JPS61234371A - Decision on insulation capability of cable - Google Patents

Decision on insulation capability of cable

Info

Publication number
JPS61234371A
JPS61234371A JP7589785A JP7589785A JPS61234371A JP S61234371 A JPS61234371 A JP S61234371A JP 7589785 A JP7589785 A JP 7589785A JP 7589785 A JP7589785 A JP 7589785A JP S61234371 A JPS61234371 A JP S61234371A
Authority
JP
Japan
Prior art keywords
voltage
cable
measured
voltmeter
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7589785A
Other languages
Japanese (ja)
Inventor
Tadaharu Nakayama
中山 忠晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7589785A priority Critical patent/JPS61234371A/en
Publication of JPS61234371A publication Critical patent/JPS61234371A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an accurate decision on defective insulation of a cable to be measured, by judging on whether DC voltage is generated in the cable being measured from four measured values of a voltmeter to allow effective measurement of an insulation resistance value thereof with an exact accuracy. CONSTITUTION:A breaker 2 is opened and with a switch 11 closed, a selector switch 5 is turned to the changerover position (I) to select a specified resistance value. Under such a condition, the switch 11 is opened and DC voltage generated between a cable shield 5 and the ground is measured with a voltmeter 18. Then, the selector switch 15 is turned to the changeover position (II) to select a specified resistance value and the DC voltage is read with the voltmeter 18. Then, the selector switch 15 is returned to the changeover position (I), the switch 11 is closed and subsequently, the breaker 2 is closed while the cable 4 being measured is set under the AC service voltage. Again, the switch 11 is opened and a specified resistance is selected with the selector switch 15 to obtain the DC voltage by reading on the voltmeter 18. Then, the selector switch 15 is turned to the changeover position (II) to select a specified resistance and the DC voltage is obtained by reading on the voltmeter 18.

Description

【発明の詳細な説明】 いの絶縁抵抗値を求めて電カケープルの絶縁性能を判定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the insulation performance of a power cable by determining the insulation resistance value of the insulation.

(ロ)従来技術 水トリー現象による劣化を生じている高圧架橋ポリエチ
レン絶縁電カケープルは、劣化が進行すると交流課電下
でケーブルの絶縁層内に顕著な直流分電圧を生じること
が判明している。この状態を活線下で発見し、かつその
絶縁抵抗値を知るためには高圧系統に測定のための信号
電圧を交流使用電圧に重畳して送り込むことが原則的に
必要である。信号電圧としては低電圧の直流電圧を使用
し、高圧系統の接地用機器を通じて送り込む。しかし、
高圧系統に多数の接地用機器が存在する時は、これらの
機器をすべて直流的に大地から浮遊させることは不可能
である。そこで、信号電圧の印加をあきらめ、ケーブル
自身に発生している直流分電圧を測定電源として利用す
る。従来、測定対象ケーブルのしゃへいと大地間にあら
われる電圧を電圧計の内部抵抗を変えた条件で2回測定
し、近似計算により絶縁性能を判定する方法が知られて
いる。
(b) Conventional technology It has been found that high-voltage cross-linked polyethylene insulated cables, which are subject to deterioration due to the water tree phenomenon, generate a significant DC voltage component within the insulation layer of the cable when AC current is applied as the deterioration progresses. . In order to detect this condition under a live line and to know its insulation resistance value, it is basically necessary to send a signal voltage for measurement to the high voltage system superimposed on the AC operating voltage. A low-voltage direct current voltage is used as the signal voltage and is sent through the grounding equipment of the high-voltage system. but,
When there are many grounding devices in a high voltage system, it is impossible to suspend all of these devices from the ground using direct current. Therefore, we give up on applying the signal voltage and use the DC voltage generated in the cable itself as the measurement power source. Conventionally, a method is known in which the voltage appearing between the shield of the cable to be measured and the ground is measured twice under conditions of changing the internal resistance of the voltmeter, and the insulation performance is determined by approximate calculation.

第5図は従来の絶縁性能判定方法に使用される回路構成
図を示している。第5図において、高圧母線1は多数の
接地用機器(図示されてない)が接続されており、直流
回路的には大地電位とみな・される。高圧母線1はしゃ
断器2を経て測定対象ケーブル4のケーブル端末3に接
続されている。
FIG. 5 shows a circuit configuration diagram used in the conventional insulation performance determination method. In FIG. 5, the high voltage bus 1 is connected to a large number of grounding devices (not shown), and is considered to be at ground potential in terms of a DC circuit. A high voltage bus 1 is connected to a cable terminal 3 of a cable 4 to be measured via a breaker 2.

