JPS61241105A - Screw type extruding machine or kneading machine - Google Patents
Screw type extruding machine or kneading machineInfo
- Publication number
- JPS61241105A JPS61241105A JP60081443A JP8144385A JPS61241105A JP S61241105 A JPS61241105 A JP S61241105A JP 60081443 A JP60081443 A JP 60081443A JP 8144385 A JP8144385 A JP 8144385A JP S61241105 A JPS61241105 A JP S61241105A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- screw
- barrel
- materials
- extruder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/68—Barrels or cylinders
- B29C48/682—Barrels or cylinders for twin screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/67—Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はスクリュ一式押出機または混練機に係る。ここ
でいう押出機は、いわゆる押出成形機のほか射出成形機
など、バレル内を回転するスクリューによって加工材料
を移動させるすべての機械を指称する。また、押出機お
よび混練機とも、加工材料に特別の限定はなく、プチス
チック、セラミック、金属粒、あるいは複合材料等のい
rれでもよいが、特には、硬質材料あるいは少なくとも
硬質材料を含む材料に適している。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a single-screw extruder or kneader. The term "extruder" used herein refers to all machines, such as so-called extrusion molding machines and injection molding machines, that move the processed material using a screw rotating inside a barrel. In addition, there is no particular limitation on the material to be processed in both the extruder and the kneading machine, and any material such as plastic, ceramic, metal particles, or composite materials may be used, but in particular, it is suitable for processing hard materials or at least materials containing hard materials. Are suitable.
合成繊維の溶融紡糸および合成樹脂の成形の工程におい
て種々のタイプの押出機あるいは射出成形機が使用され
ている。また、紡糸に先立つ顔料、安定剤あるいは酸化
チタン等の混合、樹脂複合材料のプレミックスおよび成
形時においてガラス繊維、金属繊維、無機繊維、炭素繊
維等々の硬質繊維状物および各種のフィラーを高分子物
に混合成形する新素材、複合材料が開発、実用化されて
いる。Various types of extruders or injection molding machines are used in the processes of melt spinning synthetic fibers and molding synthetic resins. In addition, hard fibrous materials such as glass fibers, metal fibers, inorganic fibers, carbon fibers, and various fillers are added to polymers during mixing of pigments, stabilizers, or titanium oxide, etc. prior to spinning, and during premixing and molding of resin composite materials. New materials and composite materials that can be mixed and molded into objects have been developed and put into practical use.
従来、このような混合、押出、加圧、成形等のための加
工機はいずれも鋼製であり、また、その耐摩耗性、耐塩
性の向上のために、材質(合金)、メッキ、異材質の融
着のような種々の手段で表面硬度を高めることが提案さ
れ、実用化されてきている。Conventionally, processing machines for such mixing, extrusion, pressurization, molding, etc. have all been made of steel, and in order to improve their wear resistance and salt resistance, they have been made of materials (alloys), plating, and different materials. It has been proposed and put into practical use to increase surface hardness by various means such as fusing materials.
しかしながら、前記の複合材料の機能の向上に伴なって
、高分子材料の耐熱性も向上するとともに、混合すべき
強度成分材料が増々高硬度になり、その結果、加工機の
耐摩耗性が金属材料では限界になり、不充分になってい
る。そのため、機械部品を短期間で頻繁に交換する必要
があり、設備交換によるコストアップ、生産性低下、成
形条件の不安定化(例えば、著しい摩耗の為に機械の新
旧によって押出機が大きく変動する)などの問題がある
。However, along with the improvement in the functionality of the composite materials mentioned above, the heat resistance of the polymer materials has also improved, and the strength component materials to be mixed have become increasingly hard, resulting in the wear resistance of processing machines being lower than that of metals. Materials have reached their limits and are no longer sufficient. Therefore, it is necessary to frequently replace machine parts in a short period of time, which increases costs due to equipment replacement, reduces productivity, and makes molding conditions unstable (for example, the extruder may fluctuate greatly depending on the old and new machine due to significant wear). ) and other problems.
また、摩耗による鉄その他の金属が加工材料中に混入す
ることは、近年の超高純度材料の加゛工では問題である
。In addition, the mixing of iron and other metals into processed materials due to wear is a problem in recent processing of ultra-high purity materials.
本発明は、上記の如き問題点を解決するために、容器内
を軸回転するスクリューによって被加工材料を押出また
は混練する押出機または混練機において、スクリューと
容器のうち被加工材料と接し、耐摩耗性が必要な部分を
セラミック化するものである。In order to solve the above-mentioned problems, the present invention provides an extruder or a kneader that extrudes or kneads a material to be processed using a screw that rotates inside a container. The parts that require wear resistance are made of ceramic.
前述の如き問題点を解決するためには、溶融押出機、射
出成形機、混練機等の加工材料と接する部分を耐摩耗性
および耐熱性の優れた材料に変更すればよいが、無機物
質(例えば金属酸化物等のセラミック材料)あるいはガ
ラス繊維、金属繊維などは高硬度であり、これらと同等
以上の高硬度、耐摩耗性を有し、かつ工業的に低価格で
使用できるものはセラミック材料のみである。In order to solve the above-mentioned problems, it is possible to change the parts of the melt extruder, injection molding machine, kneading machine, etc. that come into contact with the processing materials to materials with excellent wear resistance and heat resistance, but inorganic materials ( For example, ceramic materials such as metal oxides), glass fibers, metal fibers, etc. have high hardness, and ceramic materials have hardness equal to or higher than these, have wear resistance, and can be used industrially at low cost. Only.
一方、セラミック材料は高硬度ではあるが、機械的衝撃
強度、強靭性、熱膨張率、熱伝導度等が低いので、駆動
部、熱変化頻度の大きい部分、固形物が当たる部分等は
従来の金属製であることが必要である。そこで、特に耐
摩耗性、高硬度を要する部分だけをセラミック化し、そ
の他は金属製とする。On the other hand, although ceramic materials have high hardness, they have low mechanical impact strength, toughness, coefficient of thermal expansion, thermal conductivity, etc. Must be made of metal. Therefore, only the parts that require particularly high wear resistance and hardness are made of ceramic, and the rest are made of metal.
