JPS6122727B2 - - Google Patents

Info

Publication number
JPS6122727B2
JPS6122727B2 JP55165116A JP16511680A JPS6122727B2 JP S6122727 B2 JPS6122727 B2 JP S6122727B2 JP 55165116 A JP55165116 A JP 55165116A JP 16511680 A JP16511680 A JP 16511680A JP S6122727 B2 JPS6122727 B2 JP S6122727B2
Authority
JP
Japan
Prior art keywords
air
gas concentration
air intake
combustor
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165116A
Other languages
Japanese (ja)
Other versions
JPS5790519A (en
Inventor
Kozo Ishida
Tsutomu Saito
Tsunesada Yoneda
Katsuo Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Koa Kogyo Co Ltd
Original Assignee
Horiba Ltd
Koa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Koa Kogyo Co Ltd filed Critical Horiba Ltd
Priority to JP55165116A priority Critical patent/JPS5790519A/en
Publication of JPS5790519A publication Critical patent/JPS5790519A/en
Publication of JPS6122727B2 publication Critical patent/JPS6122727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明はボイラーや乾燥炉等に用いる燃焼器の
空燃比の調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the air-fuel ratio of a combustor used in a boiler, drying oven, or the like.

必要とする熱エネルギーを最小の燃料で賄うた
めに燃焼器の燃焼効率の改善は省エネルギー化の
一環として重要な課題となつている。特に燃焼効
率が悪い小型ボイラー等の燃焼器の分野において
はその空燃比の改善が当面する最大の課題となつ
ている。
Improving the combustion efficiency of combustors in order to cover the required thermal energy with the minimum amount of fuel is an important issue as part of energy conservation efforts. In particular, in the field of combustors such as small boilers with poor combustion efficiency, improving the air-fuel ratio has become the biggest issue at hand.

ところで、現在この種燃焼器における空燃比の
改善技術としては、大型・中型ボイラー関係に採
用されている、いわゆる低O2燃焼方式がある
が、この方式は次のような欠点をもつている。即
ち、低O2燃焼方式は、O2分析計により燃焼排ガ
ス中に残存する酸素濃度を正確に測定し、この酸
素濃度をある一定の低濃度値にするよう空燃比を
制御するという方法であるために、第1にO2
絶対値を常に測定する必要があることから計器の
定期的な校正並びに装置のメンテナンスが必要で
あり、調整技術、メンテナンスコスト等の維持管
理上の問題がある。第2に低い酸素濃度を測定し
ているため、燃焼器内へのわずかな空気の漏れ込
み等によつて測定誤差を生じ、その結果空燃比の
最適制御が行ない難いという欠点がある。
By the way, as a current technique for improving the air-fuel ratio in this type of combustor, there is a so-called low O 2 combustion method that is used in large and medium-sized boilers, but this method has the following drawbacks. In other words, the low O 2 combustion method is a method in which the oxygen concentration remaining in the combustion exhaust gas is accurately measured using an O 2 analyzer, and the air-fuel ratio is controlled to keep this oxygen concentration at a certain low concentration value. First, it is necessary to constantly measure the absolute value of O 2 , which requires regular calibration of instruments and maintenance of the equipment, which poses problems in terms of maintenance and management, such as adjustment techniques and maintenance costs. Second, since a low oxygen concentration is measured, measurement errors occur due to slight air leakage into the combustor, and as a result, it is difficult to optimally control the air-fuel ratio.

また、特開昭55−63318号公報に開示された燃
焼制御方法も知られている。この制御方法は、燃
焼装置の排気ガス中の二酸化炭素成分濃度を検出
器で検出し、この検出濃度と、あらかじめ定めた
二酸化炭素成分濃度とを比較し、この両濃度が等
しくなるように、燃焼部に対する送風手段を制御
するものである。
Furthermore, a combustion control method disclosed in Japanese Patent Laid-Open No. 55-63318 is also known. This control method uses a detector to detect the concentration of carbon dioxide in the exhaust gas from a combustion device, compares this detected concentration with a predetermined concentration of carbon dioxide, and controls the combustion so that both concentrations are equal. This is to control the air blowing means for the section.

