JPS61231416A - Galvanometer - Google Patents

Galvanometer

Info

Publication number
JPS61231416A
JPS61231416A JP7375085A JP7375085A JPS61231416A JP S61231416 A JPS61231416 A JP S61231416A JP 7375085 A JP7375085 A JP 7375085A JP 7375085 A JP7375085 A JP 7375085A JP S61231416 A JPS61231416 A JP S61231416A
Authority
JP
Japan
Prior art keywords
charge
fluid
charge detection
insulating fluid
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7375085A
Other languages
Japanese (ja)
Inventor
Kenji Tsuchiya
土屋 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA YUKI HANBAI KK
Original Assignee
SHOWA YUKI HANBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA YUKI HANBAI KK filed Critical SHOWA YUKI HANBAI KK
Priority to JP7375085A priority Critical patent/JPS61231416A/en
Publication of JPS61231416A publication Critical patent/JPS61231416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To electrically accurately detect a flow amount without being affected by viscosity or the foreign matter in a fluid, by providing a sensor which is present in the downstream side of the electrode provided in the piping of an electric insulating fluid and detecting the charge of the charged fluid. CONSTITUTION:When a switch 3 is closed, predetermined voltage is applied between electrodes 2, 2 to charge the electric insulating fluid flowing through piping 1 and, at the same time, a gate circuit 11 is opened to allow a counter 12 to start the counting of the clock pulse from a clock pulse generator 10. When the charged fluid moves and the charge thereof is detected by the first charge detection terminal 7 of a charge detection sensor 5, charge having polarity inverse to that of a second charge detection terminal 8 is induced in said detection terminal 8 to output a gate closing signal to the gate circuit 11 from an amplifier 9. Therefore, the count value of the counter 12 corresponds to the time required in allowing the fluid to reach the sensor 5 from the electrodes 2, 2 and predetermined operation is performed in an operation circuit 13 to display a flow amount/min on a display device 14.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は検流器に関し、さらに詳しく言えば。[Detailed description of the invention] [Field of application of the invention] This invention relates to galvanometers, and more particularly.

工作機械等に使用される潤滑油等の電気絶縁性流体の流
量等を電気的に検知する検流器に関するものである。
This field relates to a galvanometer that electrically detects the flow rate of electrically insulating fluid such as lubricating oil used in machine tools and the like.

[発明の技術的背景] 従来の検流器においては、一般に、配管内に機械的な浮
遊抵抗体を挿入し、その抵抗体の一次圧側と二次圧側と
の差圧による動きを例えば磁石とリードスイッチの組合
せもしくは差動トランス等にて検知するようにしている
。この種の検流器は。
[Technical Background of the Invention] In conventional galvanometers, a mechanical floating resistor is generally inserted into the pipe, and the movement of the resistor due to the differential pressure between the primary pressure side and the secondary pressure side is controlled using, for example, a magnet. Detection is done using a combination of reed switches or a differential transformer. This kind of galvanometer.

流量が多い場合や流体の粘性が高い場合には浮遊抵抗体
にそれを移動させる力が大きく作用するため、はぼ正確
に流量を検出することができるのであるが、流量が微少
の場合や粘性が低い場合には。
When the flow rate is large or the fluid has high viscosity, a large force acts on the floating resistor to move it, so the flow rate can be detected very accurately.However, when the flow rate is small or the viscosity is high, is low.

浮遊抵抗体の動きが鈍くなるため、流量を正確に測定す
ることが困難となる。この問題を解決するには、管内径
と浮遊抵抗体とのクリアランスを小さくすればよいので
あるが、これによると他方において、流体中に混入され
ている例えば30μ程度のきわめて細かな異物によって
も浮遊抵抗体が作動不良を起す虞れが多分にある。
Since the floating resistor moves slowly, it becomes difficult to accurately measure the flow rate. In order to solve this problem, it is possible to reduce the clearance between the inner diameter of the pipe and the floating resistor, but this also means that even extremely fine foreign objects of about 30 μm mixed in the fluid can become suspended. There is a high possibility that the resistor may malfunction.

また、流体を間欠的に供給する場合等においては、供給
ポンプ停止時における浮遊抵抗体の戻りが遅く、その間
欠サイクルに対して正確に応動し得なくなる事態が生ず
ることがある。
Further, in cases where fluid is supplied intermittently, the floating resistor returns slowly when the supply pump is stopped, and a situation may arise in which it is not possible to respond accurately to the intermittent cycle.