また、セラミックは靭性が不足しているので、特に、機
械の補修、洗浄等のために機械を分解するときなどに、
セラミック部にカケ、ヒビ割・れ等が起き易いと考えら
れ、そうした場合に、セラミック部分の特にその損傷し
た部分を個別に交換し易くしておくことが好ましい。Also, since ceramics lack toughness, they are particularly difficult to use when disassembling machines for repairs, cleaning, etc.
It is thought that chipping, cracking, cracking, etc. are likely to occur in the ceramic part, and in such a case, it is preferable to make it easy to individually replace the damaged part of the ceramic part.
以下、図面を参照して本発明によるスクリューの構成を
具体的に説明する。最初に、代表例として溶融押出機の
押出用スクリューについて説明するが、混練機等におい
ても基本的に同様である。Hereinafter, the structure of the screw according to the present invention will be specifically explained with reference to the drawings. First, an extrusion screw of a melt extruder will be explained as a representative example, but the same is basically applicable to a kneader and the like.
第1図は溶融押出機の1例である。同図中、1はスクリ
ュー、2はバレル、3はホッパーである。FIG. 1 shows an example of a melt extruder. In the figure, 1 is a screw, 2 is a barrel, and 3 is a hopper.
原料はホッパー3から供給され、バレル2中を回転する
スクリュー1によって推進帯■−圧縮帯■−溶融帯■−
軽量帯■−混合帯■へと移動し、その移動の間に各帯域
において推進、圧縮、溶融、計量、混合の各作用を受け
、絞りゲート4から押出されて成形される。なお、本図
では、ダイス、加熱帯、冷却帯、ベント、ベアリング、
駆動部、計量ホッパー、各種の計測器類等は、従来の溶
融押出機と同じなので、図から省略した。The raw material is supplied from a hopper 3, and is propelled by a screw 1 rotating in a barrel 2 into a propelling zone - compression zone - melting zone -
It moves from the lightweight zone (1) to the mixing zone (2), and during the movement, it is subjected to the actions of propulsion, compression, melting, metering, and mixing in each zone, and is extruded through the squeeze gate 4 and molded. In addition, this diagram shows the die, heating zone, cooling zone, vent, bearing,
The drive unit, weighing hopper, various measuring instruments, etc. are the same as those of a conventional melt extruder, so they are omitted from the diagram.
この第1図に示す溶融押出機では、セラミンク化されて
いるのは、スクリュー1およびバレル2の圧縮帯■から
溶融部■、計量体■までの被加工材料と接する外表面部
である。すなわち、スクリューの部材5.6.7.8.
9.10とバレルの部材11 、12 、13 、14
、15 、16である。スクリュー1の部材17 、
18 、19 、20ならびにバレル2の本体およびホ
ッパー3は金属製、一般的には鋼製である。In the melt extruder shown in FIG. 1, the outer surfaces of the screw 1 and barrel 2, from the compression zone (2) to the melting zone (2) and the metering body (2), which are in contact with the material to be processed, are made of ceramic. Namely, the members of the screw 5.6.7.8.
9.10 and barrel members 11, 12, 13, 14
, 15, 16. member 17 of screw 1,
18 , 19 , 20 as well as the body of the barrel 2 and the hopper 3 are made of metal, generally steel.
また、部材5〜10は円筒形であり、中心部は1本の金
属製軸体からなっている。Further, the members 5 to 10 are cylindrical, and the center portion is composed of one metal shaft.
第1図におけるスクリューのうち部材17 、1B 。Part 17, 1B of the screws in FIG.
19 、20および軸体をセラミック化しなかったのは
、軸体および部材20は駆動力でねじれ応力がかかるか
らであり、部材17 、19は生産物切換あるいは洗浄
のためにスクリューを取出す作業時に両端部が損傷を受
は易いからであり、また部材18はホッパー3から供給
される固形物が当たるからである。ただし、部材17
、18は目的材料によってはセラミック化することもあ
る。また、バレル2の本体は構造部材として外部からの
衝撃に耐久性を与える必要がある等の理由から金属製に
している。19, 20 and the shaft body were not made of ceramic because the shaft body and member 20 are subject to torsional stress due to the driving force, and members 17, 19 are used at both ends when removing the screw for product changeover or cleaning. This is because the member 18 is easily damaged, and the solid material supplied from the hopper 3 hits the member 18. However, member 17
, 18 may be made of ceramic depending on the target material. Further, the main body of the barrel 2 is made of metal because it is a structural member and needs to have durability against external impacts.
しかし、スクリューおよびバレルが加工材料と接触する
部分のうちセラミック化すべき部分の長さは、セラミッ
クの材質、スクリューの寿命、成形製品品種等によって
決まり、この第1図に示す例の場合に限定されるわけで
はない。However, the length of the part of the screw and barrel that comes into contact with the processing material that should be ceramicized is determined by the ceramic material, the life of the screw, the type of molded product, etc., and is limited to the example shown in Figure 1. It's not like that.
第2図はスクリューのセラミック化した部分の例を断面
図で示す。外周に螺旋溝を有するセラミック製円筒体5
〜10は金属製軸体21に嵌め合わされている。部材1
7 、18はやはり外周に螺旋溝を有するが、軸体21
と一体でも独立していてもよい。また、これは鋼製でも
セラミック製でもよく、軸体との固定法として例えば第
5図の如き固定法をとりうる。しかしながら、セラミッ
ク製円筒体5〜10を軸体21に結合するために、軸体
の両端部のうち一方は、少なくとも当初において、分割
されていなければならない。FIG. 2 shows, in cross-section, an example of a ceramicized part of the screw. Ceramic cylindrical body 5 having a spiral groove on the outer periphery
10 are fitted onto a metal shaft body 21. Part 1
7 and 18 also have a spiral groove on the outer periphery, but the shaft body 21
It may be integrated with or independent of. Further, it may be made of steel or ceramic, and the method of fixing it to the shaft body may be, for example, the method shown in FIG. 5. However, in order to connect the ceramic cylinders 5 to 10 to the shaft 21, one of the ends of the shaft must be split, at least initially.
