウムネオジムの中のカチオ
ンの相対数Nが3(N_N_d+N_B_a)=2N_
T_iによつて表わされ、これら3つのカチオンのそれ
ぞれの数Nが実際にこの式によつて表わされる数の4%
以内にあり; 前駆体を反応させてビスマスをドープした チタン酸バリウムネオジムを製造するため、この混合物
をカ焼し; カ焼したチタン酸塩を粉砕および微粉化し;カ焼および
微粉化したチタン酸塩のボデー を成形し、このボデーを1250℃以下の温度で焼結し
てち密な熟成セラミツクボデーを形成する ことを特徴とする誘電性セラミックを製造 する方法。 2、Bi_2O_3の量が前記モル和の1.4モル%よ
り低い特許請求の範囲第1項記載の方法。 3、酸化物等価物を炭酸塩、水酸化物、水和物、シユウ
酸塩およびその組合せから選択する特許請求の範囲第1
項記載の方法。 4、焼結温度をさらに1160℃より低い温度へ低下す
るため、粉砕した焼結フラックスを微粉化およびカ焼し
たチタン酸塩と混合し、パラジウムが銀およびパラジウ
ムの30重量%以下である銀およびパラジウムからなる
電極ペーストの埋設層を含むボデーを成形し、焼結の間
溶融せず、かつこのボデーから流出しないように埋設電
極を形成するため、このボデーを1160℃より低い温
度で焼結する特許請求の範囲1項記載の方法。 5、フラックスがホウ素、ケイ素およびその組合せから
選択したガラス形成元素を含む特許請求の範囲第4項記
載の方法。 6、フラックスの量が微粉化およびカ焼したチタン酸塩
の3重量%以下である特許請求の範囲第5項記載の方法
。 7、微粉化およびカ焼したチタン酸塩がボデーの最低焼
結温度を著しく変化せずに誘電率の温度係数を改善する
ため、チタン酸塩、ジルコニウム酸塩、スズ酸塩および
その組合せから選択した粉砕およびカ焼した化合物を含
む特許請求の範囲第4項記載の方法。 8、粉砕およびカ焼したチタン酸塩、ジルコニウム酸塩
およびスズ酸塩をバリウム、カルシウム、ストロンチウ
ム、ビスマスおよび鉛の塩から選択する特許請求の範囲
第7項記載の方法。 9、ビスマスをドープしたチタン酸バリウムネオジムの
前駆体酸化物として与えられるモル組成が 1 7.0Nd_2O_3・13.75BaO・68.
0TiO_2・1.25Bi_2O_3 である特許請求の範囲第1項記載の方法。 10、前駆体酸化物で示すビスマスをドープしたチタン
酸バリウムネオジムが (1−x)Nd_2O_3・xBi_2O_3・BaO
・4TiO_2である特許請求の範囲第1項記載の方法
[Claims] 1. Prepare a mixture of powder precursors each of which is an oxide or an oxide equivalent of barium neodymium titanate doped with bismuth, and calculate the amount of bismuth as Bi_2O_3 to form the precursor oxide. 0.25 to 1.5 of the molar sum of
mol%, and the relative number N of cations in barium neodymium titanate is 3 (N_N_d + N_B_a) = 2N_
T_i, and the number N of each of these three cations is actually 4% of the number represented by this formula.
Calcining this mixture to react the precursors to produce bismuth-doped barium neodymium titanate; Grinding and pulverizing the calcined titanate; Calcined and pulverized titanate 1. A method for producing a dielectric ceramic, comprising forming a salt body and sintering the body at a temperature below 1250° C. to form a dense aged ceramic body. 2. The method according to claim 1, wherein the amount of Bi_2O_3 is lower than 1.4 mol% of the molar sum. 3. Claim 1 in which the oxide equivalent is selected from carbonates, hydroxides, hydrates, oxalates and combinations thereof
The method described in section. 4. To further reduce the sintering temperature to below 1160°C, the crushed sintering flux is mixed with the pulverized and calcined titanate, and the palladium is not more than 30% by weight of silver and palladium. A body is formed containing a buried layer of electrode paste made of palladium, and this body is sintered at a temperature below 1160° C. in order to form the buried electrode so that it does not melt during sintering and does not flow out of the body. A method according to claim 1. 5. The method of claim 4, wherein the flux comprises a glass-forming element selected from boron, silicon, and combinations thereof. 6. The method of claim 5, wherein the amount of flux is less than 3% by weight of the micronized and calcined titanate. 7. Selected from titanate, zirconate, stannate and combinations thereof, as the micronized and calcined titanate improves the temperature coefficient of dielectric constant without significantly changing the minimum sintering temperature of the body. 5. A method according to claim 4, comprising a ground and calcined compound. 8. The method of claim 7, wherein the ground and calcined titanate, zirconate and stannate are selected from barium, calcium, strontium, bismuth and lead salts. 9. The molar composition given as a precursor oxide of barium neodymium titanate doped with bismuth is 17.0Nd_2O_3・13.75BaO・68.
0TiO_2.1.25Bi_2O_3 The method according to claim 1. 10. Barium neodymium titanate doped with bismuth shown as a precursor oxide is (1-x)Nd_2O_3・xBi_2O_3・BaO
- The method according to claim 1, which is 4TiO_2.
JP61105065A 1985-05-09 1986-05-09 Manufacture of dielectric ceramic Pending JPS61261263A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73211685A 1985-05-09 1985-05-09
US732116 1985-05-09