測定対象ケーブル4はケーブルしゃへい5と導体また、
かなり進行した水トリー劣化ケーブルの絶縁層絶縁不良
部には局部電池8が存在し、その値をE工とする。ケー
ブルしゃへい5と大地の間にはしやへい絶縁不良部を代
表するじゃへい絶縁抵抗9と局部電池10が存在し、そ
の値を夫々R8とR8とする。ケーブルしゃへい5と大
地間には、ケーブルしゃへい5を測定時以外は大地に短
絡するスイッチ゛11と保安用のアレスタ12が夫々並
列に接続され、さらに2個のコンデンサ13とチョーク
コイル14からなるπ型F波回路が接続されている。そ
して、このπ型炉波回路には切替スイッチ15が接続さ
れ、切替スイッチ15は電圧計18の実質的な内部抵抗
16.17のいずれかをその切替位置(1)、(II)
を切り替えることにより選択する。内部抵抗17の値R
2′は内部抵抗16の値R□′の数分の−で、かつ電圧
計18の内部抵抗はR□′又はR2′に比べて無視し得
る程高いものとする。
The cable 4 to be measured is connected to the cable shield 5 and the conductor.
A local battery 8 exists in the insulation defective part of the insulation layer of the cable which has undergone considerable water tree deterioration, and its value is defined as E. Between the cable shield 5 and the ground, a shield insulation resistance 9 and a local battery 10, which represent a shield insulation defect, exist, and their values are R8 and R8, respectively. Between the cable shield 5 and the ground, a switch 11 that shorts the cable shield 5 to the ground except during measurement, and a safety arrester 12 are connected in parallel, and a π-type arrester 12 consisting of two capacitors 13 and a choke coil 14 is connected in parallel. F wave circuit is connected. A change-over switch 15 is connected to this π-type furnace wave circuit, and the change-over switch 15 sets either the substantial internal resistance 16 or 17 of the voltmeter 18 to its switching position (1) or (II).
Select by switching. Value R of internal resistance 17
It is assumed that 2' is a fraction of the value R□' of the internal resistance 16, and that the internal resistance of the voltmeter 18 is negligibly higher than R□' or R2'.

第6図は第5図を直流回路としてみた場合の等何回路を
示す。第6図に示される開閉5sはしゃ断器2と対応し
、測定対象ケーブル4が交流使用電圧下にあるか否かを
示すためのものである。しゃ断器2が閉じられると、局
部電池8は励起されて電圧E工を発生して抵抗7の値R
工と共に起電泥波を形成し、局部電池10の電圧E8 
と抵抗9の値R8と共に構成されるもう一つの起電泥波
と並列化される。これは開閉6sを閉じることと等価で
ある。電圧測定は並列肢の両端の電圧をミリボルトメー
タである電圧計18により測定する必要があるが、チョ
ークコイル14に直流抵抗分R6が存在するので、この
値がR□′又はR2/に直列に加わる。即ち、正確には
R1−R1’ +Ro又はR2−R2′+RoとなるR
1. R2を電圧計18の内部抵抗とする必要がある。
FIG. 6 shows an equivalent circuit when FIG. 5 is viewed as a DC circuit. The opening/closing 5s shown in FIG. 6 corresponds to the breaker 2 and is for indicating whether or not the cable 4 to be measured is under an AC working voltage. When the circuit breaker 2 is closed, the local battery 8 is excited and generates a voltage E which increases the value R of the resistor 7.
With this, an electromotive mud wave is formed, and the voltage E8 of the local battery 10 is increased.
is parallelized with another electromotive mud wave configured with the value R8 of the resistor 9. This is equivalent to closing the opening/closing 6s. To measure the voltage, it is necessary to measure the voltage at both ends of the parallel limb with the voltmeter 18, which is a millivolt meter, but since there is a DC resistance component R6 in the choke coil 14, it is necessary to measure the voltage at both ends of the parallel limb. join. That is, to be exact, R becomes R1-R1' + Ro or R2-R2' + Ro.
1. It is necessary to set R2 as the internal resistance of the voltmeter 18.