セラミック製円筒体5〜10を軸体21に固定するに当
ってはエポキシ、メラミン、フェノール等の接着剤で接
着してもよいし、あるいはセラミック製円筒体5〜10
を取り外しく交換)可能に軸体21に取付けてもよい。When fixing the ceramic cylinders 5 to 10 to the shaft body 21, they may be bonded with an adhesive such as epoxy, melamine, or phenol, or the ceramic cylinders 5 to 10 may be fixed to the shaft body 21.
It may be attached to the shaft body 21 so that it can be removed (removed and replaced).
後者の場合、例えば、部材17あるいは部材18または
19を軸体に対してスクリューの回転に関して逆向きの
ネジ結合にしてセラミック製円筒体5〜10を固定する
ことができる。In the latter case, for example, the ceramic cylindrical bodies 5 to 10 can be fixed by threading the member 17 or the member 18 or 19 in the opposite direction with respect to the rotation of the screw with respect to the shaft body.
また、押出機において、セラミックと金属は熱膨張係数
が異なるので運転時の熱変化を吸収するために、また駆
動スタート時の衝撃緩和の為に、必要に応じて、セラミ
ック部材と金属部材の間あるいはセラミック部材の間に
緩衝帯を設けることが好ましい。緩衝帯としては、セラ
ミック部材と金属部材を接着剤で接着して固定する場合
には、接着剤が緩衝帯として働くので特別には必要ない
が、セラミック部材を取外し可能に取付ける場合には、
ポリイミド、ポリスルホン、ポリアミド等の樹脂、合成
ゴム等の耐熱性合成高分子のフィルム、または銅、アル
ミニウム等の箔を用いてもよいし、あるいはエポキシ、
メラミン、フェノール等の樹脂を金属部材もしくはセラ
ミック部材上に適用して形成してもよい。In addition, in an extruder, ceramic and metal have different coefficients of thermal expansion, so in order to absorb thermal changes during operation and to cushion the shock at the start of operation, the gap between the ceramic and metal parts is added as necessary. Alternatively, it is preferable to provide a buffer zone between the ceramic members. A buffer band is not particularly necessary when a ceramic member and a metal member are bonded together with an adhesive, as the adhesive acts as a buffer band, but when the ceramic member is removably attached,
Resins such as polyimide, polysulfone, and polyamide, films of heat-resistant synthetic polymers such as synthetic rubber, or foils such as copper and aluminum may be used, or epoxy,
It may also be formed by applying a resin such as melamine or phenol onto a metal member or a ceramic member.
第3図に螺旋溝付セラミック製円筒体5〜1.0の形状
を示す。円筒体5の外周に形成する螺旋溝22の形状は
加工材料、押出条件により決定されるが、複数個の円筒
体を連ねた場合に螺旋溝22が連続するようにする。第
1図の例では、スクリュー1に沿っての一〇の方向に溝
22が次第に深くなっているが、これに限定されるもの
ではない。FIG. 3 shows the shape of the spirally grooved ceramic cylinders 5 to 1.0. The shape of the spiral groove 22 formed on the outer periphery of the cylindrical body 5 is determined by the processing material and extrusion conditions, but the spiral groove 22 is made to be continuous when a plurality of cylindrical bodies are connected. In the example shown in FIG. 1, the groove 22 gradually becomes deeper in the direction of 10 along the screw 1, but the groove 22 is not limited thereto.
セラミック製円筒体5〜10は金属製軸体21と結合す
るために中心軸線に沿って長大を有する。The ceramic cylinders 5 to 10 are elongated along the central axis in order to be coupled to the metal shaft 21.
円筒体5〜10を軸体21に接着する場合は完全な円形
の穴でもよいが、円筒体5〜10を取外し可能に取付け
る場合には必ず、第3図のa、b。When the cylindrical bodies 5 to 10 are bonded to the shaft body 21, a completely circular hole may be used, but when the cylindrical bodies 5 to 10 are removably attached, the holes a and b in FIG.
Cに示すように、キー溝を設けるか、穴の形状を異形化
して、円筒体5〜10と軸体21の間の回転を止める必
要がある。As shown in C, it is necessary to provide a keyway or modify the shape of the hole to stop the rotation between the cylindrical bodies 5 to 10 and the shaft body 21.
部材18を軸体21と独立に作成する場合にも、その形
状は第3図に従うことができる。Even when the member 18 is produced independently of the shaft body 21, its shape can follow the shape shown in FIG.
螺旋溝付セラミック製円筒体5〜10の材料としては、
耐摩耗性、耐熱性の高いアルミナ系、ジルコニア系、窒
化珪素系などの焼結体を用いる。The materials for the spiral grooved ceramic cylinders 5 to 10 include:
A sintered body of alumina, zirconia, silicon nitride, etc., which has high wear resistance and heat resistance, is used.
特に、アルミナの含有量が80重量%以上、特に85〜
95重量%の焼結体が耐摩耗性、耐衝撃性、耐熱性、成
形性のすべてに優れているので好ましい。In particular, the content of alumina is 80% by weight or more, especially 85% to 85% by weight.
A 95% by weight sintered body is preferable because it has excellent wear resistance, impact resistance, heat resistance, and moldability.
セラミック製円筒体3の製造は、常法に従って、形成お
よび焼成すればよい。原料粉末は、焼成後の表面精度を
良くするため粗系5μm以下、特に1〜3μm程度のも
のが好ましい。成形は焼成後の収縮を考慮した寸法、形
状にしておくが、必要に応じて、焼成後、研削して寸法
精度を向上する。The ceramic cylindrical body 3 may be manufactured by forming and firing according to a conventional method. The raw material powder preferably has a rough diameter of 5 μm or less, particularly about 1 to 3 μm, in order to improve the surface precision after firing. When molding, the dimensions and shape are set in consideration of shrinkage after firing, but if necessary, after firing, the dimensional accuracy is improved by grinding.