さらには、この種の検流器は、流体の粘性によってもそ
の検知精度が大きく左右される。すなわち、夏40’C
,冬O℃で考えると、ISO粘度グレードVG68のオ
イルの場合、夏68cSt、、冬1100cStとなり
その粘度が約16倍も変化し。
Furthermore, the detection accuracy of this type of galvanometer is greatly influenced by the viscosity of the fluid. i.e. summer 40'C
Considering the temperature at 0°C in the winter, an oil with an ISO viscosity grade of VG68 will have a viscosity of 68 cSt in the summer and 1100 cSt in the winter, which means the viscosity will change by about 16 times.

浮遊抵抗体に作用する力が大きく変化することになるた
め、夏場は良く作動するが冬場になると応動が鈍くなる
という問題をも含んでいる。
Since the force acting on the floating resistor changes greatly, it works well in the summer, but it also has the problem of slow response in the winter.

[発明の目的] この発明は上記した従来の欠点に鑑みなされたもので、
その目的は、流体の粘度や流体中に異物が含まれていた
としてもそれに影響されることなく流量を電気的に正確
に検知し得るようにした検流器を提供することにある。
[Object of the invention] This invention was made in view of the above-mentioned conventional drawbacks,
The purpose is to provide a galvanometer that can accurately electrically detect the flow rate without being affected by the viscosity of the fluid or the presence of foreign matter in the fluid.

[発明の構成] すなわち、この発明の検流器は、電気絶縁性流体の配管
内に設けられた電極と、この電極に適当なスイッチ手段
を介して所定の電圧を印加して流体を帯電させる電源と
、上記電極の下流側にあって流体に帯電されている電荷
を検出する電荷検出センサと、この電荷検出センサに接
続された増巾器とを含み、その増巾器から出力される出
力信号により上記電極から電荷検出センサに至る流体の
流れを検知するようにしたことを特徴としている。
[Structure of the Invention] That is, the galvanometer of the present invention includes an electrode provided in an electrically insulating fluid pipe, and a predetermined voltage applied to this electrode via a suitable switch means to charge the fluid. An output including a power source, a charge detection sensor located downstream of the electrode and detecting the charge on the fluid, and an amplifier connected to the charge detection sensor, and output from the amplifier. It is characterized in that the flow of fluid from the electrode to the charge detection sensor is detected based on a signal.

[実 施 例] 以下、この発明を添付図面に示されている実施例を参照
しながら詳細に説明する。
[Examples] Hereinafter, the present invention will be described in detail with reference to embodiments shown in the accompanying drawings.

この検知器は1例えば工作機械に用いられる潤滑油等の
与えられた電荷を失なわないような電気絶縁性流体を対
象としてなされたもので、第1図に示されている実施例
によると、その電気絶縁性流体が流される配管1内に配
置された1対の電極2.2を備えている。この場合、各
電極2,2は、適当なスイッチ3を介して直流電源4に
接続されていて、スイッチ3を閉じることにより各電極
2゜2に所定の電圧が印加され、そこを流れる流体が帯
電されるようになっている。
This detector is designed for use with electrically insulating fluids that do not lose a given charge, such as lubricating oil used in machine tools, and according to the embodiment shown in FIG. It comprises a pair of electrodes 2.2 arranged in the pipe 1 through which the electrically insulating fluid flows. In this case, each electrode 2, 2 is connected to a DC power source 4 via a suitable switch 3, and by closing the switch 3, a predetermined voltage is applied to each electrode 2, 2, and the fluid flowing therethrough is It is now electrically charged.

上記各電極2,2の下流側には、上記の如くして流体に
帯電された電荷を検出する電荷検出センサ5が設けられ
ている。この電荷検出センサ5は、第2図に例示されて
いるように、ガラス等の誘電体6の表面に形成された第
1の電荷検出端子7と。
A charge detection sensor 5 is provided on the downstream side of each of the electrodes 2, 2 to detect the charges charged in the fluid as described above. As illustrated in FIG. 2, this charge detection sensor 5 has a first charge detection terminal 7 formed on the surface of a dielectric material 6 such as glass.