次に、測定方法について説明する。第5図においてしゃ
断器2を閉じ、スイッチ11を閉成状態にし、切替スイ
ッチ5を切替位置(11にして抵抗値R□′を選択する
。この状態からスイッチ11を開き、ケーブルしゃへい
5と大地間に発生する直流電圧を電圧計18により測定
し、その電圧をE□′とする。これはR□′の両端の電
圧であるからケーブルしゃへい5と大地間の電圧 替スイッチ15を切替位置(川に切替え、抵抗R1を選
択して町を電圧計18の読みとして得、R2−が未知も
あるが経験的にEニー9ボルト、R8−0,2ボルトと
仮定し、R工、R8を次式により求める。
Next, the measurement method will be explained. In Fig. 5, the breaker 2 is closed, the switch 11 is closed, and the selector switch 5 is set to the switching position (11) to select the resistance value R□'. From this state, the switch 11 is opened and the cable shield 5 and the ground The DC voltage generated between them is measured by the voltmeter 18, and the voltage is designated as E□'.Since this is the voltage across R□', the voltage changeover switch 15 between the cable shield 5 and the ground is set to the switching position ( Switch to the river, select the resistor R1, get the town as the reading of the voltmeter 18, R2- may be unknown, but empirically assume that E knee is 9 volts, R8 - 0.2 volts, R engineering, R8. It is calculated using the following formula.

上式により測定のための信号電圧を印加することなしに
絶縁層絶縁抵抗値Rエ としやへい絶縁抵抗値R8の二
つを分離して測定できる。
Using the above equation, it is possible to separately measure the insulation resistance value R of the insulation layer and the insulation resistance value R8 of the insulation layer without applying a signal voltage for measurement.

ρJ 問題点を解決するための手段 上述した従来のケーブルの絶縁性能判定方法によれば以
下のような欠点があった。
ρJ Means for Solving the Problems The conventional cable insulation performance determination method described above had the following drawbacks.

(1)たまたま絶縁層絶縁ケーブルを測定しても誤差少
なく測定できるチャンスが少なく、正しい一定も誤差穴
なる範囲と判定して退けてしまい、せつか(の測定を無
効にすることが多い。この理由は、E□とR8とを複合
したケーブル内部の見掛けの局部電池電圧をE (IT
h−E1E2(R□−R2)/(R□E2−R2E1)
)としてその値が1ボルト以上に達しないとRエ と計
算値に甚だしい誤差が含まれることが多いので誤差大な
る範囲として退けている。
(1) Even if you happen to measure an insulated cable with an insulating layer, there is little chance of being able to measure it with little error, and even a correct constant will be judged as a range of errors and will be dismissed, invalidating the measurement.The reason for this. is the apparent local battery voltage inside the cable that combines E□ and R8.
h-E1E2(R□-R2)/(R□E2-R2E1)
), unless the value reaches 1 volt or more, the calculated value often contains a significant error, so it is dismissed as a large error range.

これはEの値が1ボルト以上で得られた場合は真のR8
値がO〜0.5ボルトの範囲で変わってもこれを0.2
ボルトと仮定して得られるR工、R8の誤差は少ないの
であるが、そのような大きいEが得られるチャンスは限
られる。例えば、R□−10MΩ。
This is true R8 if the value of E is obtained above 1 volt.
Even if the value varies in the range of O to 0.5 volts, set this to 0.2
Although the error in R and R8 obtained assuming bolts is small, the chances of obtaining such a large E are limited. For example, R□-10MΩ.

Eニー9V、R8−10にΩ、L:8−0,5Vの電カ
ケープルの場合はE曙0.509 Vとなり、R工=1
0MΩ、  E工=l、 R8=3M、l;?、  鴫
=0.5VOIEカケープルの場合はE−2,4sVと
なる。この場合、両者ともR工 が同値で不良でありな
がら前者はEが1v以下であるから誤差大なる範囲とし
て退けられ、測定が無効となる、現実には絶縁不良ケー
ブルの2/3はしやへい絶縁不良であることが経験的に
知られているから誤差少なく絶縁不良を発見できるチャ
ンスは絶縁不良ケーブルの1/3である。
In the case of an electric cable with E knee 9V, R8-10 Ω, and L: 8-0.5V, E Akebono is 0.509 V, and R work = 1.
0MΩ, E = l, R8 = 3M, l;? , If the voltage is 0.5 VOIE capacity, it will be E-2.4 sV. In this case, although both cables are defective with the same value of R, the former is rejected as having a large error range because E is less than 1V, and the measurement is invalid.In reality, 2/3 of the cables with poor insulation are defective. Since it is known from experience that the insulation is defective, the chance of finding an insulation defect with little error is 1/3 of that of a defective insulation cable.

