JPS61216718A - Wet waste gas desulfurization apparatus - Google Patents

Wet waste gas desulfurization apparatus

Info

Publication number
JPS61216718A
JPS61216718A JP60057847A JP5784785A JPS61216718A JP S61216718 A JPS61216718 A JP S61216718A JP 60057847 A JP60057847 A JP 60057847A JP 5784785 A JP5784785 A JP 5784785A JP S61216718 A JPS61216718 A JP S61216718A
Authority
JP
Japan
Prior art keywords
slurry
gypsum
absorption tower
gas desulfurization
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057847A
Other languages
Japanese (ja)
Inventor
Hiromitsu Asano
浅野 廣満
Shigeru Nozawa
野沢 滋
Masakatsu Nishimura
西村 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60057847A priority Critical patent/JPS61216718A/en
Publication of JPS61216718A publication Critical patent/JPS61216718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To reduce the volumes of the machinery and piping valves of a slurry system, by providing a classifier to the line discharging a slurry to the next process or to the outside of the system from the recirculation tank of an absorbing tower and selectively separating gypsum from the slurry to recover the same to an absorbing system as a seed crystal. CONSTITUTION:SOX in exhaust gas is absorbed and removed by a slurry containing a Ca absorbent in an absorbing tower 3. Gypsum particles are selectively concn. and separated in the cyclone 17 provided to the line for withdrawing a part of the recirculation slurry to a reaction tank 10 from the recirculation tank 5 of the absorbing tower 3 and a proper amount of the gypsum concn. slurry is supplied to the recirculation tank 5 of the absorbing tower 3 through a conduit 18 so that the concn. of gypsum in the absorbent slurry in the recirculation tank 5 of the absorbing tower 3 is set to predetermined concn. to be recovered as a seed crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式排煙脱硫装置に係り、特に吸収系のスケー
リング防止のための種晶を回収するようにした湿式排煙
脱硫装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a wet flue gas desulfurization system, and particularly relates to a wet flue gas desulfurization system that collects seed crystals to prevent scaling of an absorption system. be.

(従来の技術) 現在実用化されている湿式排煙脱硫装置はカルシウム系
の吸収剤を用い、副生品として石膏を回収する方法が主
流である。すなわち、吸収剤として石灰石、生石灰また
は消石灰を使用する石灰石−石膏法(または石灰−石膏
法)である。
(Prior Art) The mainstream wet flue gas desulfurization equipment currently in practical use uses a calcium-based absorbent and recovers gypsum as a by-product. That is, the limestone-gypsum method (or lime-gypsum method) uses limestone, quicklime or slaked lime as an absorbent.

第5図は、石灰石を吸収剤とし、副生品として石膏を回
収する従来の排煙脱硫装置の説明図である。ボイラ等の
排ガス1は、陳じん塔2に導かれ、ここで冷却、除じん
されたのち、吸収塔3に導かれ、ここで循環スラリと接
触し、デミスタ4でミストを除去されたのち、吸収塔3
の頂部から排出される。一方、吸収剤スラリである石灰
石スラリは、石灰石スラリポンプ9により吸収塔循環タ
ンり5に供給され、そのスラリは吸収塔循環ポンプ7に
より吸収塔に設置されたスプレノズル8に供給され、排
ガスと接触し、排ガス中のSOxを吸収除去し循環タン
クに戻り、循環使用される。吸収後のスラリは、副生品
回収系へ抜き出される。
FIG. 5 is an explanatory diagram of a conventional flue gas desulfurization device that uses limestone as an absorbent and recovers gypsum as a byproduct. Exhaust gas 1 from a boiler or the like is led to a dust tower 2, where it is cooled and dust removed, and then led to an absorption tower 3, where it comes into contact with circulating slurry, and after the mist is removed by a demister 4, Absorption tower 3
is discharged from the top. On the other hand, limestone slurry, which is an absorbent slurry, is supplied to the absorption tower circulation tank 5 by a limestone slurry pump 9, and the slurry is supplied to a spray nozzle 8 installed in the absorption tower by an absorption tower circulation pump 7, and comes into contact with the exhaust gas. Then, it absorbs and removes SOx in the exhaust gas, returns to the circulation tank, and is used for circulation. After absorption, the slurry is extracted to a by-product recovery system.

