JPS61228036A - Glass fiber reinforced resin material - Google Patents

Glass fiber reinforced resin material

Info

Publication number
JPS61228036A
JPS61228036A JP6959385A JP6959385A JPS61228036A JP S61228036 A JPS61228036 A JP S61228036A JP 6959385 A JP6959385 A JP 6959385A JP 6959385 A JP6959385 A JP 6959385A JP S61228036 A JPS61228036 A JP S61228036A
Authority
JP
Japan
Prior art keywords
strength
glass fiber
fibers
glass fibers
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6959385A
Other languages
Japanese (ja)
Inventor
Norio Kurauchi
紀雄 倉内
Norio Sato
紀夫 佐藤
Shigeyuki Sato
佐藤 重幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP6959385A priority Critical patent/JPS61228036A/en
Publication of JPS61228036A publication Critical patent/JPS61228036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material giving a formed product having excellent strength at high temperature, strength in wet state, impact strength and flexural strength, smooth surface and excellent appearance, by adding glass fibers having specific average fiber diameter to a thermoplastic resin. CONSTITUTION:A thermoplastic resin is reinforced with glass fibers having an average fiber diameter of 4-9mu. Preferably, chopped strand produced by colleccting about 100-10,000 glass fibers and cutting to 3-8mm length is used in combination with a surface-treating agent, a lubricant, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス繊維を含有せしめた繊維強化樹脂材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fiber-reinforced resin material containing glass fibers.

[従来技術] ガラス繊維強化樹脂材料(以下、ガラス繊維強化樹脂と
いう)は、構造部材、機械部品、電気部品等として広く
用いられており、生産性、比強度の点で金属やセラミッ
クスに比べて有利であるが、更に強度の向上が要請され
種々の努力がなされている。
[Prior art] Glass fiber reinforced resin materials (hereinafter referred to as glass fiber reinforced resins) are widely used as structural members, mechanical parts, electrical parts, etc., and are superior to metals and ceramics in terms of productivity and specific strength. Although this is advantageous, various efforts have been made to further improve the strength.

[本発明が解決しようとする問題点] 本発明は、ガラス繊維強化樹脂の耐熱強度、耐水強度お
よび耐衝撃強度等を向上せしめ、もって上記の要請に応
えることを目的とする。
[Problems to be Solved by the Present Invention] An object of the present invention is to improve the heat resistance strength, water resistance strength, impact resistance strength, etc. of glass fiber reinforced resin, thereby meeting the above-mentioned demands.

[問題点を解決するための手段] 発明者らは、ガラス繊維強化樹脂の破壊機構につき、種
々の実験、研究を行なった。そして破壊過程を走査型電
子顕微鏡で観察した結果、次の事実を確認した。
[Means for Solving the Problems] The inventors conducted various experiments and research on the fracture mechanism of glass fiber reinforced resin. As a result of observing the destruction process using a scanning electron microscope, the following facts were confirmed.

先ず、ガラス繊維強化樹脂に負荷がかかると、ガラス繊
維とマトリックスの界面、特にガラス繊維の先端に応力
が集中して、第1図の電子顕微鏡写真で示されるように
クラックが生じる。更に外部からの負荷が増すと、その
クラックは繊維の側面へ伝播し、更にマトリックスの内
部へ進展して隣接するガラス繊維の方へ進み、該繊維の
界面の破壊を促進する。このようにして次々とクラック
が伝播して材料全体の破壊をきたす。その際、ガラス繊
維はほとんど破壊されない。
First, when a load is applied to the glass fiber reinforced resin, stress concentrates at the interface between the glass fibers and the matrix, particularly at the tips of the glass fibers, causing cracks as shown in the electron micrograph of FIG. When the external load is further increased, the cracks propagate to the sides of the fibers and further into the interior of the matrix toward adjacent glass fibers, promoting failure of the fiber interfaces. In this way, cracks propagate one after another, leading to destruction of the entire material. At this time, the glass fibers are hardly destroyed.

本発明はこの知見に基づいてなされたもので、従来はガ
ラス繊維として平均径が13μ前後のものが用いられて
いたところ、本発明では4μ〜9のものを用いる。これ
により、耐熱強度、耐水強度および耐衝撃強度を大幅に
向上せしめることができた。
The present invention has been made based on this knowledge. Conventionally, glass fibers having an average diameter of about 13 μm have been used, but in the present invention, glass fibers having an average diameter of 4 μm to 9 μm are used. This made it possible to significantly improve heat resistance, water resistance, and impact resistance.