誘電体6の内部に埋設された第2の電荷検出端子8とを
含み、各電荷検出端子7,8はそれぞれリード線7a、
8aを介して増巾器9の異なる入力端子に接続されてい
る。
a second charge detection terminal 8 buried inside the dielectric 6, and each charge detection terminal 7, 8 is connected to a lead wire 7a,
8a to different input terminals of the amplifier 9.

この実施例においては、クロックパルス発生器10と、
ゲート回路11を介してクロックパルス発生器10に接
続されたカウンタ12と、このカウンタ12にて計数さ
れた計数値に基いた流量を演算する演算回路13と、こ
の演算回路13の出力側に接続された表示器14とが設
けられていて、上記ゲート回路11をスイッチ3の閉信
号と増巾器9からの出力信号にて制御することにより、
流量を測定するようにしている。
In this embodiment, a clock pulse generator 10;
A counter 12 connected to the clock pulse generator 10 via a gate circuit 11, an arithmetic circuit 13 that calculates a flow rate based on the count counted by the counter 12, and a circuit connected to the output side of the arithmetic circuit 13. By controlling the gate circuit 11 with the closing signal of the switch 3 and the output signal from the amplifier 9,
I am trying to measure the flow rate.

すなわち、スイッチ3を閉じると、各電極2゜2間に所
定の電圧が印加されて流体が帯電されると同時に、ゲー
ト回路11が開となってカウンタ12にてクロックパル
ス発生器10からのクロックパルスの計数が開始される
。帯電された流体が移動しその電荷が電荷検出センサ5
の第1の電荷検出端子7にて捕捉されると、第2の電荷
検出端子8にはそれど逆極性の電荷が誘起され、これに
より、増巾器9からゲート回路11に対してゲート閉信
号が出力される。したがって、カウンタ12の計数値は
流体が電極2,2から電荷検出センサ5に至るまでの時
間ということになり1例えばその計数時間をt[sec
]、電極2,2と電荷検出センサ5との距離をQ、配管
1の半径をrとすると、演算回路13にて例えば((π
r2XQ)/1)X60なる演算が行なわれ、表示器1
4には毎分の流量が表示される。
That is, when the switch 3 is closed, a predetermined voltage is applied between each electrode 2°2 to charge the fluid, and at the same time, the gate circuit 11 is opened and the counter 12 receives the clock from the clock pulse generator 10. Pulse counting begins. The charged fluid moves and the charge is transferred to the charge detection sensor 5.
When captured at the first charge detection terminal 7 of the charge detection terminal 7, charges of opposite polarity are induced in the second charge detection terminal 8, thereby causing the gate circuit 11 from the amplifier 9 to close the gate. A signal is output. Therefore, the count value of the counter 12 is the time it takes for the fluid to reach the charge detection sensor 5 from the electrodes 2, 2. For example, the count value is t [sec
], the distance between the electrodes 2, 2 and the charge detection sensor 5 is Q, and the radius of the pipe 1 is r, then in the calculation circuit 13, for example ((π
The calculation r2XQ)/1)X60 is performed, and the display 1
4 displays the flow rate per minute.

なお、特に流体の流速が速い場合には、1荷検出センサ
5の表面にその流体との摩擦抵抗によるノイズ電荷が発
生されることが予想されるため、そのノイズ電荷にて増
巾器9が誤動作しないように増巾器9の関値を定めると
よい。また、スイッチ3を図示しないタイマにて所定時
間毎に投入するようにして各時間における流量を自動的
に測定するようにすることも可能である。
Note that, especially when the flow rate of the fluid is high, it is expected that noise charges will be generated on the surface of the single load detection sensor 5 due to frictional resistance with the fluid. It is preferable to determine the function value of the amplifier 9 to prevent malfunction. It is also possible to automatically measure the flow rate at each time by turning on the switch 3 at predetermined time intervals using a timer (not shown).