(11)ケーブル内部の見掛けの局部電池電圧がIVよ
り低く観測されても正確に計算されている場合があるが
、その場合も無効と判定される。真のR8値が仮定値と
たまたま等しいか近似している場合、ケーブル内部の見
掛けの局部電池電圧がIVより低くても計算値は正しい
。また、たとえじゃへい絶縁抵抗値R8が良好であって
もEが低いと測定無効とされ、前記1/3の測定可能チ
ャンスも減少させる場合もある。例えば、R工=20M
Ω。
(11) Even if the apparent local battery voltage inside the cable is observed to be lower than IV, it may be calculated accurately, but in that case it is also determined to be invalid. If the true R8 value happens to be equal to or close to the assumed value, then the calculated value is correct even if the apparent local battery voltage inside the cable is less than IV. Further, even if the interference insulation resistance value R8 is good, if E is low, the measurement will be invalidated, and the above-mentioned 1/3 chance of being able to measure may also be reduced. For example, R work = 20M
Ω.

II:9V、R8:IMJ2.l5=0.2Vのケ−−
jkの場合、E−0,619vとなる。このときR8の
値0.2 vを用いての計算ではR工=20.1MΩが
得られて正しいが、Eの値をみて測定無効とされる。
II: 9V, R8: IMJ2. Case of l5=0.2V
In the case of jk, it becomes E-0,619v. At this time, calculation using the value of R8 of 0.2 V yields R = 20.1 MΩ, which is correct, but the measurement is invalidated based on the value of E.

(Ill  実際のE工が仮定値から外れても誤差を招
く大きな原因となるが、それを確かめることができない
まま計算するから根本的に測定確度に乏し〜1゜ この発明の目的は、測定対象ケーブルの絶縁抵抗値の有
効測定が精度良(でき、その絶縁不良の判定を的確に行
うことができるケーブルの絶縁性能判定方法を提供する
ことである。
(Ill) Even if the actual E-factor deviates from the assumed value, it is a major cause of error, but since calculations are made without being able to confirm this, the measurement accuracy is fundamentally poor ~1゜The purpose of this invention is to It is an object of the present invention to provide a method for determining insulation performance of a cable, which can effectively measure the insulation resistance value of a cable with high accuracy and can accurately determine whether the insulation is defective.

に)問題点を解決するための手段 この発明の方法は、測定対象ケーブルのしゃへなる起電
流肢を並列に接続した収態において、直流的に接地され
た母線と前記測定対象ケーブルとの間のしゃ断器を開い
て当該ケーブルへの交流電圧印加を停止して前記しゃへ
いと大地間にあらわれる直流電圧を電圧計の内部抵抗を
異ならして二回測定し、前記しゃ断器を閉じて前記測定
対象ケーブルへ前記母線から交流電圧を印加して前記し
ゃへいと大地間にあらわれる直流電圧を前記電圧計の前
記異なる内部抵抗により二回測定して4つの測定電圧値
を得るものである。
2) Means for Solving the Problems The method of the present invention provides a method for solving the problems in a configuration in which the electromotive current limbs of the cable to be measured are connected in parallel, and a DC-grounded bus bar and the cable to be measured are connected in parallel. Open the circuit breaker to stop the application of AC voltage to the cable, measure the DC voltage appearing between the shield and the ground twice with different internal resistances of the voltmeter, close the circuit breaker and stop applying the AC voltage to the cable. An AC voltage is applied to the cable from the bus bar, and the DC voltage appearing between the shield and the ground is measured twice using the different internal resistances of the voltmeter to obtain four measured voltage values.

(ホ)作用 上述した測定により得られた電圧計の4つの測定電圧値
と、当該電圧計の既知の前記異なる内部抵抗値と、既知
の前記模擬内部抵抗値とから計算により絶縁層絶縁抵抗
値RI  としやへい絶縁抵抗値R8を分離して求める
ことができ、測定対象ケーブルに存在する電圧値E工、
E8を仮定する必要がない。
(e) Effect The insulation resistance value of the insulation layer is calculated from the four measured voltage values of the voltmeter obtained by the above-mentioned measurements, the known different internal resistance values of the voltmeter, and the known simulated internal resistance value. RI The insulation resistance value R8 can be determined separately, and the voltage value E present in the cable to be measured,
There is no need to assume E8.