Publications (1)

Publication Number Publication Date
JPS61261263A true JPS61261263A (en) 1986-11-19

Family

ID=24942262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105065A Pending JPS61261263A (en) 1985-05-09 1986-05-09 Manufacture of dielectric ceramic

Country Status (4)

Country Link
JP (1) JPS61261263A (en)
BE (1) BE904744A (en)
CA (1) CA1296880C (en)
FR (1) FR2581638B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278154A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Dielectric ceramic composition for high frequency
JPS63222064A (en) * 1987-03-11 1988-09-14 宇部興産株式会社 Manufacture of dielectric ceramic composition
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5292694A (en) * 1991-09-27 1994-03-08 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371398B (en) * 2023-04-11 2023-11-10 中南大学 BIT-Nd block piezoelectric photocatalyst and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388741A (en) * 1979-08-31 1983-06-21 Kamal Banani Haghighi Automatic sewer cleaning system
JPS6018086B2 (en) * 1981-04-13 1985-05-08 株式会社村田製作所 Porcelain dielectric for temperature compensation
FR2505321A1 (en) * 1981-05-08 1982-11-12 Europ Composants Electron Ceramic dielectric - with high temp. stability and a high dielectric constant
FR2522870A1 (en) * 1982-03-02 1983-09-09 Europ Composants Electron DIELECTRIC CERAMIC COMPOSITION BASED ON BARIUM TITANATE STABLE ACCORDING TO TEMPERATURE AND CAPACITOR USING THE SAME

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278154A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Dielectric ceramic composition for high frequency
JPS63222064A (en) * 1987-03-11 1988-09-14 宇部興産株式会社 Manufacture of dielectric ceramic composition
JPH054941B2 (en) * 1987-03-11 1993-01-21 Ube Industries
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5292694A (en) * 1991-09-27 1994-03-08 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5304521A (en) * 1991-09-27 1994-04-19 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5350721A (en) * 1991-09-27 1994-09-27 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZNO-B203-SI02 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5458981A (en) * 1991-09-27 1995-10-17 Ngk Insulators, Ltd. Method of producing low temperature firing dielectric ceramic composition containing B2 O3
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5485132A (en) * 1991-09-27 1996-01-16 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5488019A (en) * 1991-09-27 1996-01-30 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5493262A (en) * 1991-09-27 1996-02-20 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition

Also Published As

Publication number Publication date
FR2581638A1 (en) 1986-11-14
BE904744A (en) 1986-09-01
CA1296880C (en) 1992-03-10
FR2581638B1 (en) 1990-05-04

Similar Documents

Publication Publication Date Title
US4324750A (en) Method for making high K PLZT ceramic capacitor
JP3780851B2 (en) Barium titanate, production method thereof, dielectric ceramic and ceramic electronic component
KR100375719B1 (en) Dielectric Ceramic Composition and Monolithic Ceramic Capacitor
US6251816B1 (en) Capacitor and dielectric ceramic powder based upon a barium borate and zinc silicate dual-component sintering flux
US6617273B2 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
JPH05152158A (en) Ceramic capacitor
JPH08295559A (en) Dielectric porcelain composition
US9776925B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JPWO2007074606A1 (en) Method for producing forsterite powder, forsterite powder, forsterite sintered body, insulator ceramic composition, and multilayer ceramic electronic component
US9911536B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR100474948B1 (en) Method for making raw ceramic powder, raw ceramic powder, dielectric ceramic produced using raw ceramic powder, and monolithic ceramic electronic component using dielectric ceramic
JP4730796B2 (en) Method for producing dielectric ceramic raw material powder and dielectric ceramic composition
EP1598328A1 (en) Dielectric ceramic composition, dielectric ceramic and laminated ceramic part including the same
JPS61261263A (en) Manufacture of dielectric ceramic
US20230085744A1 (en) Dielectric composition and electronic component
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
CA1154835A (en) High k plzt ceramic capacitor and method for making
JPH0737427A (en) Dielectric ceramic composition
WO2022244479A1 (en) Ceramic material and capacitor
JP3588210B2 (en) Dielectric porcelain composition
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JPH1174144A (en) Laminated ceramic capacitor
JPH0589723A (en) Dielectric porcelain composition
JP2023045881A (en) Dielectric composition and electronic component