この方法も二酸化炭素成分の絶対値を基準にし
て送風手段を制御するものであるから、二酸化炭
素成分の検出器の狂いなどによつて、検出値に誤
差があると、その誤差に対応して送風量に過不足
が生じる。したがつて、前記検出器の校正を定期
的にかつ高精度で行うことが必要で、多くの手間
を要するとともに、空燃比を常に適正に制御する
ことが困難である。さらに、使用する燃料の組成
が変化すると、最適空燃比も変化するから、それ
に応じてあらかじめ定めた二酸化炭素成分濃度の
設定置を変えることが必要となる問題がある。
This method also controls the blowing means based on the absolute value of the carbon dioxide component, so if there is an error in the detected value due to an error in the carbon dioxide component detector, etc. Excess or deficiency occurs in the amount of air blown. Therefore, it is necessary to calibrate the detector periodically and with high precision, which requires a lot of effort and makes it difficult to always properly control the air-fuel ratio. Furthermore, if the composition of the fuel used changes, the optimum air-fuel ratio also changes, so there is a problem in that it is necessary to change the predetermined setting position of the carbon dioxide component concentration accordingly.

本発明はこのような従来方法の欠点を解消する
新規な手法を提供しようとするものである。
The present invention aims to provide a new method to overcome the drawbacks of such conventional methods.

即ち本発明方法は、一般に燃焼器における空気
過剰率λに対する炭酸ガス濃度(以下CO2ガス濃
度という。)が第1図のグラフに示すように理論
最適空燃比のところで極大値Pをもつことに着目
してされたものである。
That is, in the method of the present invention, the carbon dioxide concentration (hereinafter referred to as CO 2 gas concentration) with respect to the excess air ratio λ in the combustor generally has a maximum value P at the theoretical optimum air-fuel ratio, as shown in the graph of FIG. This was done with a focus on this.

本発明は、燃焼器に対する空気取入量を調整す
る空気量調整手段をコンピユータの出力信号で作
動させて、前記空気取入量を変化させ、この空気
取入量変化時のCO2ガス濃度の変化さらCO2計と
前記コンピユータとで、前記燃焼器内のCO2ガス
濃度の極大時を検出し、このCO2ガス濃度が極大
時の空気量調整手段の設定状態を基準として、そ
のときの空気取入量よりも空気取入量が所定の過
剰率状態になるように、コンピユータの出力信号
で前記空気量調整手段の空気取入量を設定するこ
とを特徴とするものである。
The present invention operates an air amount adjusting means that adjusts the air intake amount to the combustor using an output signal from a computer, changes the air intake amount, and changes the CO 2 gas concentration when the air intake amount changes. The maximum CO 2 gas concentration in the combustor is detected using the CO 2 meter and the computer, and the setting state of the air volume adjustment means when the CO 2 gas concentration is at its maximum is used as a reference. It is characterized in that the air intake amount of the air amount adjusting means is set using an output signal from a computer so that the air intake amount is in a predetermined excess ratio state than the air intake amount.

ここで空気取入量が所定の過剰率状態とは、燃
焼器の性能、大きさ、種類、燃料の種類等に基づ
いて経験的に求めた値のことで、予じめコンピユ
ータ内に記憶させてある。通常は、極大値より所
定比率だけ空気過剰状態になるように空気過剰率
を制御する。これはCO2ガス濃度が極大値となる
ところは理論上の最適空燃比であるが、その空燃
比では一般の燃焼器では煙道よりススを発する可
能性があるため、ススの出ない状態で燃焼器を運
転せんがためである。従つてこの意味で、前記所
定比率とは、たとえば、極大値におけるCO2ガス
濃度の値と、ススが出ない状態におけるCO2ガス
濃度の値との比であると定義することができる。
尚、第1図では空気過剰率「1.0」のところに
CO2ガス濃度の極大値が位置しているが、この極
大値の位置は燃焼器の大きさ、形状等によつて異
なり、例えば空気過剰率が「0.8」とか「1.2」等
という「1.0」とは異なつたところに極大値をも
つものも多く存在する。しかしいずれの場合にお
いても理論最適空燃比の近辺にCO2ガス濃度の極
大値が存在するので、それぞれの燃焼器において
CO2ガス濃度の極大値を検知することにより、そ
の燃焼器における理論最適空燃比に近いシステム
の制御値を知ることができる。
Here, the predetermined excessive air intake rate state is a value determined empirically based on the performance, size, type, and fuel type of the combustor, and is stored in advance in the computer. There is. Normally, the excess air ratio is controlled so that the air excess state is reached by a predetermined ratio from the maximum value. This is the theoretical optimum air-fuel ratio where the CO 2 gas concentration reaches its maximum value, but at that air-fuel ratio, there is a possibility that soot will be emitted from the flue in a general combustor. This is to prevent the combustor from operating. Therefore, in this sense, the predetermined ratio can be defined as, for example, the ratio between the value of the CO 2 gas concentration at the maximum value and the value of the CO 2 gas concentration in a state where no soot is generated.
In addition, in Figure 1, at the excess air ratio "1.0"
The maximum value of CO 2 gas concentration is located, but the position of this maximum value differs depending on the size and shape of the combustor. For example, the excess air ratio is "1.0" such as "0.8" or "1.2". There are many things that have maximum values in different places. However, in either case, the maximum value of CO 2 gas concentration exists near the theoretical optimum air-fuel ratio, so in each combustor,
By detecting the maximum value of CO 2 gas concentration, it is possible to know the system control value close to the theoretical optimum air-fuel ratio in that combustor.