反応槽10へ抜き出されたスラリは硫酸を添加すること
により未反応の石灰石を石膏とし、また、酸化に好適な
p)(に調整される。
By adding sulfuric acid to the slurry taken out to the reaction tank 10, unreacted limestone is converted into gypsum, and the slurry is adjusted to p) which is suitable for oxidation.

pHfll整されたスラリは、酸化塔供給ポンプ11に
より酸化塔12に供給され、ここで亜硫酸カルシウムは
空気酸化されて石膏となり、シックナ13′に導かれ、
濃縮された後、石膏スラリは遠心分離機14で親水され
、粉末の石膏15が回収される。シソフナのオーバーフ
ロー水は系内の補給水として再利用される。
The pH-adjusted slurry is supplied to the oxidation tower 12 by the oxidation tower supply pump 11, where the calcium sulfite is air oxidized to become gypsum, and is led to the thickener 13'.
After being concentrated, the gypsum slurry is hydrophilized in a centrifuge 14 and powdered gypsum 15 is recovered. The overflow water of Shisofuna is reused as make-up water within the system.

一方、吸収系のスケーリング防止のため、吸収塔循環タ
ンク5内の石膏濃度が5wt%以上になるようにシソフ
ナ出ロスラリを導管16によって遠心分離機排液タンク
14内に一定量供給し、種晶として吸収塔循環タンク5
に戻している。
On the other hand, in order to prevent scaling of the absorption system, a certain amount of the gypsum waste slurry from the shisofuna is supplied into the centrifuge waste liquid tank 14 through the conduit 16 so that the gypsum concentration in the absorption tower circulation tank 5 is 5 wt% or more, and seed crystals are As absorption tower circulation tank 5
is returning to .

(発明が解決しようとする問題点) しかしながら、このような従来装置では、系内で最もス
ラリ濃度が高いシソフナ13出ロスラリ(約20wt%
スラリ)を種晶として回収しているので、吸収系から石
膏回収系までスラリ量が種晶量分だけ多く循環すること
になり、機器(タンク、ポンプ)および配管弁類を全て
大型化しなければならず、また、ポンプ類が大きくなる
ことにより、モータ出力が大きくなり、電力消費量も多
く赴る欠点を有している。以上の理由により、機器、配
管弁類およびユーティリティを低減する脱硫装置が要望
されていた。
(Problems to be Solved by the Invention) However, in such a conventional device, the slurry from Shisofuna 13, which has the highest slurry concentration in the system (approximately 20 wt%
Since the slurry (slurry) is collected as seed crystals, the amount of slurry is circulated from the absorption system to the gypsum recovery system in an amount equal to the amount of seed crystals, and all equipment (tanks, pumps) and piping valves must be enlarged. Furthermore, as the size of the pumps increases, the motor output increases, resulting in increased power consumption. For the above reasons, there has been a demand for a desulfurization device that reduces equipment, piping valves, and utilities.

本発明の目的は、上記した従来技術の欠点をなくし、脱
硫装置の大半を占めるスラリ系の機器および配管弁類の
容量を低減する湿式排煙脱硫装置を提供することにある
An object of the present invention is to provide a wet flue gas desulfurization device that eliminates the drawbacks of the prior art described above and reduces the capacity of slurry-based equipment and pipe valves that make up the majority of the desulfurization device.

(問題点を解決するための手段) 要するに本発明は、SOxと吸収剤が反応して生成する
石膏(CaSO4・2H20)の粒径が吸収系スラリ中
の固形物の中で最も大きいことに着目し、該スラリを吸
収塔循環タンクから抜き出すラインに石膏粒子を分離す
る装置、例えばサイクロン、マルチサイクロンまたはシ
ックナ等を設け、石膏を吸収系スラリから選択的に分離
濃縮し、これを種晶とするようにしたものである。
(Means for Solving the Problems) In short, the present invention focuses on the fact that the particle size of gypsum (CaSO4.2H20) produced by the reaction between SOx and the absorbent is the largest among the solids in the absorbent slurry. Then, a device for separating gypsum particles, such as a cyclone, multi-cyclone, or thickener, is installed in the line that extracts the slurry from the absorption tower circulation tank, and gypsum is selectively separated and concentrated from the absorption slurry, and this is used as seed crystals. This is how it was done.