第3図にはこの発明の変形実施例が示されている。すな
わち、この変形実施例においては、銅もしくは鉄等の導
電性材料からなる配管1′が用いられており、このよう
な場合には、配管1′内に1つの電極2′を設けてこれ
を直流電源4の例えば正極側に接続し、その直流電源4
の負極側を配管1′の管壁に接続するとともにコモン配
線に接続すればよい。また、電荷検出センサとしては例
えば網状もしくはパンチングプレートのような電荷検出
端子5′を用いることができ、この電荷検出端子5′を
増巾器9の一方の入力端子に接続するとともに、増巾器
9の他方の入力端子は配管1′の管壁に接続するとよい
FIG. 3 shows a modified embodiment of the invention. That is, in this modified embodiment, a pipe 1' made of a conductive material such as copper or iron is used, and in such a case, one electrode 2' is provided in the pipe 1' to For example, connect to the positive terminal side of the DC power supply 4, and
It is sufficient to connect the negative electrode side to the pipe wall of the pipe 1' and to the common wiring. Further, as the charge detection sensor, for example, a charge detection terminal 5' such as a mesh or a punching plate can be used, and this charge detection terminal 5' is connected to one input terminal of the amplifier 9, and the amplifier The other input terminal 9 is preferably connected to the pipe wall of the pipe 1'.

さらに、この変形実施例によると、増巾器9の出力信号
を利用して例えば工作機械の給油ポイントへ潤滑油が適
正に供給されているか否かを監視するようにしている。
Furthermore, according to this modified embodiment, the output signal of the amplifier 9 is used to monitor, for example, whether lubricating oil is being properly supplied to the oil supply point of the machine tool.

すなわち、増巾器9の出力端子は例えばダウンカウンタ
15のクリヤ端子OLに接続されていて、スイッチ3を
適当なタイミングで開閉して、クロック端子CKから入
力されるクロックパルスにてこのダウンカウンタ15が
計数動作する際、その計数値が基準計数値を下回る以前
にクリヤするようにしている。したがって。
That is, the output terminal of the amplifier 9 is connected, for example, to the clear terminal OL of the down counter 15, and by opening and closing the switch 3 at appropriate timing, the down counter 15 is controlled by the clock pulse input from the clock terminal CK. When performing a counting operation, the count is cleared before the count value becomes less than the reference count value. therefore.

潤滑油が送られていない場合には、増巾器9からクリヤ
信号が出力されないため、計数値が基準計数値に達しダ
ウンカウンタ15から工作機械のストップ信号が出力さ
れ、焼付等の事故を未然に防止できるようにしている。
If lubricating oil is not being sent, the clear signal is not output from the amplifier 9, so the count value reaches the reference count value and the down counter 15 outputs a stop signal for the machine tool, which prevents accidents such as seizure. We are trying to prevent this from happening.

[効   果] 上記した実施例の説明から明らかなように、この発明に
よれば、流体の粘度やそれに含まれている異物等に影響
されることなく、きわめて微小な流量までをも正確に検
出することができ、特に超精密加工機等の潤滑油供給シ
ステム等に好適な検流器が提供される。
[Effects] As is clear from the above description of the embodiments, according to the present invention, even extremely small flow rates can be accurately detected without being affected by the viscosity of the fluid or foreign substances contained therein. The present invention provides a galvanometer that is particularly suitable for lubricating oil supply systems for ultra-precision processing machines and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示した回路図。 第2図は第1図中に示されている電荷検出センサの拡大
断面図、第3図はこの発明の変形実施例を示した概略的
な回路図である。 図中、1,1′は配管、2.2’は電極、3はスイッチ
、4は電源、5は電荷検出センサ、9は増巾器、10は
クロックパルス発生器、11はゲート回路、12はカウ
ンタ、13は演算回路、14は表示器である。 特許出願人 正和油機阪売株式会社 代理人 弁理士   大 原 拓 也 第1図
FIG. 1 is a circuit diagram showing an embodiment of the present invention. FIG. 2 is an enlarged sectional view of the charge detection sensor shown in FIG. 1, and FIG. 3 is a schematic circuit diagram showing a modified embodiment of the invention. In the figure, 1 and 1' are pipes, 2 and 2' are electrodes, 3 is a switch, 4 is a power supply, 5 is a charge detection sensor, 9 is an amplifier, 10 is a clock pulse generator, 11 is a gate circuit, and 12 1 is a counter, 13 is an arithmetic circuit, and 14 is a display. Patent applicant: Seiwa Yuuki Hanuri Co., Ltd. Agent: Patent attorney: Takuya Ohara Figure 1

Claims (1)