次に本発明方法の一実施例を図面に基づき説明
する。第2図中、1は燃焼器2の一側に設けられ
たバーナーで、その下部に1次ダンパ3を有し、
空気取入口4に2次ダンパ5を有している。この
2次ダンパ5はパルスモータ6により回転角が可
変としてあり、それによつて空気取入量を変更し
得るようにしてある。7はボイラー、8は燃焼器
2の煙道である。この煙道8内には煙道ダンパ9
と該ダンパ9より燃焼器2寄りのところにCO2
10の試料採取部10′が設けられている。前記
煙道ダンパ9には前記2次ダンパ5と同様に回転
角を可変とするパルスモータ11が接続されてお
り、該ダンパ9の角度変更を行なつて燃焼器2内
の圧力をコントロールするようにしてある。前記
CO2計10の測定信号はコンピユータ例えばマイ
クロコンピユータ12に入力されている。マイク
ロコンピユータ12には既述した所定比率に相当
する数値がプリセツトされており、また該コンピ
ユータ12の出力は前記パルスモータ6と11と
に加えられている。
Next, an embodiment of the method of the present invention will be described based on the drawings. In FIG. 2, 1 is a burner provided on one side of the combustor 2, and has a primary damper 3 at the bottom thereof.
A secondary damper 5 is provided at the air intake port 4. The rotation angle of this secondary damper 5 is variable by a pulse motor 6, thereby making it possible to change the amount of air intake. 7 is a boiler, and 8 is a flue of the combustor 2. Inside this flue 8 is a flue damper 9.
A total of ten CO 2 sample collection sections 10' are provided closer to the combustor 2 than the damper 9. A pulse motor 11 whose rotation angle is variable is connected to the flue damper 9 similarly to the secondary damper 5, and the pressure inside the combustor 2 is controlled by changing the angle of the damper 9. It is set as. Said
A measurement signal from the CO 2 meter 10 is input to a computer, for example, a microcomputer 12. Numerical values corresponding to the predetermined ratios mentioned above are preset in the microcomputer 12, and the output of the computer 12 is applied to the pulse motors 6 and 11.

このマイクロコンピユータ12はボイラーの運
転開始時或いは運転中定期的に作動され、CO2
10と共働して燃焼器2内のCO2ガス濃度の極大
値を検知する。この検知動作は次の如くして行な
われる。先ずコンピユータ12よりパルスモータ
6にパルスを加え、2次ダンパ5の回転角を可変
して空気取入量を変更する。この空気取入量は2
次ダンパ5の回転角に一対一の対応をしているの
で、2次ダンパ5の単位回転角毎における燃焼器
2内のCO2ガス濃度をCO2計10にて測定し、そ
の単位回転角毎の測定信号をコンピユータ12内
でスムージングする。そしてコンピユータ12の
演算処理機能によりスムージング中にあらわれた
CO2ガス濃度のうち最も大きな値、即ち極大値を
検知する。
This microcomputer 12 is operated at the start of operation of the boiler or periodically during operation, and works together with the CO 2 meter 10 to detect the maximum value of the CO 2 gas concentration within the combustor 2. This detection operation is performed as follows. First, a pulse is applied to the pulse motor 6 from the computer 12, and the rotation angle of the secondary damper 5 is varied to change the amount of air intake. This air intake is 2
Since there is a one-to-one correspondence with the rotation angle of the secondary damper 5, the CO 2 gas concentration in the combustor 2 for each unit rotation angle of the secondary damper 5 is measured at a CO 2 total of 10. Each measurement signal is smoothed within the computer 12. Then, due to the arithmetic processing function of the computer 12, it appeared during smoothing.
The largest value, that is, the maximum value, of the CO 2 gas concentration is detected.

