JPS61219924A - Optical module and optical terminal station - Google Patents

Optical module and optical terminal station

Info

Publication number
JPS61219924A
JPS61219924A JP60060674A JP6067485A JPS61219924A JP S61219924 A JPS61219924 A JP S61219924A JP 60060674 A JP60060674 A JP 60060674A JP 6067485 A JP6067485 A JP 6067485A JP S61219924 A JPS61219924 A JP S61219924A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
optical signal
function
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060674A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60060674A priority Critical patent/JPS61219924A/en
Publication of JPS61219924A publication Critical patent/JPS61219924A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Abstract

PURPOSE:To attain a bypass function and a loop-back function by a simple constitution by attaching an optical signal receiving part and an optical signal transmitting part to a part of optical fibers and other optical fibers, respectively, in optical fibers which are attached to the end faces of a pair of focusing rod lenses. CONSTITUTION:Glass blocks 7, 7' are rotated by 180 deg. as indicated with an arrow 12. As a result, an optical signal which is propagated from an arrow 17 through an optical fiber 1 is reflected by an interference film filter 8 through a focusing rod lens 6, propagated as indicated with an arrow 18 through an optical fiber 2 after passing through the lens 6, reflected by a filter 8' through a lens 6' and a block 7', propagated through an optical fiber 1' in the direction as indicated with an arrow 19 through the block 7' and the lens 6' and a bypass function is attained. When the optical fiber 1' is disconnected and an optical signal from an optical signal transmitting part 4 cannot be sent to other terminal station, an optical signal from a semiconductor light emitting element 10 is sent into the optical fiber 1 and transmitted to other terminal station. When the optical fiber 1 is disconnected, an optical signal from other terminal station is received by a photodetector 11 through the optical fiber 1' and a loop-back function is attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はループ状光ネツトワークシステムにおいて、バ
イパス機能およびループバック機能を有した高信頼度の
高いシステムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a highly reliable system having a bypass function and a loopback function in a loop optical network system.

〔発明の背景〕[Background of the invention]

従来、ループ状光ネツトワークシステムにおいては、例
えば特開昭59−111105号公報に記載のように、
システム全体の信頼性確保のため、バイパス機能および
ループバック機能を設けて障害の発生に対して自動的に
システムを維持する方法がとられている。
Conventionally, in a loop optical network system, for example, as described in Japanese Patent Application Laid-open No. 111105/1982,
In order to ensure the reliability of the entire system, a bypass function and a loopback function are provided to automatically maintain the system in the event of a failure.

第1図に従来のバイパス機能をもったループ状光ネツト
ワークシステムの概略図を示す、これは4つの端局を光
ファイバ1.1’、1.1  で結んだ例である。端局
5は光信号送信部4、光信号受信部3、バイパス用伝送
路2、バイパス切換光スイッチ50.50’ からなる
6例えば端局5が停電などにより装置への電源供給が断
たれた場合、あるいは光信号送信部信部に障害が発生し
た場合、光スイッチ50.50’はAからB、A’から
B′へと切換えを行なって光信号15をバイパス用伝送
路2を通して光フアイバ1′内に伝送させる。このよう
にバイパス機能をもたせるには、光スィッチが必要であ
るが、光スィッチは現状では非常に高価であり、光を使
うメリットが損なわれている。ループバック機能をもた
せるためには端局5の光信号送信部に光信号受信部を、
光信号受信部に光信号発信部をそれぞれ別に設け、それ
らを切換える構成が付加される0以上のように光デバイ
スの数が多く、構成も複雑なため、システム全体のコス
トが非常に高いという問題点がある。
FIG. 1 shows a schematic diagram of a conventional loop optical network system having a bypass function. This is an example in which four terminal stations are connected by optical fibers 1.1' and 1.1. The terminal station 5 consists of an optical signal transmitting section 4, an optical signal receiving section 3, a bypass transmission line 2, and a bypass switching optical switch 50. or when a failure occurs in the optical signal transmission section, the optical switch 50, 50' switches from A to B, and from A' to B', and sends the optical signal 15 through the bypass transmission line 2 to the optical fiber. 1'. In order to provide such a bypass function, an optical switch is required, but the optical switch is currently very expensive, and the benefits of using light are lost. In order to provide a loopback function, an optical signal receiving section is installed in the optical signal transmitting section of the terminal station 5.
The problem is that the cost of the entire system is extremely high due to the large number of optical devices (0 or more) and complex configurations in which optical signal transmitting units are provided separately for each optical signal receiving unit and a configuration for switching between them is added. There is a point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡易な構成でバイパス機能とループバ
ック機能を実現できる新しいループ状ネットワークシス
テム用光モジュールおよび光端局を提供することにある
An object of the present invention is to provide a new optical module for a loop network system and an optical terminal station that can realize a bypass function and a loopback function with a simple configuration.