(へ)実施例 第1図はこの発明に使用される測定回路構成図を示し、
第5図と同一部分には同一符号を付し、説明は省略する
。第1図において、ケーブルしゃへい5と大地間には並
列に模擬局部電池19とこの電池19の内部抵抗を構成
する抵抗20とから成る起電流肢が付は加えられる。模
擬局部電池19としては通常は乾電池1ケを使用し、そ
の値をE とする。内部抵抗20の値をRA とする。
(f) Embodiment FIG. 1 shows a configuration diagram of a measurement circuit used in this invention,
The same parts as in FIG. 5 are given the same reference numerals, and their explanation will be omitted. In FIG. 1, an electromotive current limb consisting of a simulated local battery 19 and a resistor 20 constituting the internal resistance of this battery 19 is added in parallel between the cable shield 5 and the ground. Normally, one dry battery is used as the simulated local battery 19, and its value is set as E. Let the value of the internal resistance 20 be RA.

第2図は第1図の測定回路を直流回路としてみた等価回
路図である。しゃ断器2の接点が開いている状態と等価
である、開閉5sの開の状態では、Es、R8からなる
起電流肢と、 E、、 RAからなる起電流肢との並列
回路の両端の電圧が測定される。また、しゃ断器2の接
点が閉じられている状態と等価である、開閉6sの閉の
状態では、上記並列回路にE工、R工からなる起電流肢
が並列に加わった全並列回路の両端の電圧が測定される
。この場合、チョークコイル14に直流分抵抗R6が存
在するので正確には電圧計18の内部抵抗はR□−R,
’ + Ro又はR2=R2′+Roとなる。
FIG. 2 is an equivalent circuit diagram of the measurement circuit shown in FIG. 1 as a DC circuit. In the open state for 5 seconds, which is equivalent to the state in which the contacts of the circuit breaker 2 are open, the voltage across the parallel circuit of the electromotive current limb consisting of Es and R8 and the electromotive current limb consisting of E, RA. is measured. In addition, in the closed state of opening/closing 6s, which is equivalent to the state in which the contacts of the breaker 2 are closed, both ends of the total parallel circuit in which the electromotive current limbs consisting of the E and R circuits are added in parallel to the above parallel circuit. voltage is measured. In this case, since there is a DC resistance R6 in the choke coil 14, the internal resistance of the voltmeter 18 is R□-R,
'+Ro or R2=R2'+Ro.

次に、この発明の測定方法について説明する。Next, the measurement method of the present invention will be explained.

第1図においてしゃ断器2を開き、スイッチ11を閉成
状態にし、切替スイッチ5を切替位置(11にして抵抗
値R□′を選択する。この状態からスイッチ11を開き
、ケーブルしゃへい5と大地間に発生する直流電圧を電
圧計18により測定し、その値をe□′とする。これは
R□′の両端の電圧であるからケーブルしゃへい5と大
地間の電圧切替スイッチ15を切替位置(II)に切替
え、抵抗R2′を選択して02′を電圧計18の読みと
して得、K、切替スイッチ15を切替位置(1)に戻し
てスイッチ11を閉じ、この後しゃ断器2を閉じて測定
対象ケーブル4を交流使用電圧下とする。このとき測定
対象ケーブル4に流れる負荷電流の有無、大小は間5と
ころではない。再びスイッチ11を開き、切替スイッチ
15で抵抗R1′を選択して電圧計18の読み03′を
得、 に、切替スイッチ15を切替位置(TIJに切替えて抵
抗R′を選択し、電圧計18の読み04′を得、終了す
る。上述の測定の結果求められた4つの電圧値θ11e
21  θ3.e4の条件を整理すると表の如くなる。
In Fig. 1, open the breaker 2, close the switch 11, and set the selector switch 5 to the switching position (11) to select the resistance value R□'. From this state, open the switch 11 and connect the cable shield 5 and the ground. The DC voltage generated between the cable shield 5 and the ground is measured with the voltmeter 18, and the value is set as e□'.Since this is the voltage across R□', the voltage selector switch 15 between the cable shield 5 and the ground is set to the switching position ( II), select the resistor R2' to obtain 02' as the reading on the voltmeter 18, then return the changeover switch 15 to the changeover position (1), close the switch 11, and then close the breaker 2. The cable 4 to be measured is placed under an AC operating voltage.At this time, the presence or absence of a load current flowing through the cable 4 to be measured, and its magnitude, are independent of each other.Open the switch 11 again, and select the resistor R1' with the selector switch 15. Obtain a reading of 03' on the voltmeter 18, then switch the selector switch 15 to the switching position (TIJ and select the resistor R', obtain a reading of 04' on the voltmeter 18, and end the process. The four voltage values θ11e
21 θ3. The conditions for e4 are organized as shown in the table below.