第4図は金属製軸受21および先端押え部材17を示す
、軸体21は加工時にスクリューにかかる最大ねじれ応
力に耐えるために必要充分な太さを有すべきである。先
端押え部材17は機械加工して作成するが、軸体21と
の間をネジ結合にする場合にスクリューの回転と逆向き
にするなどの方法をとる。FIG. 4 shows the metal bearing 21 and the tip holding member 17. The shaft body 21 should have a necessary and sufficient thickness to withstand the maximum torsional stress applied to the screw during processing. The tip holding member 17 is manufactured by machining, but when making a screw connection with the shaft body 21, a method such as making the screw rotate in the opposite direction is used.
第5図はスクリューの先端までセラミック部品で構成す
べき場合のセラミック部品を固定する態様を説明するも
ので、先端の螺旋溝付セラミック製円筒体23の内部で
、先端押え部材24を用いてセラミック製円筒体23
、25を軸体26に固定している。FIG. 5 explains a method of fixing ceramic parts when the screw is to be made of ceramic parts up to the tip of the screw. Cylindrical body 23
, 25 are fixed to the shaft body 26.
第6図は以上と別のスクリューを示すが、このスクリュ
ーでは先端近くにミキシング効果を高めるための特別の
形状の溝を有するセラミック製円筒体27が用いられて
いる。このように、本発明によるスクリューは分割され
交換可能なセラミック部品を用いているので、いろいろ
な形状の螺旋溝を有するセラミック部品を適当に組合せ
ることによって、所望の歯形を有するスクリューを構成
することが可能である。FIG. 6 shows an alternative screw, which uses a ceramic cylinder 27 with specially shaped grooves near the tip to enhance the mixing effect. As described above, since the screw according to the present invention uses ceramic parts that can be divided and replaced, it is possible to construct a screw having a desired tooth profile by appropriately combining ceramic parts having spiral grooves of various shapes. is possible.
第7図にセラミック製バレル内張り部材11 、12゜
13 、14 、15 、16の例を示す。これらの内
張り部材11〜16は略管状であるが、バレル本体に回
転不動に固定するために、例えば、第7図(イ)のよう
に、両端部に鍔部28を形成し、その鍔部28に溝29
を形成するとか、第7図(ロ)のように、内張り部材1
1〜16の断面形状を異形化する。また、ベントが必要
な場合には、第7図(ハ)に示す如く、セラミック製内
張り部材(11〜16)にもベント用穴30を設ける。FIG. 7 shows examples of ceramic barrel lining members 11, 12, 13, 14, 15, and 16. These lining members 11 to 16 are generally tubular, but in order to fix them to the barrel body without rotation, for example, as shown in FIG. 7(A), flanges 28 are formed at both ends. Groove 29 on 28
or as shown in FIG. 7 (b), the lining member 1
The cross-sectional shapes of Nos. 1 to 16 are modified. Further, if a vent is required, vent holes 30 are provided in the ceramic lining members (11 to 16) as shown in FIG. 7(c).
これらのセラミック製内張り部材11〜16の材料組成
および製法はセラミック製円筒体5〜10と同様である
。また、これらのセラミック製内張り部材11〜16と
金属製バレル2の本体との間、あるいはセラミック製内
張り部材11〜16の間にも、前に述べたような緩衝帯
を設けることが好ましい。The material composition and manufacturing method of these ceramic lining members 11-16 are the same as those of the ceramic cylindrical bodies 5-10. Further, it is preferable to provide a buffer band as described above between these ceramic lining members 11 to 16 and the main body of the metal barrel 2, or between the ceramic lining members 11 to 16 as well.
第8図は混練機用スクリューの構造例を示す。FIG. 8 shows an example of the structure of a screw for a kneader.
このスクリューは外周に螺旋溝を有するセラミック製円
筒体31 、32に金属製軸体33を通し、両端で押え
部材34 、35で固定されている。混練機用スクリュ
ーの螺旋溝は一般的に押出機の溝より深いが、セラミッ
ク製円筒体31 、32の製造および組付は押出機の場
合と同様である。第9図はこのようなスクリュー2本3
6 、37で構成した2軸混練機を示す断面図である。This screw passes a metal shaft 33 through ceramic cylinders 31 and 32 having spiral grooves on the outer periphery, and is fixed at both ends with holding members 34 and 35. The helical grooves of the kneader screws are generally deeper than the grooves of the extruder, but the production and assembly of the ceramic cylinders 31, 32 are similar to those of the extruder. Figure 9 shows two screws like this.
6 is a cross-sectional view showing a twin-screw kneader configured with parts 6 and 37.
この2軸混練機の容器38は内面にセラミック製内張り
39を有している。なお、混線機の構成は、常法に従い
、1軸、2軸あるいは3軸以上で構成することができる
。The container 38 of this twin-screw kneader has a ceramic lining 39 on its inner surface. Note that the configuration of the crosstalk machine can be configured with one shaft, two shafts, or three or more shafts according to a conventional method.
±−上
通常形式の混合、計量、溶融、圧縮、推進の各帯域を有
する溶融押出機を基本とし、第1図に示す如く、スクリ
ューおよびバレルの一部をセラミック化した溶融押出機
を作成した。±-Based on the above-mentioned conventional melt extruder having mixing, metering, melting, compression, and thrust zones, a melt extruder was created in which the screw and part of the barrel were made of ceramic, as shown in Figure 1. .
まず、スクリューは、第2図に示す如く、全長2000
mmの螺旋溝部のうち中央の1680+u長、すなわち
、計量帯から溶融帯、圧縮帯までをセラミック化すべく
、第3図に示す如き長さ280鶴の螺旋溝付アルミナ製
円筒体を6個作成した。First, the screw has a total length of 2000 mm as shown in Figure 2.
In order to ceramicize the central 1680+u length of the 1680mm spiral groove, that is, from the metering zone to the melting zone and the compression zone, six spirally grooved alumina cylindrical bodies with a length of 280mm as shown in Fig. 3 were created. .