〔発明の概要〕[Summary of the invention]

本発明は、半導体発光素子、レンズ、角度変位機能を有
する干渉膜フィルタ付きガラスブロック、集束性ロッド
レンズ、該レンズ端面へ取付けられた3本の光ファイバ
A、B、C,からなる光モジュールと、上記半導体発光
素子の代わりに半導体受光素子を用いた光モジュール(
光ファイバはり。
The present invention comprises an optical module consisting of a semiconductor light emitting element, a lens, a glass block with an interference film filter having an angular displacement function, a focusing rod lens, and three optical fibers A, B, and C attached to the end face of the lens. , an optical module using a semiconductor light-receiving element instead of the semiconductor light-emitting element (
Fiber optic beam.

E、Fとする。)からなり、光ファイバAの他端には光
信号受信部を、光ファイバFの他端には光信号送信部を
とりつけ、光ファイバCの他端とDの他端を接続し、光
ファイバB、Cに2つの波長λ1.λ2の光信号を双方
向伝送させるようにしたバイパスおよびループバック機
能を有するループ状光ネツトワークシステム用光モジュ
ールおよび光端局である。
Let them be E and F. ), an optical signal receiver is attached to the other end of the optical fiber A, an optical signal transmitter is attached to the other end of the optical fiber F, and the other ends of the optical fibers C and D are connected. B and C have two wavelengths λ1. The present invention is an optical module and an optical terminal station for a loop optical network system having bypass and loopback functions for bidirectional transmission of a λ2 optical signal.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の光端局の実施例を示す。これは第1図
の5の部分に相当し、バイパス機能とループバック機能
をそなえている。同図において。
FIG. 2 shows an embodiment of the optical terminal station of the present invention. This corresponds to section 5 in FIG. 1 and has a bypass function and a loopback function. In the same figure.