絶縁層絶縁抵抗値R1としやへい絶縁抵抗値R8とは以
下のよ51C求める。即ち、e□、e2を測定した場合
の等価回路は第3図(7!に示され、同回路を、R8,
RAの複合の見掛けの抵抗R8′と・1:rao複合の
見掛けの電圧88′を用いて書き直すと第3図(B)に
示すようになる。第3図においてが成立するから、 を得る。また、e3.e4を測定した場合の等価回路は
第4図(A)に示され、同回路を、Rs、RA、R工の
複合の見掛けの抵抗R工Iと、R8、EA、E工の複合
の見掛けの電圧E工′とを用いて書き直すと第4図(B
)に示すようになる。第4図において、が成立するから
、 を得る。
The insulation resistance value R1 of the insulation layer and the insulation resistance value R8 of the insulation layer are calculated as follows. That is, the equivalent circuit when e□, e2 is measured is shown in Figure 3 (7!), and the same circuit is
When rewritten using the composite apparent resistance R8' of RA and the composite apparent voltage 88' of .1:rao, it becomes as shown in FIG. 3(B). Since in Fig. 3 holds true, we obtain. Also, e3. The equivalent circuit when e4 is measured is shown in Fig. 4 (A), and the circuit is divided into a composite apparent resistance of Rs, RA, and R, and a composite apparent resistance of R8, EA, and E. When rewritten using the voltage E ′ of
). In Figure 4, since holds true, we obtain.

(2)、(4)式に示すようにR8、R工はR8、虱、
E工と無関係に定まるから、それらの値を仮定する必要
はない。なお、測定には必ず測定誤差を伴うから、(2
)、(4)の計算を実施する前に(1)、(3)式によ
りR工′、R8′を求め、これらの値がマイナス値にな
っていないこと、かつR工′≦R8′の条件も同時に満
たしていることを確認しておく必要がある。
As shown in formulas (2) and (4), R8, R engineering is R8, lice,
There is no need to assume these values since they are determined independently of E-engine. Note that since measurements always involve measurement errors, (2
) and (4), calculate R' and R8' using equations (1) and (3), and check that these values are not negative values and that R' ≤ R8'. You need to make sure that the conditions are also met at the same time.

R工′、R8′がマイナス値で得られた時は電圧計18
のマイナス誤差の存在のために生じた誤りであるから、
電圧計18の指示値を分解能に相当する電圧値だけずら
してプラス値が計算値として得られるように試み、指示
値を訂正するのが良い。
If R' and R8' are negative values, check the voltmeter 18.
This is an error caused by the existence of a negative error in
It is better to correct the indicated value by shifting the indicated value of the voltmeter 18 by a voltage value corresponding to the resolution in an attempt to obtain a positive value as the calculated value.

R工′−R8′ の場合、或いはel−e3  かツe
2−e4の場合は測定対象ケーブルは交流使用電圧下で
絶縁層内直流分電圧E工の発生が無い良好なケーブルで
あるとして、直流分電圧E□の発生の有無は容易に判定
し得る。また、R工′<R8′  と得られた場合はE
工の発生有りと判定し得る。
In the case of R'-R8', or el-e3 or
In the case of 2-e4, it is assumed that the cable to be measured is a good cable that does not generate a DC voltage component E in the insulation layer under the AC working voltage, and it can be easily determined whether the DC voltage component E□ is generated. Also, if R<R8' is obtained, E
It can be determined that there is a crack.

なお、前記実施例においては先ずしゃ断器2を開いて交
流使用電圧が印加されて無い状態でθ□′、θ′を測定
し、次いでしゃ断器2を閉じて03′、04′を測定し
たが、先ずしゃ断器2が閉じられた状態でe′、04′
を測定し、次いでしゃ断器を開いて81′、02′を測
定しても良い。また、θ□′とe′或いは03′と04
′の測定の順序も間5ところではない。
In the above embodiment, first the breaker 2 was opened and θ□' and θ' were measured with no AC working voltage applied, and then the breaker 2 was closed and 03' and 04' were measured. , first, e', 04' with the breaker 2 closed.
You may measure 81' and 02' by opening the breaker and then measuring 81' and 02'. Also, θ□' and e' or 03' and 04
The order of measurement of ' is also different.

(ト)効果 この発明は従来の絶縁性能判定方法と比較して次の利点
を有する。
(g) Effects The present invention has the following advantages compared to conventional insulation performance determination methods.