かくして極大値の検知がなされると、その極大
値を示す時点における空気過剰率(空気取入量に
対応している。)が、コンピユータ内に記憶され
た所定比率に相当する数値と掛け合わされ、その
乗算値に応じた数のパルスが再びパルスモータ6
に入力される。この結果2次ダンパ5が所定角回
動されて、燃焼器2内が理論最適空燃比よりも所
定量だけ空気過剰気味に調整される。
When the maximum value is detected in this way, the excess air ratio (corresponding to the air intake amount) at the time when the maximum value is detected is multiplied by a numerical value corresponding to a predetermined ratio stored in the computer. The number of pulses corresponding to the multiplied value is sent to the pulse motor 6 again.
is input. As a result, the secondary damper 5 is rotated by a predetermined angle, and the inside of the combustor 2 is adjusted to have a predetermined amount of excess air than the theoretical optimum air-fuel ratio.

尚、図示はしないが、マイクロコンピユータ1
2には燃焼器2内の圧力を感知する感知器が設け
てあり、その感知信号に基づいて前記パルスモー
タ11を回動し、煙道ダンパ9の回転角を可変し
て器内圧力をコントロールするようにしてある。
Although not shown, the microcomputer 1
2 is provided with a sensor that senses the pressure inside the combustor 2, and based on the sensing signal, the pulse motor 11 is rotated to vary the rotation angle of the flue damper 9 to control the internal pressure. It is designed to do so.

本発明の空燃比調整方法は、空気量調整手段を
コンピユータの出力信号で作動させて、そのとき
のCO2ガス濃度の変化の極大時をCO2計とコンピ
ユータで検知し、このCO2ガス濃度が極大であつ
た時の空気量調整手段の設定状態を基準にして、
空気取入量が所定の過剰率状態になるように、前
記空気量調整手段を設定するものであつて、次の
ような効果がある。
The air-fuel ratio adjustment method of the present invention operates the air amount adjustment means using an output signal from a computer, detects the maximum time of change in CO 2 gas concentration at that time using a CO 2 meter and computer, and measures the CO 2 gas concentration. Based on the setting state of the air volume adjustment means when is at its maximum,
The air amount adjusting means is set so that the air intake amount reaches a predetermined excess rate state, and has the following effects.

CO2ガス濃度の測定は、CO2ガス濃度が極大
であつた時点を定期的に検知するためのもので
あり、相対値の測定で足りるものである。した
がつて、従来方法のO2または二酸化炭素の絶
対値を測定する場合におけるように、CO2計等
の測定計器の校正を、定期的にかつ高精度に行
うための手間などが不要である。また、使用す
るCO2計としては、測定精度がそれほど高いも
のは不要であるから、取り扱いが容易で低コス
トのCO2計が使用できるとともに、メンテナン
スコスト等も引き下げることが可能である。
Measuring the CO 2 gas concentration is for periodically detecting the point in time when the CO 2 gas concentration is at its maximum, and measurement of relative values is sufficient. Therefore, unlike in the case of measuring the absolute value of O 2 or carbon dioxide using conventional methods, there is no need to calibrate measuring instruments such as CO 2 meters periodically and with high accuracy. . Furthermore, since the CO 2 meter used does not need to have very high measurement accuracy, it is possible to use a CO 2 meter that is easy to handle and low cost, and it is also possible to reduce maintenance costs.

CO2ガス濃度が極大時の空気量調整手段の設
定状態を基準にして、空気取入量が所定過剰率
状態になるように、空気量調整手段の空気取入
量を設定するから、CO2ガス濃度の測定値等に
影響されることなく、空燃比を常に適正な状態
に調整することができ、消費燃料を確実に節減
することが可能である。
Since the air intake amount of the air amount adjusting means is set so that the air intake amount reaches a predetermined excess rate state based on the setting state of the air amount adjusting means when the CO 2 gas concentration is at its maximum, CO 2 The air-fuel ratio can always be adjusted to an appropriate state without being influenced by the measured value of gas concentration, etc., and fuel consumption can be reliably reduced.

また、使用する燃料組成の変化による空燃比
の変化、すなわち、最適CO2ガス濃度の変化と
は無関係に空燃比の調整ができるから、空燃比
を常により適正にかつ容易に調整することが可
能である。
In addition, the air-fuel ratio can be adjusted regardless of changes in the air-fuel ratio due to changes in the fuel composition used, that is, changes in the optimal CO 2 gas concentration, so the air-fuel ratio can always be adjusted more appropriately and easily. It is.