その理由は、ガラス繊維含有量を従来と同じ(一般には
10重量%〜45重量%)とした場合、繊維径を小さく
することにより繊維の本数が増し、従って繊維の界面面
積が増し、界面を介してのマトリックスから繊維への応
力の伝達効率を高め、その結果、マトリックスの応力分
担が減少るすことによるものと認められる。また、繊維
の本数の増加は繊維間の間隔を小さくし、これにより繊
維先端に発生するマトリックスの過大な応力を、繊維先
端に近接する他の繊維が分担して繊維先端での応力集中
を低下せしめ、クラックが発生しにくくなること、かつ
仮にクラックが発生しても繊維の本数が多いためクラッ
クの進展がざまたげられることによるものと認められる
The reason for this is that when the glass fiber content is the same as before (generally 10% to 45% by weight), reducing the fiber diameter increases the number of fibers, which increases the interfacial area of the fibers and It is recognized that this is due to the fact that the stress transmission efficiency from the matrix to the fibers is increased through the fibers, and as a result, the stress sharing of the matrix is reduced. In addition, an increase in the number of fibers reduces the spacing between the fibers, and as a result, the excessive stress in the matrix generated at the fiber tip is shared by other fibers close to the fiber tip, reducing stress concentration at the fiber tip. It is recognized that this is because cracks are less likely to occur, and even if cracks do occur, the growth of cracks is slowed down due to the large number of fibers.

本発明の場合、ガラス繊維の径が4μ以下では繊維自体
の生産性も悪く、またこれを樹脂に混合してガラス繊維
強化樹脂成形品とした場合、繊維が微細に折損されてマ
トリックス強化効果が低下する。従ってガラス繊維強化
樹脂の強度も低下する。また、ガラス繊維の径が9μ以
上では繊維の先端部の応力集中が増大し、繊維自体が異
物の如く作用する。従ってガラス繊維強化樹脂の強度も
低下する。
In the case of the present invention, if the diameter of the glass fiber is 4μ or less, the productivity of the fiber itself is poor, and if this is mixed with resin to make a glass fiber reinforced resin molded product, the fiber will be finely broken and the matrix reinforcement effect will be impaired. descend. Therefore, the strength of the glass fiber reinforced resin also decreases. Further, if the diameter of the glass fiber is 9 μm or more, stress concentration at the tip of the fiber increases, and the fiber itself acts like a foreign substance. Therefore, the strength of the glass fiber reinforced resin also decreases.

本発明に用いるガラス繊維の材質は特に制限はなく、一
般に用いられているCガラス、Eガラス等が用いられ得
る。ガラス繊維は100本から1oooo本程度で集束
し、長さ3〜8Iry1程度に切断した、いわゆるチョ
ツプドストランドの状態で使用される。また、ガラス繊
維にはモノフィラメントを集束させるための集束剤、樹
脂との反応性を高めるための表面処理剤、繊維を加工す
るに必要な潤滑剤等を含有せしめる。
The material of the glass fiber used in the present invention is not particularly limited, and commonly used C glass, E glass, etc. can be used. The glass fibers are used in the form of so-called chopped strands, which are bundled into a bundle of about 100 to 100 fibers and cut into lengths of about 3 to 8 Iry1. Further, the glass fibers contain a sizing agent for focusing the monofilaments, a surface treatment agent for increasing the reactivity with the resin, a lubricant necessary for processing the fibers, and the like.

一方、本発明に用いる樹脂としては、ポリアミド、ポリ
エステル、ポリアセタール等の熱可塑性樹脂、いわゆる
エンジニアリングプラスチックが最も好適に用いられる
が、特にこれに制限されない。例えば、ナイロン6、ナ
イロン66、ナイロン12、ポリブチレンチレフタート
、ポリアセタールホモポリマー等も用いられ得る。
On the other hand, as the resin used in the present invention, thermoplastic resins such as polyamide, polyester, and polyacetal, so-called engineering plastics, are most preferably used, but the resin is not particularly limited thereto. For example, nylon 6, nylon 66, nylon 12, polybutylene ethylene leftate, polyacetal homopolymer, etc. may also be used.

本発明のガラス繊維強化樹脂を成形品として調整する場
合には、例えばチョツプドストランド状のガラス繊維と
ペレット状の熱可塑性樹脂とをV字型ブレンダーで混合
したものを押出機で溶融混練してペレット化し、これを
射出成形することにより部品を成形する。
When preparing the glass fiber-reinforced resin of the present invention as a molded product, for example, chopped strand-shaped glass fibers and pellet-shaped thermoplastic resin are mixed in a V-shaped blender and then melt-kneaded in an extruder. The pellets are then injection molded to form parts.