すなわち、本発明は、排□ガス中の亜硫酸ガスを、吸収
塔内で吸収塔循環タンクから循環される□カルシウム系
の吸収剤スラリと接触した後、石膏回収のために次工程
に供給するか、または石膏を回収せずにそのまま排出す
る湿式排煙脱硫装置において、吸収塔循環タンクからス
ラリを次工程または系外に排出するスラリラインに分級
器を設置し、スラリ中の固形物から石膏を選択的に分離
し、その一定量を種晶として吸収系に回収するラインを
設けたことを特徴とするものである。
That is, the present invention allows sulfur dioxide gas in the exhaust gas to be brought into contact with calcium-based absorbent slurry circulated from the absorption tower circulation tank within the absorption tower, and then supplied to the next process for gypsum recovery. , or in wet flue gas desulfurization equipment that discharges gypsum as it is without recovering it, a classifier is installed in the slurry line that discharges the slurry from the absorption tower circulation tank to the next process or outside the system, and separates the gypsum from the solids in the slurry. It is characterized by the provision of a line for selectively separating and recovering a certain amount of it as a seed crystal into an absorption system.

本発明において、副生品として石膏を回収しない場合は
、吸収剤スラリ循環タンク(またはその循環ライン)か
らスラリを排出するラインに分級器を設ければよく、ま
た石膏を回収する場合は、吸収塔循環タンク(またはそ
の循環ライン)から次工程の反応槽(または酸化塔)に
スラリを供給するラインに分級器を設ければよい。
In the present invention, if gypsum is not to be recovered as a by-product, a classifier may be installed in the line that discharges the slurry from the absorbent slurry circulation tank (or its circulation line), and if gypsum is to be recovered, the absorbent A classifier may be provided in the line that supplies slurry from the tower circulation tank (or its circulation line) to the reaction tank (or oxidation tower) in the next step.

分級器としては、サイクロン、マルチサイクロン、シッ
クナなどが挙げられるが、石膏粒子を選択的に回収でき
るものであれば上記に限定されない。マルチサイクロン
を設定した場合は1、含有変化に応じてマルチサイクロ
ンを稼働させることによめ、回収量を制御することがで
きる。
Examples of the classifier include a cyclone, a multi-cyclone, and a thickener, but the classifier is not limited to the above as long as it can selectively collect gypsum particles. When a multi-cyclone is set, the recovery amount can be controlled by operating the multi-cyclone according to the change in content.