10は発光波長がλ2の半導体発光素子、11は波長λ
2の光信号を受光する受光素子、9,9′は球レンズ、
6.6’は長さが1/4ピツチよりも若干短い集束性ロ
ッドレンズ、7,7′はガラスブロック、8.8’は第
4図(a)、あるいは(b)のような特性を有する干渉
膜フィルタ、すなわち、波長λ2の光信号を透過させ、
波長λ1の光信号を反射させる特性を有するフィルタ、
1゜1’ 、13.14は伝送用光ファイバ、2はバイ
パス用光フアイバ伝送路、3は波長λ1の光信号を受光
する光信号受信部、4は波長λ□の光信号を発光する光
信号送信部、矢印12はガラスブロック7.7′を18
0a回転させる機構部(図示せず)の回転方向を示す矢
印、矢印15.15’、および16.16’は通常時の
光信号の流れ方向を示す矢印、矢印17,18,19は
バイパス時の光信号の流れ方向を示す矢印、矢印20.
21はループバック時の光信号の流れ方向を示す矢印で
ある。まず通常時の動作から述べる。光フアイバ1内を
矢印15のごとく伝搬してきた光信号(波長λ1)は集
束性ロッドレンズを通過して干渉膜フィルタ8に入射す
る。この干渉膜フィルタ8はガラスブロック7に対して
所望の傾斜角θに形成されているので、上記入射光信号
(波長λ1)はこのフィルタ8で反射され、ふたたび集
束性コンドレンズ6内を伝搬し、光ファイバ1よりも間
隔dだけ離れた光フアイバ13内に入射する。ここでd
は近似的に傾斜角θに比例し、ロンドレンズの屈折率と
ロンドレンズの屈折率分布定数の積に反比例する。そし
てこの光フアイバ13内を矢印15′のごとく伝搬し、
光信号受信部3で受信される。光信号送信部4からの光
信号(波長λ1)は光フアイバ14内を矢印16のごと
く伝搬し、集束性ロッドレンズ6′を通過して干渉膜フ
ィルタ8′に入射する。この干渉膜フィルタ8′もガラ
スブロック7′に対して所望の傾斜角θに形成されてい
るので、上記入射光信号(波長λ1)はこのフィルタ8
′で反射され、ふたたび集束性ロッドレンズ6′内を伝
搬し、光ファイバ14よりも間隔d′だけ離れた光フア
イバ1′内に入射する。そしてこの光フアイバ1′内を
矢印16′のごとく伝搬し、次の光端局に送られる。こ
の通常時には、半導体発光索子10.受光素子11も稼
動させておいてもよい、すなわち1発光波長がλ2の半
導体発光素子10の光信号は球レンズ9で平行光に変換
され、干渉膜フィルタ8、ガラスブロック7、集束性ロ
ッドレンズ6を通して光フアイバ1内に集光され、矢印
20のごとく光フアイバ1内を伝搬する。逆に、光フア
イバ1′内を矢印21のごとく伝搬してきた波長λ2の
光信号は集束性ロンドレンズ6′、干渉膜フィルタ8′
、ガラスブロック7′を通して球レンズ9′内に入り、
球レンズ9′で集光されて受光素子11で受光される。
10 is a semiconductor light emitting element whose emission wavelength is λ2, and 11 is a wavelength λ
2, a light receiving element that receives the optical signal; 9 and 9' are ball lenses;
6.6' is a focusing rod lens whose length is slightly shorter than 1/4 pitch, 7 and 7' are glass blocks, and 8.8' has characteristics as shown in Figure 4 (a) or (b). An interference film filter having an interference film filter, that is, transmitting an optical signal of wavelength λ2,
A filter having a characteristic of reflecting an optical signal of wavelength λ1,
1゜1', 13.14 are transmission optical fibers, 2 is a bypass optical fiber transmission line, 3 is an optical signal receiving section that receives an optical signal of wavelength λ1, and 4 is a light that emits an optical signal of wavelength λ□. Signal transmitter, arrow 12 indicates glass block 7.7' 18
Arrows 15, 15', and 16, 16' indicate the direction of rotation of the mechanical part (not shown) that rotates 0a, arrows 15, 15', and 16, 16' indicate the flow direction of the optical signal during normal operation, and arrows 17, 18, and 19 indicate the direction of flow of the optical signal during bypass. Arrow 20. indicates the flow direction of the optical signal.
21 is an arrow indicating the flow direction of the optical signal during loopback. First, we will discuss normal operation. An optical signal (wavelength λ1) propagating within the optical fiber 1 as indicated by an arrow 15 passes through a convergent rod lens and enters the interference film filter 8. Since this interference film filter 8 is formed at a desired inclination angle θ with respect to the glass block 7, the above-mentioned incident optical signal (wavelength λ1) is reflected by this filter 8 and propagates inside the condensing condenser lens 6 again. , enters the optical fiber 13 which is spaced apart from the optical fiber 1 by a distance d. Here d
is approximately proportional to the inclination angle θ and inversely proportional to the product of the refractive index of the Ronde lens and the refractive index distribution constant of the Ronde lens. Then, it propagates within this optical fiber 13 as indicated by an arrow 15',
The optical signal receiving section 3 receives the signal. The optical signal (wavelength λ1) from the optical signal transmitter 4 propagates within the optical fiber 14 as indicated by an arrow 16, passes through a focusing rod lens 6', and enters an interference film filter 8'. Since this interference film filter 8' is also formed at a desired inclination angle θ with respect to the glass block 7', the above-mentioned incident light signal (wavelength λ1) is transmitted to this filter 8.
', propagates again through the converging rod lens 6', and enters the optical fiber 1', which is spaced apart from the optical fiber 14 by a distance d'. The signal then propagates within this optical fiber 1' as indicated by an arrow 16' and is sent to the next optical terminal station. In this normal state, the semiconductor light emitting cord 10. The light receiving element 11 may also be kept in operation, that is, the optical signal of the semiconductor light emitting element 10 with one emission wavelength of λ2 is converted into parallel light by the ball lens 9, and then the light receiving element 11 is converted into parallel light by the interference film filter 8, glass block 7, and focusing rod lens. 6, the light is focused into the optical fiber 1, and propagates within the optical fiber 1 as shown by an arrow 20. Conversely, the optical signal of wavelength λ2 propagating in the optical fiber 1' as shown by the arrow 21 is transmitted through the focusing Rondo lens 6' and the interference film filter 8'.
, enters the ball lens 9' through the glass block 7',
The light is focused by the ball lens 9' and received by the light receiving element 11.