アルミナ製円筒体の作成では、粒径3μm以下のアルミ
ナ粉末(純度92重量%)100重量部、水65〜70
重量部、およびP、V、A、 2〜6重量部を充分に混
合し、スプレードライヤーで果粒にした後、外径771
1内径45龍、長さ333mmのキー溝を有する中空円
筒体とし、次いで、第3図aに示す形状に切削加工およ
びローレフト加工した。各円筒体の螺旋溝はピッチ長(
74,7mm)および山部の形状を同じとし、谷部の深
さを順次太きくL(8,1■から20.7n) 、この
成形体を1650℃1時間焼成した。To create an alumina cylinder, 100 parts by weight of alumina powder (purity 92% by weight) with a particle size of 3 μm or less, 65 to 70 parts by weight of water,
Parts by weight, and 2 to 6 parts by weight of P, V, A, were thoroughly mixed and made into granules with a spray dryer, and the outer diameter was 771.
A hollow cylindrical body having an inner diameter of 45 mm and a keyway of 333 mm in length was made into a hollow cylindrical body, which was then cut and processed into the shape shown in FIG. 3a. The spiral groove of each cylinder has a pitch length (
74.7mm) and the shape of the peaks were the same, the depth of the valleys was increased sequentially to L (from 8.1mm to 20.7mm), and this molded body was fired at 1650°C for 1 hour.
また、セラミック製バレル内張りは第7図(イ)に示す
如き形状のアルミナ製管体を6個作成した。Further, for the ceramic barrel lining, six alumina tubes having a shape as shown in FIG. 7(a) were prepared.
このアルミナ製管体の材料組成および製法はアルミナ製
円筒体と同様である。アルミナ製管体は内径65鶴、外
径85m、長さ280鶴で、両端部に外径105鶴、厚
さ12m程度の鍔部を設け、この鍔部に4個の溝を形成
した。The material composition and manufacturing method of this alumina tube are the same as those of the alumina cylinder. The alumina tube body had an inner diameter of 65 mm, an outer diameter of 85 m, and a length of 280 mm, and had flanges with an outer diameter of 105 mm and a thickness of about 12 m at both ends, and four grooves were formed in the flanges.
鋼材を機械加工して、第4図に示す如き軸体および先端
押え部材、ならびに第1図に示した如き螺旋溝付円筒体
(推進部)を作成した。軸体は円筒挿入部の外径38m
、長さ2000mmであり、先端部にネジを切ると共に
、円筒体挿入部にキー溝加工した。軸体の後方には、バ
レルの内径とほぼ同じ外径を有して加工材料の後方への
動きを止めるストッパーや、駆動装置(図示せず)との
結合部を形成した。こうして加工を終えた軸体、先端押
え部材、および円筒体は表面をハードクロムメッキした
。A shaft body and a tip holding member as shown in FIG. 4, and a spirally grooved cylindrical body (propelling section) as shown in FIG. 1 were fabricated by machining steel materials. The shaft body has a cylindrical insertion part with an outer diameter of 38 m.
The length was 2000 mm, and the tip was threaded and the cylindrical body insertion part was machined with a keyway. At the rear of the shaft, a stopper having an outer diameter approximately the same as the inner diameter of the barrel to stop the backward movement of the processed material and a connecting portion with a drive device (not shown) were formed. The surfaces of the shaft body, tip presser member, and cylindrical body thus processed were plated with hard chrome.
バレル本体は通常形式と基本的に同じでアルカ、計量体
から溶融体、圧縮帯までの内面にアルミナ製内張りを収
容するための加工を行っている。The barrel body is basically the same as the regular type, and the inner surface from the alkali and metering body to the melt and compression zone has been processed to accommodate an alumina lining.
スクリューおよびバレルの組立に当たっては、セラミッ
ク部品と鋼部品の間およびセラミック部品相互間に厚さ
0.2■のポリイミドフィルムを挿入して緩衝帯とした
。When assembling the screw and barrel, a 0.2-inch thick polyimide film was inserted between the ceramic parts and the steel parts and between the ceramic parts to serve as a buffer zone.
こうして、最終的に溶融押出機を完成した。In this way, a melt extruder was finally completed.
この溶融押出機を用いて、短繊維状のガラス繊維および
酸化チタンを夫々30重量%および20重量%含有する
ポリオレフィン系ポリマーを一体に溶融押出する複合材
料の成形加工を行ったところ、スクリュ一部およびバレ
ル内部の摩耗は殆ど見られず1年以上の使用に耐えてい
る。Using this melt extruder, we melt-extruded a composite material containing short glass fibers and a polyolefin polymer containing 30% by weight and 20% by weight of titanium oxide, respectively. There is almost no wear inside the barrel and it has withstood more than a year of use.
これに対して、従来の表面をハードクロムメッキした鋼
製のスクリューおよびバレル内面を用いた押出機では、
上記と同じ条件で複合材料を溶融押出する場合、24時
間の連続運転でスクリュ一部およびバレル内面の摩耗に
より製品の混合状態が悪くなり、押出量が80%以下に
低下して3週間で使用不可能になる。In contrast, conventional extruders that use steel screws and barrel inner surfaces with hard chrome plating,
When melt extruding a composite material under the same conditions as above, the mixing condition of the product deteriorates due to wear on part of the screw and the inner surface of the barrel after 24 hours of continuous operation, and the extrusion rate decreases to less than 80% and it is used within 3 weeks. becomes impossible.
なお、バレル本体およびスクリューを分解してセラミッ
ク製内張りおよび円筒体を交換することは容易である。Note that it is easy to disassemble the barrel body and screw and replace the ceramic lining and cylindrical body.
例1の溶融押出機と類僚の溶融押出機を作製した。但し
、この溶融押出機では、スクリューの螺旋溝部は全長2
190m、外径(最大径)65鶴である。螺旋溝付セラ
ミック製円筒体として長さ250鶴のブロックをアルミ
ナ製のもの6個、ジルコニア製のもの2個を作成した。A melt extruder similar to that of Example 1 was constructed. However, in this melt extruder, the spiral groove of the screw has a total length of 2
It is 190m long and has an outer diameter (maximum diameter) of 65 cranes. Six alumina blocks and two zirconia blocks with a length of 250 mm were prepared as ceramic cylinders with spiral grooves.