(1)測定無効として退けられることが無(なり、必ず
有効測定となる。即ち、ケーブル内油の見掛けの局部電
池電圧値の大小、極性の如何を問題としないので如何な
る場合でも正確に絶縁層絶縁抵抗値R工としやへい絶縁
抵抗値R8とを分離測定し得る。
(1) The measurement will not be rejected as invalid, and will always be a valid measurement.In other words, the apparent local battery voltage value of the oil inside the cable does not matter, and the polarity does not matter, so the insulation layer can be accurately measured in any case. The insulation resistance value R and the insulation resistance value R8 can be measured separately.

(II)  測定精度の向上が図れる。即ち、局部電池
電圧値を仮定しないから、仮定上の誤差が発生しない。
(II) Measurement accuracy can be improved. That is, since the local battery voltage value is not assumed, no hypothetical error occurs.

測定精度は電圧計の分解能による。Measurement accuracy depends on the resolution of the voltmeter.

(till  Lやへい絶縁不良による直流電圧の発生
の有無にかかわらず、絶縁層内直流分電圧の発生の有無
を簡単に判定できる。
(Irrespective of whether or not DC voltage is generated due to poor insulation, it is easy to determine whether or not DC voltage is generated within the insulation layer.)

さらに、この発明はケーブル交流使用電圧を印加しない
で電圧(e□、e2)を測定するために要する時間は、
ケーブル端子を母線から外したり、大地に落したりする
必要はないので純測定所要時間だけで良く数分間の短時
間ですむ利点もある。
Furthermore, in this invention, the time required to measure the voltage (e□, e2) without applying the cable AC working voltage is
There is no need to remove the cable terminal from the busbar or drop it to the ground, so the pure measurement time is only a few minutes, which is an advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の測定回路図。第2図は第1
図の直流等価回路図、第3図は交流使用電圧を印加しな
い場合の第1図の等価回路図、第4図は交流使用電圧を
印加した場合の第1図の等価回路図、第5図は従来の絶
縁性能判定方法に使用される測定回路図、第6図は第5
図の直流等価回路図である。 1・・・高圧母線、2・・・しゃ断器、3・・・ケーブ
ル端末、4・・・測定対象ケーブル、5・・・ケーブル
しゃへい、6・・・導体、7・・・絶縁層絶縁抵抗、8
・・・局部電池、9・・・しやへい絶縁抵抗、10・・
・局部電池、11・・・スイッチ、12・・・アレスタ
、13・・・コン7ンサ、14・・・チョークコイル、
15・・・切替スイッチ、1へ17・・・内部抵抗、1
8・・・電圧計、19・・・模擬局部電池、20・・・
内部抵抗。 (外5名) 第3図
FIG. 1 is a measurement circuit diagram of an embodiment of the present invention. Figure 2 is the first
Figure 3 is the equivalent circuit diagram of Figure 1 when no AC working voltage is applied, Figure 4 is the equivalent circuit diagram of Figure 1 when AC working voltage is applied, Figure 5 is the equivalent circuit diagram of Figure 1. is the measurement circuit diagram used in the conventional insulation performance judgment method, and Figure 6 is the measurement circuit diagram used in the conventional insulation performance judgment method.
FIG. DESCRIPTION OF SYMBOLS 1... High voltage bus, 2... Breaker, 3... Cable terminal, 4... Cable to be measured, 5... Cable shield, 6... Conductor, 7... Insulating layer insulation resistance , 8
...Local battery, 9...Shiyahei insulation resistance, 10...
・Local battery, 11... switch, 12... arrester, 13... capacitor, 14... choke coil,
15... Selector switch, to 1 17... Internal resistance, 1
8... Voltmeter, 19... Simulated local battery, 20...
internal resistance. (5 other people) Figure 3

Claims (1)