光ファイバ1.1’ 、l’ 、1”’内を波長λ4.
λ2の光信号を双方向伝送させることができる。
Wavelengths λ4.
Optical signals of λ2 can be transmitted bidirectionally.

次にバイパス機能について述べる。第2図において、ガ
ラスブロック7.7′を矢印12方向に180”回転さ
せる。その状態を示した構成が第3図(a)である、光
フアイバ1内を矢印17のごとく伝搬してきた光信号(
波長λ、)は集束性ロッドレンズ6を通過して干渉膜フ
ィルタ8に入射する。そしてこのフィルタ8で反射され
、ふたたびロッドレンズ6を通過し、光ファイバ1より
も間隔d′だけ離れた光フアイバ2内に集光され。
Next, we will discuss the bypass function. In FIG. 2, the glass block 7.7' is rotated 180" in the direction of arrow 12. The configuration shown in FIG. signal(
The wavelength λ, ) passes through the focusing rod lens 6 and enters the interference film filter 8 . The light is then reflected by this filter 8, passes through the rod lens 6 again, and is focused into the optical fiber 2 which is spaced apart from the optical fiber 1 by a distance d'.

矢印18のごとく光フアイバ2内を伝搬する。そして集
束性ロッドレンズ6′、ガラスブロック7′を通過して
干渉膜フィルタ8′に入射する。
It propagates within the optical fiber 2 as indicated by an arrow 18. The light then passes through a focusing rod lens 6' and a glass block 7' and enters an interference film filter 8'.

このフィルタ8′で反射され、ふたたびガラスブロック
7′、集束性ロッドレンズ6′を通過し、光ファイバ2
よりも間隔dだけ離れた光フアイバ1′内に集光され、
矢印19のごとく光フアイバ1′内を伝搬し、バイパス
機能が達成される。
It is reflected by this filter 8', passes through the glass block 7' and the focusing rod lens 6' again, and is connected to the optical fiber 2.
The light is focused into an optical fiber 1' spaced apart by a distance d from
The light propagates within the optical fiber 1' as indicated by arrow 19, and a bypass function is achieved.

次にループバック機能を第3図(b)を用いて説明する
0例えば光ファイバ1′が断線したとすると、光信号送
信部4からの光信号を端局5から5′へ送ることができ
ない、その場合には半導体発光素子10から波長λ2の
光信号を光フアイバ1内に送り込み、第1図の光ファイ
バ1.1′を通じて端局5′へ伝送させる。逆に光ファ
イバ1が断線したとすると、端局5 から5への光信号
の伝送は端局5″′から波長λ3の光信号を光ファイバ
1″′、1″、1′を通じて行ない、受光素子11で受
光する。
Next, the loopback function will be explained using Fig. 3(b).0For example, if the optical fiber 1' is disconnected, the optical signal from the optical signal transmitter 4 cannot be sent from the terminal station 5 to 5'. In that case, an optical signal of wavelength λ2 is sent from the semiconductor light emitting device 10 into the optical fiber 1 and transmitted to the terminal station 5' through the optical fiber 1.1' shown in FIG. Conversely, if optical fiber 1 is disconnected, the optical signal is transmitted from terminal station 5 to terminal station 5 by transmitting an optical signal with wavelength λ3 from terminal station 5'' through optical fibers 1'', 1'', 1', and receiving the light. The element 11 receives the light.