[実験例] ガラス繊維を集束し長さを5mrnとしたチョツプドス
トランド3に9と、ナイロン66ペレット(旭化成株式
会社製レオナ13008>7ffyとを■型ブレンダー
で予備混合し、混合物を二軸押出機にて溶融混練してペ
レット化した。このペレットを用い射出成形により引張
り試験片を成形した。ガラス繊維は種々の繊維径のもの
を用いた。そしてこれ等の試験片につき強度のテストを
おこなった。
[Experiment example] Chopped strands 3 to 9 made of glass fibers bundled to a length of 5 mrn and nylon 66 pellets (Leona 13008>7ffy manufactured by Asahi Kasei Corporation) were premixed in a ■ type blender, and the mixture was mixed with a biaxial The pellets were melted and kneaded using an extruder. Tensile test specimens were molded by injection molding using the extruder. Glass fibers of various diameters were used. Strength tests were conducted on these test specimens. I did it.

テスト条件はASTM規格に従った。Test conditions followed ASTM standards.

第2図に耐熱強度テストの結果を示す。耐熱強度は高温
域の各温度における引張り強さで評価した。平均繊維径
を7μ、4μとしたちのく本発明品)は平均繊維径を1
3μとしたちの〈従来品)よりも耐熱強度にすぐれてい
る。なお、平均繊維径を0.5μと細くすると、耐熱強
度は低下する。
Figure 2 shows the results of the heat resistance strength test. Heat resistance strength was evaluated by tensile strength at each temperature in the high temperature range. The products of the present invention with an average fiber diameter of 7μ and 4μ) have an average fiber diameter of 1
It has superior heat resistance and strength compared to Tochichi's 3μ (conventional product). Note that when the average fiber diameter is reduced to 0.5 μm, the heat resistance strength decreases.

第3図は耐水強度テストの結果を示す。強度は試験片を
80℃の純水に浸漬して評価した。強度は、平均繊維径
7μのものの方が13μのものよりもはるかにすぐれて
いる。
Figure 3 shows the results of the water resistance strength test. The strength was evaluated by immersing the test piece in pure water at 80°C. In terms of strength, the fibers with an average fiber diameter of 7μ are far superior to those with an average fiber diameter of 13μ.

第4図は耐衝撃性(シャルピー衝撃値)テトスの結果を
示す。耐衝撃性は平均繊維径を4μ〜9μとした場合に
最もすぐれている。
FIG. 4 shows the results of impact resistance (Charpy impact value) Tetos. Impact resistance is best when the average fiber diameter is 4μ to 9μ.

第5図に曲げ強度のテトス結果を示す。平均繊維径を4
μ〜7μとした本発明品は曲げ強度が特にすぐれている
ことが知られる。
Figure 5 shows the Tetos results of bending strength. The average fiber diameter is 4
It is known that the products of the present invention having a thickness of μ to 7μ have particularly excellent bending strength.

第6図は、平均繊維径7μの本発明品と、13μの従来
品のそれぞれにつき繊維含有量を変えた場合の曲げ強度
を示すものである。いずれの繊維含有量でも本発明品は
従来品よりも20〜30%強度がすぐれている。
FIG. 6 shows the bending strength of a product of the present invention with an average fiber diameter of 7μ and a conventional product with an average fiber diameter of 13μ when the fiber content was changed. Regardless of the fiber content, the products of the present invention are 20 to 30% superior in strength to conventional products.

第7図に、試験片の曲げ試験時に発生するアコ−スチッ
クエミッション(AE)を計測した結果を示す。なお、
アコースチックエミッションは、材料の変形によって生
じる内部の微細クランクから発生する超音波領域の弾性
波でおって、この弾性波を計測して材料内部の破壊の進
行を非破壊的に解析することができる。図から知られる
ように、平均繊維径7μの本発明品は13μの従来品に
比へ、アコースティックエミッションの発生する荷重が
高く、本発明品は従来品よりも内部クラックが発生しに
くく信頼性が高い。
FIG. 7 shows the results of measuring the acoustic emission (AE) generated during the bending test of the test piece. In addition,
Acoustic emissions are elastic waves in the ultrasonic range that are generated from internal minute cranks caused by material deformation, and by measuring these elastic waves, it is possible to non-destructively analyze the progress of fracture inside the material. . As can be seen from the figure, the load at which acoustic emission occurs is higher in the product of the present invention with an average fiber diameter of 7μ compared to the conventional product with an average fiber diameter of 13μ, and the product of the present invention is less prone to internal cracks than the conventional product and is more reliable. expensive.