(実施例) 以下、本発明の一実施例を第1図により説明する。この
装置は、吸収塔の吸収剤スラリ循環系統以外i第5図の
従来装置と同じであるが、吸収塔循環タンク5の循環ス
ラリの一部を抜き出し、石゛ 前分離装置としてサイク
ロン内で石膏粒子を濃縮分離した後、吸収塔循環タンク
5内の吸収剤スラリ中の石膏濃度が所定濃度になるよう
に、該石膏濃縮スラリを適当量抜き出す導管18を設け
た点が異なっている。すなわち、ボイラ等の排ガス1は
、除しん塔2へ導かれ、ここで除しん、冷却されたのち
吸収塔3へ導入される。ここで排ガス中のSOxは、カ
ルシウム系吸収剤を含むスラリにより除去されたのち、
同伴ミストをデミスフ4により除去し、吸収塔から排出
される。一方、吸収剤スラリは吸収塔循環タンク5に供
給され、吸収塔循環ポンプ7により、吸収塔へ供給され
循環使用される。吸収塔循環タンク5のスラリは一部吸
収剤スラリの供給量に見合って反応槽1−0に抜き出さ
れる。このスラリ中の固形物は、吸収剤とSOxが反応
して生成した亜硫酸カルシウム、未反応の吸収剤、ガス
中のダスト、吸収剤中の不純物およびガス中の酸素と亜
硫酸カルシウムが・反応して生成した石膏である。これ
らの反応式は下記のようである。
(Example) An example of the present invention will be described below with reference to FIG. This device is the same as the conventional device shown in Figure 5 except for the absorbent slurry circulation system in the absorption tower, but a part of the circulating slurry in the absorption tower circulation tank 5 is extracted and used as a gypsum pre-separation device in a cyclone. The difference is that after the particles are concentrated and separated, a conduit 18 is provided to draw out an appropriate amount of the gypsum concentrated slurry so that the gypsum concentration in the absorbent slurry in the absorption tower circulation tank 5 reaches a predetermined concentration. That is, exhaust gas 1 from a boiler or the like is led to a dust removal tower 2, where it is removed and cooled, and then introduced into an absorption tower 3. Here, SOx in the exhaust gas is removed by a slurry containing a calcium-based absorbent, and then
The entrained mist is removed by the demisf 4 and discharged from the absorption tower. On the other hand, the absorbent slurry is supplied to an absorption tower circulation tank 5, and then supplied to the absorption tower by an absorption tower circulation pump 7 for circulation use. A portion of the slurry in the absorption tower circulation tank 5 is extracted to the reaction tank 1-0 in proportion to the amount of absorbent slurry supplied. The solids in this slurry include calcium sulfite produced by the reaction between the absorbent and SOx, unreacted absorbent, dust in the gas, impurities in the absorbent, and the reaction between oxygen in the gas and calcium sulfite. This is the gypsum produced. These reaction formulas are as follows.

CaCO3+SO2+H20− Ca S O3□ ]、 / 2 H20+ C○2+
1/2H20Ca SO3’ 1/2H20+1/20
2 +3/2H20Ca SO4□ 2 H20 本発明においては、第1表に示すごとく、スラリ中の固
形物の中では石膏(CaSO3・2H20)粒子が最も
大きいことから、この石膏をサイクロン17により選択
的に濃縮分離し、吸収系スラリ中の石膏濃度が所定濃度
(5wt%以上)になるのに必要な量を導管18を介し
て吸収塔循環タンク5に種晶として回収している。
CaCO3+SO2+H20− Ca SO3□ ], / 2 H20+ C○2+
1/2H20Ca SO3' 1/2H20+1/20
2 +3/2H20Ca SO4□ 2 H20 In the present invention, as shown in Table 1, gypsum (CaSO3.2H20) particles are the largest among the solids in the slurry, so this gypsum is selectively removed by the cyclone 17. The gypsum is concentrated and separated, and the amount necessary for the gypsum concentration in the absorption system slurry to reach a predetermined concentration (5 wt% or more) is collected as seed crystals into the absorption tower circulation tank 5 via the conduit 18.

第  1  表 一方、種晶を分離した後のスラリは導管19により従来
の副生品回収系(反応槽10以下)に抜き出される。
Table 1 Meanwhile, the slurry after separating the seed crystals is extracted through a conduit 19 to a conventional by-product recovery system (reaction tank 10 or below).

前記サイクロン17として第4図に示すサイクロンを用
い、スラリ入口座20の流速5m/5eC5スラリ濃度
10.1 w t%で固液分離したところ、スラリ出口
座21の液中の粒子径は30μm以下となった。
Using the cyclone shown in FIG. 4 as the cyclone 17, solid-liquid separation was performed at a flow rate of 5 m/5eC5 slurry concentration of 10.1 wt% in the slurry input port 20, and the particle size in the liquid in the slurry outlet port 21 was 30 μm or less. It became.