以上のように5本発明では光スィッチを使わないでバイ
パス機能と、ループバック機能を簡易な構成で実現でき
る。また、波長の異なる2つの光信号を用いて双方向の
伝送も行なわせることができる。
As described above, in the present invention, the bypass function and the loopback function can be realized with a simple configuration without using an optical switch. Further, bidirectional transmission can also be performed using two optical signals with different wavelengths.

本発明は上記実施例に限定されない。集束性ロンドレン
ズ6,6′の代わりに、球レンズを用いてもよい。また
2つのロッドレンズ6.6′は密に接触し、アレイ状に
配置させるようにしてもよい、ガラスブロック7.7′
は集束性ロンドレンズ6,6′と同様にロッド状、ある
いは台形状のガラスブロックでもよい。ガラスブロック
7(7′)と集束性ロッドレンズ6 (6’ )を加え
た全長1/4ピツチか、それよりも若干短かい長さに設
定する。ガラスブロック7.7′は矢印12方向以外に
、矢印40.40’で示すように、集束性ロンドレンズ
6,6′の径方向に180”回転するようにしてバイパ
ス機能をもたせてもよ()。
The invention is not limited to the above embodiments. A spherical lens may be used instead of the focusing Rondo lenses 6, 6'. The two rod lenses 6.6' may also be in close contact and arranged in an array, the glass blocks 7.7'
may be a rod-shaped or trapezoidal glass block like the focusing Rondo lenses 6, 6'. The total length including the glass block 7 (7') and the focusing rod lens 6 (6') is set to 1/4 pitch, or slightly shorter than that. In addition to the direction of the arrow 12, the glass block 7.7' may be rotated 180'' in the radial direction of the focusing Rondo lenses 6, 6' as shown by the arrows 40 and 40' to provide a bypass function ( ).

〔発明の効果〕〔Effect of the invention〕

本発明は簡易な構成でバイパス機能とループバック機能
を実現できる新しいループ状ネットワークシステム用光
モジュールおよび光端局を得ることができる。したがっ
て、経済的なシステムを実現できる。また、通常時でも
2波長双方向伝送を行なえるので、より大容量情報伝送
を実現できる。
The present invention makes it possible to obtain a new optical module and optical terminal station for a loop network system that can realize a bypass function and a loopback function with a simple configuration. Therefore, an economical system can be realized. In addition, since two-wavelength bidirectional transmission can be performed even in normal conditions, larger-capacity information transmission can be realized.