[発明の効果] 以上説明したように、本発明はガラス繊維強化樹脂の破
壊機構を究明し、平均繊維径4μ〜9μのものを用いる
ことで、特に耐熱強度、耐水強度、耐衝撃強度および曲
げ強度のすぐれた材料を得ることができる。また本発明
によれば、従来品よりも少量の繊維含有量でも従来品と
同等ないしそれ以上の材料強度が得られるから、従来品
に比して強度を劣下させることなく、より表面の平滑な
外観にすぐれた製品が得られる。
[Effects of the Invention] As explained above, the present invention has investigated the fracture mechanism of glass fiber reinforced resin, and by using fibers with an average diameter of 4 μm to 9 μm, it has particularly improved heat resistance strength, water resistance strength, impact resistance strength, and bending strength. A material with excellent strength can be obtained. In addition, according to the present invention, material strength equal to or higher than that of conventional products can be obtained even with a smaller amount of fiber content than conventional products, so the surface is smoother without deteriorating the strength compared to conventional products. A product with an excellent appearance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラス繊維強化熱可塑性樹脂材料中でのクラッ
クの発生を示す電子顕微鏡写真、第2図、第3図、第4
図、第5図、第6図および第7図はそれぞれ本発明品に
関する強度テストの結果を示す図でおる。 第1図 一一一一一一一」 第4図 平わS#i施径()Jm) 第5図 平均MS馳イ子(μm) 手続補正書c方式) 昭和60年7月16日 特許庁長官        殿        。、、
71、事件の表示 昭和60年特許願第69593号 2、発明の名称 ガラス繊維強化樹脂材料 3、補正をする者 事件との関係     特許出願人 愛知県愛知郡長久手町大字長鍬字横道41書地の1(3
60)株式会社豊田中央研究所 代表取締役 小 松   登 4、代理人 〒450愛知県名古屋市中村区名駅四丁目7番23号δ
、補正命令の日付   昭和60年6月10日7、補正
の内容 明細書第8頁第2行〜第3行に「第1図は−・□電子顕
微鏡写真、」とあるを「第1図はガラス繊維強化熱可塑
性樹脂中でガラス繊維と樹脂マトリックスの界面にクラ
ックが発生した形頗を示す電子顕微鏡写真、」と補正す
る。
Figure 1 is an electron micrograph showing the occurrence of cracks in glass fiber-reinforced thermoplastic resin materials, Figures 2, 3, and 4.
5, 6 and 7 are diagrams showing the results of strength tests on the products of the present invention, respectively. Figure 1 111111'' Figure 4 Flat S#i diameter ()Jm) Figure 5 Average MS width (μm) Procedural amendment c method) Patent dated July 16, 1985 Director General. ,,
71. Indication of the case 1985 Patent Application No. 69593 2. Name of the invention Glass fiber reinforced resin material 3. Person making the amendment Relationship to the case Patent applicant 41 Yokomichi, Nagakuku, Aza, Aichi-gun, Aichi Prefecture 1 (3)
60) Toyota Central Research Institute Co., Ltd. Representative Director Noboru Komatsu 4, Agent 4-7-23 Meieki, Nakamura-ku, Nagoya, Aichi 450 δ
, date of the amendment order June 10, 1985 7. In the statement of contents of the amendment, page 8, lines 2 to 3, the statement ``Figure 1 is an electron micrograph'' has been replaced with ``Figure 1. is an electron micrograph showing the appearance of cracks at the interface between glass fiber and resin matrix in a glass fiber-reinforced thermoplastic resin.