【特許請求の範囲】 潤滑油のような電気絶縁性流体の流量等を検知する検流
器であって、 上記電気絶縁性流体が流される配管内に設けられた電極
と、該電極にスイッチ手段を介して所定の電圧を印加し
て上記電気絶縁性流体を帯電させる電源と、上記電極の
下流側にあって上記電気絶縁性流体に帯電されている電
荷を検出する電荷検出センサと、該電荷検出センサに接
続された増巾器とを含み、上記増巾器から出力される出
力信号により上記電極から上記電荷検出センサに至る上
記電気絶縁性流体の流れを検知することを特徴とする検
流器。
[Scope of Claims] A galvanometer for detecting the flow rate of electrically insulating fluid such as lubricating oil, comprising an electrode provided in a pipe through which the electrically insulating fluid flows, and a switch means on the electrode. a power source that charges the electrically insulating fluid by applying a predetermined voltage via the electrically insulating fluid; a charge detection sensor located downstream of the electrode that detects the electrical charge on the electrically insulating fluid; and an amplifier connected to the detection sensor, and detects the flow of the electrically insulating fluid from the electrode to the charge detection sensor based on an output signal output from the amplifier. vessel.
JP7375085A 1985-04-08 1985-04-08 Galvanometer Pending JPS61231416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7375085A JPS61231416A (en) 1985-04-08 1985-04-08 Galvanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7375085A JPS61231416A (en) 1985-04-08 1985-04-08 Galvanometer

Publications (1)

Publication Number Publication Date
JPS61231416A true JPS61231416A (en) 1986-10-15

Family

ID=13527234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7375085A Pending JPS61231416A (en) 1985-04-08 1985-04-08 Galvanometer

Country Status (1)

Country Link
JP (1) JPS61231416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918477A1 (en) * 1988-06-06 1989-12-07 Daido Metal Co Ltd FLOW DETECTOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141559A (en) * 1974-10-05 1976-04-07 Nippon Denso Co
JPS52125357A (en) * 1976-04-13 1977-10-21 Toyota Motor Co Ltd Method and apparatus for measuring velocity of flowing fluid using charged liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141559A (en) * 1974-10-05 1976-04-07 Nippon Denso Co
JPS52125357A (en) * 1976-04-13 1977-10-21 Toyota Motor Co Ltd Method and apparatus for measuring velocity of flowing fluid using charged liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918477A1 (en) * 1988-06-06 1989-12-07 Daido Metal Co Ltd FLOW DETECTOR
US5002090A (en) * 1988-06-06 1991-03-26 Daido Metal Company, Ltd. Flow detector

Similar Documents

Publication Publication Date Title
CA1166695A (en) Magnetic contamination detector
US4259982A (en) Resistive fluid detecting means
GB722418A (en)
US3665209A (en) Fluid level control system
WO2015039814A1 (en) Method for monitoring an automation measuring device
US20150276641A1 (en) Measuring apparatus and method for detecting ferromagnetic particles
GB1335963A (en) Detection of electrostatic charge in flowing materials
FR2795521B1 (en) METHOD AND DEVICE FOR DETERMINING THE RESISTIVITY OF A FORMATION CROSSED BY A TUBE WELL
JPS61231416A (en) Galvanometer
KR860000558A (en) Apparatus and method for detecting and measuring suspended particulates in molten metal
DK0531465T3 (en) Device for inductively measuring the state of a stream of electrically conductive fluid
BE866251A (en) VERIFICATION DEVICE FOR THE INDICATION OF AN ELECTRICAL VOLTAGE AND / OR ITS POLARITY, AND OF THE PASSAGE OF A CURRENT
ES8407589A1 (en) Remote monitoring of ester functional fluids
JPH09112661A (en) Sensing device for chip inclusion in transmission oil
US2637206A (en) Flowmeter
US3201986A (en) Mass flowmeter
SU459680A1 (en) Level switch
SU1142736A1 (en) Electroconductive media level indicator
SU1423924A1 (en) Apparatus for checking the state of rolling-contact bearings
US3299415A (en) Electrical circuits for use with temperature responsive devices
Rogers et al. A servo-mechanism for the study of self-extinction of gaseous discharges in cavities in dielectrics
GB1005607A (en) Method of and apparatus for monitoring viscosity
DE2327497B2 (en) DETECTOR FOR CHANGES IN RESISTANCE WITH A FOLLOWING ALARM DEVICE
JPS63253258A (en) Detector for minute flow rate of liquid
JPS5772579A (en) Threadlike material travelling detector