さらに本発明の光端局は対称な構成になっているので1
作り易く、またサイズも小形である。
Furthermore, since the optical terminal station of the present invention has a symmetrical configuration, 1
It is easy to make and is small in size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイパス機能をもったループ状光ネツト
ワークシステムの概略図、第2図及び第3図は本発明の
ループ状ネットワークシステムに用いる光モジュールお
よび光端局の実施例、第4図は本発明の光端局に用いる
干渉膜フィルタの特性図である。 1.1’ 、1’ 、1”’、13.14・・・光ファ
イバ。 2・・・バイパス用光フアイバ伝送路、3・・・光信号
受信部、4・・・光信号送信部、5 t 5 ’ 、 
5 # 、 5r*1・・・光端局、6,6′・・・集
束性ロッドレンズ、7゜7′・・・ガラスブロック、8
,8′・・・干渉膜フィルタ、9.9’・・・レンズ、
1o・・・半導体発光素子、11・・・半導体受光素子
、12,40,40’・・・回転方向を示す矢印、15
,15’ 、16,16’ 。 17.18,19,20,21・・・光信号の伝搬方冨
 3  図 (久ン (bン 第  4  図 (み) (b) ′JL夫
FIG. 1 is a schematic diagram of a conventional loop-shaped optical network system with a bypass function, FIGS. 2 and 3 are examples of optical modules and optical terminal stations used in the loop-shaped network system of the present invention, and FIG. The figure is a characteristic diagram of an interference film filter used in the optical terminal station of the present invention. 1.1', 1', 1"', 13.14... Optical fiber. 2... Optical fiber transmission line for bypass, 3... Optical signal receiving section, 4... Optical signal transmitting section, 5 t 5',
5 #, 5r*1... Optical terminal station, 6, 6'... Focusing rod lens, 7°7'... Glass block, 8
, 8'... interference film filter, 9.9'... lens,
1o... Semiconductor light emitting element, 11... Semiconductor light receiving element, 12, 40, 40'... Arrow indicating rotation direction, 15
,15', 16,16'. 17. 18, 19, 20, 21... Optical signal propagation method Figure 3 (b) Figure 4 (b) 'JL Husband

Claims (1)

【特許請求の範囲】 1、波長λ_2の光信号を伝送用光フアイバBに伝搬さ
せる機能と、該伝送用光フアイバBを伝搬してきた波長
λ_1の光信号を左、右に角度切換変位機能により該伝
送用光フアイバBの左、右に並置させた受信用光フアイ
バA、バイパス用光フアイバCに切換え伝搬させる機能
を有する光モジユール。 2、伝送用光フアイバEを伝搬してきた波長λ_2の光
信号を受光素子と受光する機能、該伝送用光フアイバE
の左に並置させた送信用光フアイバFを伝搬してきた波
長λ_1の光信号を角度切換変位機能により該伝送用光
フアイバEに伝搬させる機能、該伝送用光フアイバEの
右に並置させたバイパス用光フアイバDを伝搬してきた
波長λ_1の光信号を該角度切換変位機能により該伝送
用光フアイバEに伝搬させる機能を有する光モジユール
。 3、波長λ_2の光信号を伝送用光フアイバBに伝搬さ
せる機能と、該伝送用光フアイバBを伝搬してきた波長
λ_1の光信号を左、右に角度切換変位機能により該伝
送用光フアイバBの左、右に並置させた受信用光フアイ
バA、バイパス用光フアイバCに切換え伝搬させる機能
を有する光モジユールと、伝送用光フアイバEを伝搬し
てきた波長λ_2の光信号を受光素子と受光する機能と
、該伝送用光フアイバEの左に並置させた送信用光フア
イバFを伝搬してきた波長λ_1の光信号を角度切換変
位機能により該伝送用光フアイバEに伝搬させる機能、
該伝送用光フアイバEの右に並置させたバイパス用光フ
アイバDを伝搬してきた波長λ_1の光信号を該角度切
換変位機能により該伝送用光フアイバEに伝搬させる機
能を有する光モジユールとを備え、光フアイバAの他端
には光信号受信部を、光フアイバFの他端には光信号送
信部をとりつけ、光フアイバCの他端とDの他端を接続
し、伝送用光フアイバB、Eに2つの波長の異なる光信
号を双方向伝送させるようにしたバイパスおよびループ
バツク機能を有する光端局。
[Claims] 1. A function for propagating an optical signal with a wavelength λ_2 to a transmission optical fiber B, and a function for changing the angle of the optical signal having a wavelength λ_1 propagated through the transmission optical fiber B to the left or right. An optical module having a function of switching and propagating the transmission optical fiber A to the receiving optical fiber A and the bypass optical fiber C arranged on the left and right sides of the transmission optical fiber B. 2. A function of receiving an optical signal of wavelength λ_2 propagated through the transmission optical fiber E with a light receiving element, and the transmission optical fiber E
A function to propagate the optical signal of wavelength λ_1, which has been propagated through the transmission optical fiber F juxtaposed on the left side, to the transmission optical fiber E by an angle switching displacement function, and a bypass juxtaposed on the right side of the transmission optical fiber E. An optical module having a function of propagating an optical signal of wavelength λ_1 that has been propagated through the transmission optical fiber D to the transmission optical fiber E using the angle switching displacement function. 3. A function to propagate an optical signal of wavelength λ_2 to transmission optical fiber B, and a function to change the angle of the optical signal of wavelength λ_1 that has propagated through the transmission optical fiber B to the left or right. An optical module having the function of switching and propagating the optical fiber A for reception and the optical fiber C for bypass arranged side by side on the left and right side of and a function of propagating the optical signal of wavelength λ_1 that has been propagated through the transmission optical fiber F arranged on the left side of the transmission optical fiber E to the transmission optical fiber E by an angle switching displacement function.
an optical module having a function of propagating an optical signal of wavelength λ_1, which has been propagated through a bypass optical fiber D juxtaposed to the right side of the transmission optical fiber E, to the transmission optical fiber E using the angle switching displacement function; , an optical signal receiving section is attached to the other end of the optical fiber A, an optical signal transmitting section is attached to the other end of the optical fiber F, the other end of the optical fiber C and the other end of the optical fiber D are connected, and the transmission optical fiber B is attached. , E is capable of bidirectionally transmitting optical signals of two different wavelengths, and has bypass and loopback functions.
JP60060674A 1985-03-27 1985-03-27 Optical module and optical terminal station Pending JPS61219924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060674A JPS61219924A (en) 1985-03-27 1985-03-27 Optical module and optical terminal station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060674A JPS61219924A (en) 1985-03-27 1985-03-27 Optical module and optical terminal station