これらの円筒体をジルコニア製をスクリュー先端部に配
置してノ1−ドニッケルメッキした鋼製軸体に固定した
。この軸体においても推進部および先端部には外周に螺
旋溝を有するハードニッケルメッキした鋼製部材を用い
た。These cylindrical bodies were fixed to a steel shaft body plated with nickel and zirconia at the tip of the screw. In this shaft as well, a hard nickel-plated steel member having a spiral groove on the outer periphery was used for the propulsion portion and the tip portion.
バレルの内張りとして長さ2501、内径650で両端
に鍔部を有する管体をアルミナ製のもの3個、窒化珪素
製のもの2個を作成した。バレルの組立に際しては、計
量部から溶融部、圧縮部−までを、アルミナ製バレル内
張り3個(750mm) 、窒化珪素製バレル内張り2
個(500m) 、セラミック製内張りのない部分75
0鶴で構成した。また、バレル先端付近には3個のベン
トを形成した。Three tubes made of alumina and two tubes made of silicon nitride, each having a length of 2501 mm and an inner diameter of 650 mm and flanges at both ends, were prepared as the inner lining of the barrel. When assembling the barrel, from the measuring section to the melting section and the compression section, there are 3 alumina barrel linings (750 mm) and 2 silicon nitride barrel linings.
pieces (500m), 75 parts without ceramic lining
Composed of 0 cranes. Additionally, three vents were formed near the tip of the barrel.
押出先端の絞りゲート部の内側をジルコニアで作成し、
外側を鋼製部材で保護して先端ゲート部を作成した。The inside of the aperture gate at the extrusion tip is made of zirconia,
A tip gate was created by protecting the outside with a steel member.
この溶融押出機で、酸化チタン、珪酸マグネシウム、酸
化アミルニウム等の無機微粒子とウィスカーの混合物を
60重量%含有する架橋性ポリエテルを一体にて溶融押
出成形した。6ケ月間連続運転しても、見掛上も、また
押出圧力その他の計測上も、変化なく良好に運転が可能
である。Using this melt extruder, a crosslinkable polyether containing 60% by weight of a mixture of whiskers and inorganic fine particles such as titanium oxide, magnesium silicate, and aluminium oxide was integrally melt-extruded. Even after continuous operation for 6 months, it can be operated well without any change in appearance, extrusion pressure, or other measurements.
これに対し、同じ形状のハードニッケルメッキ鋼製の溶
融押出機で同じ条件で上記の複合材料を溶融押出成形を
行う場合、約1週間で摩耗が著しく、スクリューの肉も
りを1週間1回、バレル部の肉もりを1ケ月に1回行う
必要があった。On the other hand, when the above composite material is melt-extruded under the same conditions using a melt-extruder made of hard nickel-plated steel of the same shape, the wear becomes significant after about a week, and the screws must be thickened once a week. It was necessary to scrunch the barrel once a month.
五−主
例1のスクリューと同様の手順で混練機用スクリューを
作成した。このスクリューの形状は第8図に示す如くで
あり、螺旋溝の有効長が600 mであり、溝の深さは
押出機用スクリューの場合より深く (22鶴程度)ま
たスクリューの軸線に沿って溝の深さは変化しない。長
さ250fiの螺旋溝付アルミナ製円筒体を2個用いて
1本のスクリューとした。5 - A screw for a kneader was prepared in the same manner as the screw in Main Example 1. The shape of this screw is as shown in Figure 8, and the effective length of the helical groove is 600 m, the depth of the groove is deeper than that of an extruder screw (about 22 mm), and the groove is deep along the axis of the screw. The depth of the groove does not change. Two spirally grooved alumina cylinders each having a length of 250 fi were used to form one screw.
このアルミナ製スクリューを用いて、第9図に示す如(
,2軸混練機を構成した。この混線機の容器の内面には
アルミナ製内張りを配設した。Using this alumina screw, as shown in Figure 9 (
, a two-screw kneader was constructed. An alumina lining was placed on the inner surface of the container of this crosstalk machine.
この混練機で、珪酸マグネシウム、酸化亜鉛、ガラス繊
維および安定剤を50重量%含有するABS樹脂を加熱
混練し、プレミックス中間製品の製造に用いた。その結
果、従来のハードニッケルメッキした鋼製のスクリュー
を用いた場合と較べて、混合スクリューの交換寿命が1
2〜15倍に延長された。This kneader was used to heat and knead ABS resin containing 50% by weight of magnesium silicate, zinc oxide, glass fiber, and stabilizer, and was used to produce a premix intermediate product. As a result, the replacement life of the mixing screw is 10% longer than when using conventional hard nickel-plated steel screws.
It was extended 2 to 15 times.
なお、混練機の場合には、表面仕上精度は必ずしも高く
なくてもよく、焼成前の寸法精度を高めるだけで充分で
あった。In addition, in the case of a kneader, the surface finish accuracy did not necessarily need to be high, and it was sufficient to simply improve the dimensional accuracy before firing.
本発明により、押出機および混練機の耐摩耗性、耐熱性
が向上し、硬質素材あるいは硬質素材を含む材料の加工
に適した押出機および混練機が提供される。The present invention provides an extruder and a kneader that have improved wear resistance and heat resistance and are suitable for processing hard materials or materials containing hard materials.
なお、本発明を説明するに当っては、主として、樹脂中
に硬質素材を配合した複合材料の加工を参照したが、セ
ラミック部材の使用によって耐摩耗性および耐熱性が向
上するという特性は、セラミック等の加工においても有
効であることは明らかである。In explaining the present invention, reference has been made mainly to the processing of composite materials in which hard materials are blended into resin. However, the characteristics that wear resistance and heat resistance are improved by using ceramic members are It is clear that it is also effective in processing such as.