Claims (1)

【特許請求の範囲】[Claims] ガラス繊維を含有せしめて強化した熱可塑性樹脂材料に
おいて平均ガラス繊維径を4μ〜9μとしたことを特徴
とするガラス繊維強化樹脂材料。
A glass fiber-reinforced resin material characterized in that the thermoplastic resin material is reinforced by containing glass fibers and has an average glass fiber diameter of 4 μ to 9 μ.
JP6959385A 1985-04-02 1985-04-02 Glass fiber reinforced resin material Pending JPS61228036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6959385A JPS61228036A (en) 1985-04-02 1985-04-02 Glass fiber reinforced resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6959385A JPS61228036A (en) 1985-04-02 1985-04-02 Glass fiber reinforced resin material

Publications (1)

Publication Number Publication Date
JPS61228036A true JPS61228036A (en) 1986-10-11

Family

ID=13407281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6959385A Pending JPS61228036A (en) 1985-04-02 1985-04-02 Glass fiber reinforced resin material

Country Status (1)

Country Link
JP (1) JPS61228036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209657A (en) * 1990-12-03 1992-07-31 Minoru Sangyo Kk Blow molding composition
WO2003046070A1 (en) * 2001-11-30 2003-06-05 Rhodia Engineering Plastics S.R.L. Thermoplastic compositions with enhanced mechanical properties
CN102977361A (en) * 2012-12-28 2013-03-20 湖南汇中新材料有限公司 Method for preparing glass fiber reinforced nylon 6 by in situ polymerization
JP2013253197A (en) * 2012-06-08 2013-12-19 Asahi Kasei Chemicals Corp Polyamide composition, and molded product obtained by molding polyamide composition
JP2014005396A (en) * 2012-06-26 2014-01-16 Asahi Kasei Chemicals Corp Polyamide composition, and molded article thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209657A (en) * 1990-12-03 1992-07-31 Minoru Sangyo Kk Blow molding composition
WO2003046070A1 (en) * 2001-11-30 2003-06-05 Rhodia Engineering Plastics S.R.L. Thermoplastic compositions with enhanced mechanical properties
FR2833015A1 (en) * 2001-11-30 2003-06-06 Rhodia Eng Plastics Srl THERMOPLASTIC COMPOSITIONS WITH IMPROVED MECHANICAL PROPERTIES
JP2013253197A (en) * 2012-06-08 2013-12-19 Asahi Kasei Chemicals Corp Polyamide composition, and molded product obtained by molding polyamide composition
JP2014005396A (en) * 2012-06-26 2014-01-16 Asahi Kasei Chemicals Corp Polyamide composition, and molded article thereof
CN102977361A (en) * 2012-12-28 2013-03-20 湖南汇中新材料有限公司 Method for preparing glass fiber reinforced nylon 6 by in situ polymerization

Similar Documents

Publication Publication Date Title
Okubo et al. Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose
DE60034593D1 (en) LUBRICANT COMBINATION FOR FIBER REINFORCEMENT MATERIAL WITH LOW DEHUMIDIFICATION
JPH10138244A (en) Long and short fiber-reinforced polyolefin composite structure and molding formed thereof
JPS61228036A (en) Glass fiber reinforced resin material
CN101480818B (en) Method for preparing natural rubber/nylon short fibre composite material
JPS601256A (en) Polyamide resin composition
Medupin et al. Mechanical properties of wood waste reinforced polymer matrix composites
EP0026581A1 (en) Fibrous reinforcement material for water-hardenable masses and method of reinforcing such masses
Ammar et al. Mechanical Properties of Environment-Friendly Sugar Palm Fibre Reinforced Vinyl Ester Composites at Different Fibre Arrangements.
Etaati et al. Ground hemp fibers as filler/reinforcement for thermoplastic biocomposites
JP4280989B2 (en) Glass fiber sizing agent and glass fiber
Cotgreave et al. Failure mechanisms in fibre reinforced rigid polyurethane foam
Tohgo et al. Mode I interlaminar fracture toughness and fracture mechanism of angle-ply carbon/nylon laminates
Blumentritt et al. Fracture in oriented short fibre-reinforced thermoplastics
Tjong et al. Tensile deformation mechanism of polyamide 6, 6/SEBS-g-MA blend and its hybrid composites reinforced with short glass fibers
CN111205028A (en) Reinforced fiber cement and preparation method thereof
Fujii et al. Development of high performance bamboo composite using micro fibrillated cellulose
JP2621399B2 (en) Glass fiber reinforced plastic
Brindley et al. Factors Which Influence Tensile Strength of a SiC/Ti--24 Al--11 Nb(at.%) Composite
JPH07102153A (en) Resin composition
JPH05162157A (en) Manufacture of joint sheet
JP7101498B2 (en) Fiber reinforced composite material for concrete reinforcement, concrete structure
Sato et al. In situ SEM observation of fracture processes in short glass fiber reinforced thermoplastic composite
Ikuta et al. Evaluation of Interfacial Strength Reinforced by Silane Treatment in Glass Fiber--Epoxy Resin Composites
JP3033997B2 (en) Glass chopped strand