【特許請求の範囲】 測定対象ケーブルのしやへいと大地間に模擬局部電池と
模擬内部抵抗とからなる起電流肢を並列に接続した状態
において、 直流的に接地された母線と前記測定対象ケーブルとの間
のしや断器を開いて当該ケーブルへの交流電圧印加を停
止して前記しやへいと大地間にあらわれる直流電圧を電
圧計の内部抵抗を異ならして二回測定する段階と、 前記しや断器を閉じて前記測定対象ケーブルへ前記母線
から交流電圧を印加して前記しやへいと大地間にあらわ
れる直流電圧を前記電圧計の前記異なる内部抵抗により
二回測定する段階と、からなり、 前記電圧計の4つの測定電圧値、当該電圧計の既知の前
記内部抵抗値及び既知の前記模擬内部抵抗値から前記測
定対象ケーブルの絶縁層内部での直流分電圧の発生の有
無の判断をなすこと、及び絶縁層絶縁抵抗値としやへい
絶縁抵抗値を分離して求みることを特徴とするケーブル
の絶縁性能判定方法。
[Scope of Claims] In a state where an electromotive force limb consisting of a simulated local battery and a simulated internal resistance is connected in parallel between the edge of the cable to be measured and the ground, a DC-grounded bus bar and the cable to be measured are connected in parallel. opening a shield disconnector between the cable and stopping the application of AC voltage to the cable, and measuring the DC voltage appearing between the shield and the ground twice with different internal resistances of the voltmeter; Closing the shield breaker and applying AC voltage from the bus to the cable to be measured, and measuring the DC voltage appearing between the shield and ground twice using the different internal resistances of the voltmeter; From the four measured voltage values of the voltmeter, the known internal resistance value of the voltmeter, and the known simulated internal resistance value, it is determined whether or not a DC voltage component is generated inside the insulation layer of the cable to be measured. A method for determining the insulation performance of a cable, characterized by making a judgment and separately determining the insulation resistance value of the insulation layer and the insulation resistance value of the insulation layer.
JP7589785A 1985-04-10 1985-04-10 Decision on insulation capability of cable Pending JPS61234371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7589785A JPS61234371A (en) 1985-04-10 1985-04-10 Decision on insulation capability of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7589785A JPS61234371A (en) 1985-04-10 1985-04-10 Decision on insulation capability of cable

Publications (1)

Publication Number Publication Date
JPS61234371A true JPS61234371A (en) 1986-10-18

Family

ID=13589573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7589785A Pending JPS61234371A (en) 1985-04-10 1985-04-10 Decision on insulation capability of cable

Country Status (1)

Country Link
JP (1) JPS61234371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980645A (en) * 1988-02-22 1990-12-25 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of a power cable
WO1997025603A1 (en) * 1996-01-03 1997-07-17 Rosemount Inc. Temperature sensor transmitter with sensor sheath lead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980645A (en) * 1988-02-22 1990-12-25 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of a power cable
WO1997025603A1 (en) * 1996-01-03 1997-07-17 Rosemount Inc. Temperature sensor transmitter with sensor sheath lead
US5876122A (en) * 1996-01-03 1999-03-02 Rosemount Inc. Temperature sensor

Similar Documents

Publication Publication Date Title
Aggarwal et al. A practical approach to accurate fault location on extra high voltage teed feeders
US4626772A (en) Process and device for determining a parameter associated with a faulty electric conductor, using a composite monitoring signal
JPH01213581A (en) Method for diagnosing insulation deterioration of power cable
WO2019130126A1 (en) Parameter free identification of fault location in multi- terminal power transmission lines
JPS61234371A (en) Decision on insulation capability of cable
Melvold et al. Transient overvoltages on an HVDC bipolar line during monopolar line faults
Di Tomasso et al. Accurate single-end and double-end fault location by traveling waves: A review with some real applications
Fedotov et al. Single-Phase Ground Fault Test of Overhead Power Lines in Ungrounded Power Grids of 6-10 kV
Fortin et al. Field measurement of ground fault current distribution and substation ground impedance at LG-2, Quebec
James et al. Interpretation of partial discharge quantities as measured at the terminals of HV power transformers
JPS5991376A (en) Diagnosis of deterioration in insulation of power cable
SU434340A1 (en) METHOD FOR DETERMINATION OF DISTANCE TO THE DAMAGE OF DAMAGE AT SHORT CIRCUITS
JPH11142465A (en) Ground-fault point detecting method
JP2751627B2 (en) Insulation measurement error compensation method under cable hot line
JPS59202076A (en) Detection of insulation deterioration of cable
SU917127A1 (en) Method of determination of insulation parameters of three-phase electric circuits with isolated neutral voltage above 1000 v
CN219715661U (en) Bridge circuit based on direct current insulation monitoring
US3651399A (en) Apparatus and method for determining conductivity of wiring installations
RU2756380C1 (en) Method for determining insulation resistance of network and insulation resistances of ac connections with isolated neutral of more than 1000 v
RU2136011C1 (en) Method determining active and capacitive components of insulation resistance of network phases to ground
Xiaoqing et al. Fault location for distribution networks based on pattern recognition technique
JPH0413664B2 (en)
SU1425561A1 (en) Method of measuring resistance of insulation and capacitance of three-phase mains with isolated meutral relative to earth
JPH0428065Y2 (en)
JPH0378588B2 (en)