一方、30μm以上の石膏粒子を含む濃縮スラリは種晶
回収口22から取出され、吸収塔循環タンク6に戻され
る。このように、30μm以下の亜硫酸カルシウム、未
反応の吸収剤、ガス中のダスト、吸収剤中の不純物は石
膏と分離して副生品回収系へ供給し、また、石膏はこれ
らと分離されて種晶として回収することができる。
On the other hand, the concentrated slurry containing gypsum particles of 30 μm or more is taken out from the seed crystal recovery port 22 and returned to the absorption tower circulation tank 6. In this way, calcium sulfite of 30 μm or less, unreacted absorbent, dust in the gas, and impurities in the absorbent are separated from the gypsum and supplied to the byproduct recovery system, and the gypsum is separated from these. It can be collected as seed crystals.

次に、第2図は、本発明の他の実施例を示すもので、負
荷変化時および中間負荷運用時に対応するため、サイク
ロンの代わりにマルチサイクロン17Aを設け、処理S
Ox量に見合って、流量制御器24と制御弁16で抜き
出し量を制御し、かつ、抜き出し量に見合ってマルチサ
イクロンの処理数量を0N−OFF弁23で制御するこ
とにより種晶回収量を制御するようにしたものである。
Next, FIG. 2 shows another embodiment of the present invention, in which a multi-cyclone 17A is provided instead of a cyclone in order to cope with load changes and intermediate load operation.
The amount of seed crystals recovered is controlled by controlling the extraction amount with the flow rate controller 24 and the control valve 16 in accordance with the amount of Ox, and controlling the processing quantity of the multi-cyclone with the 0N-OFF valve 23 in accordance with the extraction amount. It was designed to do so.

このように負荷変化に対応し、導管−18Aからの種晶
回収量を制御することにより、円滑な装置の運用を図る
ことができる。
In this way, by controlling the amount of seed crystals collected from the conduit 18A in response to load changes, smooth operation of the apparatus can be achieved.

さらに第3図は、吸収系のあとに副生品回収設備を設置
しない場合において分級器17で種晶を回収した後、ス
ラリを廃棄する場合を示したちのである。
Further, FIG. 3 shows a case where the slurry is discarded after collecting the seed crystals with the classifier 17 in the case where by-product recovery equipment is not installed after the absorption system.

上記実施例は、いずれも脱硫システムとしてダスト分離
システムについて記載したが、本発明は、ダスト混合シ
ステムについても同様に適用することができる。
Although the above embodiments have all been described with respect to a dust separation system as a desulfurization system, the present invention can be similarly applied to a dust mixing system.