第1図は本発明による押出機の模式図、第2図は押出機
のスクリューの一部断面の正面図、第3図は螺旋溝付セ
ラミック製円筒体の正面図および側面図、第4図はスク
リューの軸体等の正面図、第5図はスクリューの別の態
様および先端部の組立方法を示す断面図、第6図はスク
リューのさらに別の態様を示す断面図、第7図(イ)〜
(ハ)はセラミック製バレル内張りの断面図と側面図、
第8図は本発明による混線機のスクリューの正面図、第
9図は本発明による2軸混練機の模式断面図である。
1・・・スクリュー、 2・・・バレル、3・・
・ホッパ、 4・・・絞りゲート部、5〜1
0・・・螺旋溝付セラミック製円筒体、11〜16・・
・セラミック製バレル内張り、17・・・螺旋溝付金属
製円筒体え部材、18・・・螺旋溝付金属製円筒体、
19・・・ストッパー、 21・・・金属製軸体、2
2・・・螺旋溝、
23 、25・・・先端部の螺旋溝付セラミック製円筒
体、27・・・螺旋溝付セラミック製円筒体、28・・
・鍔部、 29・・・キー溝、30・・・ベン
ト用穴、
31 、32・・・螺旋溝付セラミック製円筒体、33
・・・金属製軸体、 34 、35・・・押え部材、
38・・・容器、 39・・・セラミック製内張
り。
第71gl
手続補正書(自発)
昭和61年呼方2+日Fig. 1 is a schematic diagram of an extruder according to the present invention, Fig. 2 is a partially sectional front view of a screw of the extruder, Fig. 3 is a front view and side view of a ceramic cylinder with a spiral groove, and Fig. 4. 5 is a sectional view showing another embodiment of the screw and a method of assembling the tip, FIG. 6 is a sectional view showing still another embodiment of the screw, and FIG. ) ~
(c) is a cross-sectional view and side view of the ceramic barrel lining;
FIG. 8 is a front view of the screw of the mixer according to the present invention, and FIG. 9 is a schematic sectional view of the two-screw mixer according to the present invention. 1...screw, 2...barrel, 3...
・Hopper, 4...Aperture gate section, 5-1
0... Ceramic cylindrical body with spiral grooves, 11-16...
- Ceramic barrel lining, 17... Metal cylindrical body member with spiral groove, 18... Metal cylindrical body with spiral groove, 19... Stopper, 21... Metal shaft, 2
2... Spiral groove, 23, 25... Ceramic cylinder with spiral groove at tip, 27... Ceramic cylinder with spiral groove, 28...
- Flange part, 29... Key groove, 30... Vent hole, 31, 32... Ceramic cylindrical body with spiral groove, 33
...metal shaft body, 34, 35...pressing member,
38... Container, 39... Ceramic lining. No. 71gl Procedural Amendment (Voluntary) 1985 Calling Form 2+ Day
Claims (1)
を押出または混練する押出機または混練機において、前
記スクリューの被加工材料と接する外表面の一部分また
は全部、および前記容器の被加工材料と接する内表面の
一部分または全部を、セラミック部品で構成したことを
特徴とするスクリュー押出機または混練機。1. In an extruder or kneader that extrudes or kneads a material to be processed using a screw that rotates inside a container, a part or all of the outer surface of the screw that is in contact with the material to be processed, and an inner surface of the container that is in contact with the material to be processed 1. A screw extruder or kneader, characterized in that a part or all of its surface is made of ceramic parts.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60081443A JPS61241105A (en) | 1985-04-18 | 1985-04-18 | Screw type extruding machine or kneading machine |
US06/852,220 US4746220A (en) | 1985-04-18 | 1986-04-15 | Screw type extruding or kneading machine and screw used therein |
EP86105388A EP0200117B2 (en) | 1985-04-18 | 1986-04-18 | Screw type extruding or kneading machine and screw used therein |
DE8686105388T DE3676858D1 (en) | 1985-04-18 | 1986-04-18 | SNAIL EXTRUDER OR KNEDER AND ITS SNAIL. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60081443A JPS61241105A (en) | 1985-04-18 | 1985-04-18 | Screw type extruding machine or kneading machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61241105A true JPS61241105A (en) | 1986-10-27 |
JPS642413B2 JPS642413B2 (en) | 1989-01-17 |
Family
ID=13746540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60081443A Granted JPS61241105A (en) | 1985-04-18 | 1985-04-18 | Screw type extruding machine or kneading machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61241105A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62264926A (en) * | 1986-05-14 | 1987-11-17 | Tosoh Corp | Screw material for plastic molding machine |
JPS6490707A (en) * | 1987-09-12 | 1989-04-07 | Kloeckner Ferromatik Desma | Mixer for isocyanate and polyol |
JPH0199809A (en) * | 1987-10-12 | 1989-04-18 | Murata Mfg Co Ltd | Extrusion molder |
JPH01283111A (en) * | 1988-03-25 | 1989-11-14 | Bayer Ag | Extruder with ceramic treating unit |
JPH04246940A (en) * | 1991-01-31 | 1992-09-02 | Nec Eng Ltd | Data selector monitor circuit |
JPH057435U (en) * | 1991-07-12 | 1993-02-02 | 積水化学工業株式会社 | Extruder for extrusion molding equipment |
JP2001212818A (en) * | 2000-02-03 | 2001-08-07 | Hayashida Tekko:Kk | Pug mill |
JP2002153743A (en) * | 2000-11-21 | 2002-05-28 | Nippon Airitsuhi Kk | Screw for agitation and agitation disintegration apparatus for medium |
JP2003082419A (en) * | 2001-09-14 | 2003-03-19 | Nippon Steel Corp | Molding method for powder, and molding apparatus for powder |
JP2003211441A (en) * | 2002-01-17 | 2003-07-29 | Japan Steel Works Ltd:The | Molding processing apparatus |
WO2005021227A1 (en) * | 2003-08-28 | 2005-03-10 | Zeon Corporation | Apparatus for producing polymer |
KR100476692B1 (en) * | 2001-10-19 | 2005-03-18 | 케이탑 주식회사 | extruding machine for tarpaulin manufacture utilizing of waste material and it's extrude method |
WO2011122212A1 (en) * | 2010-03-30 | 2011-10-06 | 住友ベークライト株式会社 | Mixing device and method for manufacturing a resin composition for semiconductor sealing |
JP2014162069A (en) * | 2013-02-22 | 2014-09-08 | Mitsubishi Heavy Industries Machinery Technology Corp | Kneader and member for the kneader |