Publications (1)

Publication Number Publication Date
JPS61219924A true JPS61219924A (en) 1986-09-30

Family

ID=13149101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060674A Pending JPS61219924A (en) 1985-03-27 1985-03-27 Optical module and optical terminal station

Country Status (1)

Country Link
JP (1) JPS61219924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176125A (en) * 2007-01-19 2008-07-31 Hitachi Cable Ltd Filter assembly and optical module using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176125A (en) * 2007-01-19 2008-07-31 Hitachi Cable Ltd Filter assembly and optical module using the same
US8340522B2 (en) 2007-01-19 2012-12-25 Hitachi Cable, Ltd. Filter assembly and optical module using same

Similar Documents

Publication Publication Date Title
US4834485A (en) Integrated fiber optics transmitter/receiver device
EP0347120A2 (en) Optical data link dual wavelength coupler
US6501876B1 (en) Bidirectional optical communication device and bidirectional optical communication apparatus
CN1201153A (en) Optical depolarizing device and method of depolarizing light-beam
RU2204155C2 (en) Optical insulator
US6781757B2 (en) Polarization insensitive tunable optical filters
JP3681938B2 (en) Polymer fiber optical transmission system
JPH11271548A (en) Two-way optical communication unit, and two-way optical communication equipment
JPS61219924A (en) Optical module and optical terminal station
JPH0527136A (en) Optical multiplexer/demultiplexer
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
JPS60214316A (en) Optical module for two-way transmission
GB2144557A (en) Optical coupler
JPS5814112A (en) Optical demultiplexer
JPH05172693A (en) Monitor devise of star bus type optical fiber line network
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
CN109669249B (en) Dual-wavelength bidirectional transmission optical assembly and method
JP3120777B2 (en) Optical waveguide type signal light monitor device
KR20190115541A (en) Bidirectional optical transceiver constituting a refractive index distribution type lens that reduces the incidence angle
CA1192630A (en) Fail-safe acousto-optic t-couplers for optical communication networks
US20020057871A1 (en) Method for aligning optical components
JPH01113708A (en) Optical multiplexing/demultiplexing module
US20040190810A1 (en) Polarization controller and light network system using the same
KR0165493B1 (en) Wavelength division multiplexer for optical telecommunication
GB2126748A (en) Optical coupling device