CO2ガス濃度の極大時の検知のためにCO2
と組合せてコンピユータを用いているから、
CO2ガス濃度の測定値をコンピユータがスムー
シング等の目的に沿つたデータ処理をすること
により、外乱に影響されることなく適確に極大
時を検知することができるとともに、構成上も
小型でコンパクトなものとすることができる。
Because a computer is used in combination with a CO 2 meter to detect when the CO 2 gas concentration is at its maximum,
By using a computer to process the measured values of CO 2 gas concentration according to the purpose, such as smoothing, it is possible to accurately detect the maximum time without being affected by external disturbances, and the structure is also small and compact. It can be made into something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気過剰率に対するCO2ガス濃度、O2
ガス濃度、COガス濃度の特性を示すグラフ、第
2図は本発明の方法を説明する構成図である。 2……燃焼器、10……CO2計、12……コン
ピユータ、P……極大値。
Figure 1 shows the CO 2 gas concentration and O 2
A graph showing the characteristics of gas concentration and CO gas concentration, and FIG. 2 is a configuration diagram illustrating the method of the present invention. 2...Combustor, 10... CO2 meter, 12...Computer, P...Maximum value.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラー等の燃焼器に対する空気取入量を調
整する空気量調整手段をコンピユータの出力信号
で作動させて、前記空気取入量を変化させ、この
空気取入量変化時のCO2ガス濃度の変化からCO2
計と前記コンピユータとで、前記燃焼器内のCO2
ガス濃度の極大時を検出し、このCO2ガス濃度が
極大時の空気量調整手段の設定状態を基準にし
て、そのときの空気取入量よりも空気取入量が所
定の過剰率状態になるように、コンピユータの出
力信号で前記空気量調整手段の空気取入量を設定
することを特徴とする空燃比調整方法。
1 The air amount adjustment means that adjusts the air intake amount to a combustor such as a boiler is operated by a computer output signal to change the air intake amount, and the CO 2 gas concentration when the air intake amount changes. CO2 from change
CO 2 in the combustor with a meter and the computer.
The maximum gas concentration is detected, and the air intake amount reaches a predetermined excess rate compared to the air intake amount at that time, based on the setting state of the air amount adjustment means when the CO 2 gas concentration is maximum. An air-fuel ratio adjusting method characterized in that the air intake amount of the air amount adjusting means is set using an output signal from a computer.
JP55165116A 1980-11-21 1980-11-21 Controlling method of air fuel ratio Granted JPS5790519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55165116A JPS5790519A (en) 1980-11-21 1980-11-21 Controlling method of air fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55165116A JPS5790519A (en) 1980-11-21 1980-11-21 Controlling method of air fuel ratio

Publications (2)

Publication Number Publication Date
JPS5790519A JPS5790519A (en) 1982-06-05
JPS6122727B2 true JPS6122727B2 (en) 1986-06-02

Family

ID=15806208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55165116A Granted JPS5790519A (en) 1980-11-21 1980-11-21 Controlling method of air fuel ratio

Country Status (1)

Country Link
JP (1) JPS5790519A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128651A0 (en) * 1999-02-22 2000-01-31 Sicherman Gadi Method for determining fuel/air mixture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563318A (en) * 1978-11-01 1980-05-13 Matsushita Electric Ind Co Ltd Combustion control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563318A (en) * 1978-11-01 1980-05-13 Matsushita Electric Ind Co Ltd Combustion control method

Also Published As

Publication number Publication date
JPS5790519A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
JP4746239B2 (en) Method for obtaining NOx concentration
EP0498809B1 (en) combustion control
KR890000342B1 (en) System for controlling combustion and o2 in the flue gases from combustion processes
CN107152695A (en) The heating furnace visualization combustion control system and control method detected based on many reference amounts
EP0621938B1 (en) A method and apparatus for fuel/air control of surface combustion burners
US4782690A (en) Air/fuel ratio detecting apparatus, and method of detecting normal and abnormal conditions of the sensor
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
US20050250061A1 (en) Burner controller and adjusting method for a burner controller
JPS6122727B2 (en)
US4553424A (en) Method for detecting an oxygen concentration and a method for controlling an air-to-fuel ratio based on the detected oxygen concentration
KR970016395A (en) Reverse wind detection method of gas boiler
JPH05119006A (en) Device for measuring concentration of hydrogen carbide
JPH0833196B2 (en) Burner combustion controller
JP2608146B2 (en) Oxygen sensor characteristic evaluation method and device
JPH0437334B2 (en)
JP2001003775A (en) Egr control device for engine
JP2853178B2 (en) Engine air-fuel ratio detector
JPH02293655A (en) Detection of air-fuel ratio
JP3031018B2 (en) Combustion equipment
JPH03145549A (en) Intake flow measuring device for internal combustion engine
JPS624675Y2 (en)
JPH0337095B2 (en)
JPS5822945A (en) Valuation apparatus for capability of oxygen sensor
JPH0648093B2 (en) Gas turbine combustor bypass valve control method
JPH0784921B2 (en) Combustion control method