WO2020208753A1 (en) * | 2019-04-10 | 2020-10-15 | 日本碍子株式会社 | Extruder and production method of molded body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922466A (en) * | 1972-06-21 | 1974-02-27 | ||
JPS5933128A (en) * | 1982-08-19 | 1984-02-22 | Hitachi Metals Ltd | Cylinder for injection molder and extruder |
JPS6024521U (en) * | 1983-07-27 | 1985-02-19 | 昭和電線電纜株式会社 | Screw shaft for extruder |
-
1985
- 1985-04-18 JP JP60081443A patent/JPS61241105A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922466A (en) * | 1972-06-21 | 1974-02-27 | ||
JPS5933128A (en) * | 1982-08-19 | 1984-02-22 | Hitachi Metals Ltd | Cylinder for injection molder and extruder |
JPS6024521U (en) * | 1983-07-27 | 1985-02-19 | 昭和電線電纜株式会社 | Screw shaft for extruder |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62264926A (en) * | 1986-05-14 | 1987-11-17 | Tosoh Corp | Screw material for plastic molding machine |
JPS6490707A (en) * | 1987-09-12 | 1989-04-07 | Kloeckner Ferromatik Desma | Mixer for isocyanate and polyol |
JPH0199809A (en) * | 1987-10-12 | 1989-04-18 | Murata Mfg Co Ltd | Extrusion molder |
JPH01283111A (en) * | 1988-03-25 | 1989-11-14 | Bayer Ag | Extruder with ceramic treating unit |
JPH04246940A (en) * | 1991-01-31 | 1992-09-02 | Nec Eng Ltd | Data selector monitor circuit |
JPH057435U (en) * | 1991-07-12 | 1993-02-02 | 積水化学工業株式会社 | Extruder for extrusion molding equipment |
JP4580489B2 (en) * | 2000-02-03 | 2010-11-10 | 株式会社林田鉄工 | Clay mill |
JP2001212818A (en) * | 2000-02-03 | 2001-08-07 | Hayashida Tekko:Kk | Pug mill |
JP2002153743A (en) * | 2000-11-21 | 2002-05-28 | Nippon Airitsuhi Kk | Screw for agitation and agitation disintegration apparatus for medium |
JP2003082419A (en) * | 2001-09-14 | 2003-03-19 | Nippon Steel Corp | Molding method for powder, and molding apparatus for powder |
KR100476692B1 (en) * | 2001-10-19 | 2005-03-18 | 케이탑 주식회사 | extruding machine for tarpaulin manufacture utilizing of waste material and it's extrude method |
JP2003211441A (en) * | 2002-01-17 | 2003-07-29 | Japan Steel Works Ltd:The | Molding processing apparatus |
WO2005021227A1 (en) * | 2003-08-28 | 2005-03-10 | Zeon Corporation | Apparatus for producing polymer |
JPWO2005021227A1 (en) * | 2003-08-28 | 2006-10-26 | 大見 忠弘 | Polymer production equipment |
WO2011122212A1 (en) * | 2010-03-30 | 2011-10-06 | 住友ベークライト株式会社 | Mixing device and method for manufacturing a resin composition for semiconductor sealing |
JP2011206748A (en) * | 2010-03-30 | 2011-10-20 | Sumitomo Bakelite Co Ltd | Kneader and manufacturing method of resin composition for semiconductor sealing |
TWI503165B (en) * | 2010-03-30 | 2015-10-11 | Sumitomo Bakelite Co | Kneading apparatus and manufacturing method of resin composition for sealing semiconductor |
US9694513B2 (en) | 2010-03-30 | 2017-07-04 | Sumitomo Bakelite Company Limited | Kneading apparatus and method for producing semiconductor encapsulating resin composition |
JP2014162069A (en) * | 2013-02-22 | 2014-09-08 | Mitsubishi Heavy Industries Machinery Technology Corp | Kneader and member for the kneader |
WO2020208753A1 (en) * | 2019-04-10 | 2020-10-15 | 日本碍子株式会社 | Extruder and production method of molded body |
JP6788130B1 (en) * | 2019-04-10 | 2020-11-18 | 日本碍子株式会社 | Extrusion molding machine and manufacturing method of ceramic molded body |
Also Published As
Publication number | Publication date |
---|---|
JPS642413B2 (en) | 1989-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4746220A (en) | Screw type extruding or kneading machine and screw used therein | |
JPS61241105A (en) | Screw type extruding machine or kneading machine | |
CA1096573A (en) | Extruder screw | |
CN103101179B (en) | A kind of Halogen extruder screw containing fiberglass reinforced plastics manufacture method | |
JPS642412B2 (en) | ||
US4439041A (en) | Feed bushing for single-screw extruders | |
JP2023100725A (en) | Screw rotor and method for manufacturing screw rotor | |
JP3646316B2 (en) | Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same | |
JP2010188626A (en) | Screw and process for producing the same | |
JPH01259039A (en) | Camera lens-barrel, raw material and production thereof | |
JPS621446A (en) | Kneading and feed apparatus | |
JPS6321108A (en) | Molding machine | |
JP2018161860A (en) | Production method of pellets of thermoplastic resin composition | |
CN104626618A (en) | Preparation method of glass fiber reinforced polyether-ether-ketone bars | |
CN202200495U (en) | Screw for injection molding machine or extruder | |
CN214239478U (en) | Screw rod with high extrusion efficiency | |
JPH0543911A (en) | Manufacture of screw for split extruder and split screw | |
JPS6283122A (en) | Injection molding machine | |
JP6869139B2 (en) | Cylinder structure of twin-screw kneading extruder | |
JPH0416317A (en) | Manufacture of fiber reinforced molded item | |
TWI810477B (en) | Centrifugal fan impeller structure | |
JPS6280007A (en) | Screw | |
JP2627015B2 (en) | Screw for injection molding machine for thermosetting resin | |
CN2918039Y (en) | Combined single screw rod special for plastic wood | |
EP0241590B1 (en) | Mixing mechanism for compounding filled plastics |