(発明の効果) 本発明によれば、吸収後のスラリを副生品回収系に抜き
出した後の反応槽までの間で種晶を回収するため、副生
品回収系の機器および配管弁類を必要以上に大きくする
ことなく、すなわち種晶回収量分だけ(例えば約10%
)機器および配管弁類の容量を小さくすることができ、
また機器を小さくしたことにより電力消費量も低減する
ことが可能となる。また副生品回収系を設けない場合に
は、酸化工程以後の工程で種晶を回収することができな
いので、本発明が特に有効である。
(Effects of the Invention) According to the present invention, in order to recover seed crystals between the slurry after absorption and the reaction tank after being extracted to the by-product recovery system, the equipment and piping valves of the by-product recovery system without making it larger than necessary, i.e. by the amount of recovered seed crystals (for example, about 10%)
) The capacity of equipment and piping valves can be reduced,
Furthermore, by making the equipment smaller, it is also possible to reduce power consumption. Further, if a by-product recovery system is not provided, seed crystals cannot be recovered in the steps after the oxidation step, so the present invention is particularly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による湿式排煙脱硫装置のフローを示
゛す図、第2図は、本発明の分級器としてマルチサイク
ロンを採用した場合の実施例を示す図、第3図は、本発
明の吸収系のあとに副生品回収設備を設置しない場合の
実施例を示す図、第4図は、本発明に用いるサイクロン
の正面図、第5図は、従来の湿式排煙脱硫装置のフロー
を示す図である。
Fig. 1 is a diagram showing the flow of the wet flue gas desulfurization apparatus according to the present invention, Fig. 2 is a diagram showing an embodiment in which a multi-cyclone is adopted as the classifier of the present invention, and Fig. Figure 4 is a front view of the cyclone used in the present invention, and Figure 5 is a conventional wet flue gas desulfurization device. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)排ガス中の亜硫酸ガスを、吸収塔内で吸収塔循環
タンクから循環されるカルシウム系の吸収剤スラリと接
触した後、石膏回収のために次工程に供給するか、また
は石膏を回収せずにそのまま排出する湿式排煙脱硫装置
において、吸収塔循環タンクからスラリを次工程または
系外に排出するスラリラインに分級器を設置し、スラリ
中の固形物から石膏を選択的に分離し、その一定量を種
晶として吸収系に回収するラインを設けたことを特徴と
する湿式排煙脱硫装置。
(1) After the sulfur dioxide gas in the flue gas comes into contact with the calcium-based absorbent slurry circulated from the absorption tower circulation tank in the absorption tower, it is either supplied to the next process for gypsum recovery, or the gypsum is recovered. In wet flue gas desulfurization equipment that discharges the slurry as is without removing it, a classifier is installed in the slurry line that discharges the slurry from the absorption tower circulation tank to the next process or outside the system, and selectively separates gypsum from the solids in the slurry. A wet flue gas desulfurization device is characterized in that it is equipped with a line that collects a certain amount of it into an absorption system as a seed crystal.
(2)特許請求の範囲第1項において、分級器としてサ
イクロンまたはシックナを設置することを特徴とする湿
式排煙脱硫装置。
(2) The wet flue gas desulfurization apparatus according to claim 1, characterized in that a cyclone or a thickener is installed as a classifier.
(3)特許請求の範囲第1項において、分級器としてマ
ルチサイクロンを設置し、負荷変化時に負荷に応じて回
収量を制御できるようにしたことを特徴とする湿式排煙
脱硫装置。
(3) The wet flue gas desulfurization device according to claim 1, characterized in that a multi-cyclone is installed as a classifier, and the amount of recovery can be controlled according to the load when the load changes.
JP60057847A 1985-03-22 1985-03-22 Wet waste gas desulfurization apparatus Pending JPS61216718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057847A JPS61216718A (en) 1985-03-22 1985-03-22 Wet waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057847A JPS61216718A (en) 1985-03-22 1985-03-22 Wet waste gas desulfurization apparatus

Publications (1)

Publication Number Publication Date
JPS61216718A true JPS61216718A (en) 1986-09-26

Family

ID=13067366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057847A Pending JPS61216718A (en) 1985-03-22 1985-03-22 Wet waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS61216718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095698A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for filling with gypsum slurry and limestone slurry in flue gas desulfurizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095698A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for filling with gypsum slurry and limestone slurry in flue gas desulfurizer

Similar Documents

Publication Publication Date Title
JPH0536085B2 (en)
US6149713A (en) Flue gas treating process
US4452766A (en) Double alkali process for removal of sulfur dioxide from gas streams
JPH0359730B2 (en)
JP2002191934A (en) Wet flue-gas desulfurization facility
CN201132104Y (en) Desulfurizing device via method for oxidizing lime/carbide mud residue -gypsum out of the tower
JPS61216718A (en) Wet waste gas desulfurization apparatus
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
JP3519498B2 (en) Wet flue gas desulfurization equipment
JPS62225226A (en) Wet stack-gas desulfurization facility
JP2002172313A (en) Wet flue-gas desulfurization apparatus
JPS597493B2 (en) Exhaust gas desulfurization equipment
JPH08126814A (en) Wet type flue gas desulfurizer and method therefor
JPH0526525B2 (en)
JP4192319B2 (en) Wet flue gas desulfurization method and wet flue gas desulfurization apparatus
JPS6261620A (en) Wet waste gas desulfurization method
JPH03165814A (en) Method for removing impurity from solution after gypsum separation
JPS5939328A (en) Desulfurization of exhaust gas
JPH0459024A (en) Stack gas desulferization method
JPS5943211B2 (en) Flue gas desulfurization method
JPS5939327A (en) Wet type desulfurization of exhaust gas
JP3232513B2 (en) Wet flue gas desulfurization device and method for collecting effluent from centrifugal separator
JP2000176242A (en) Wet flue gas desulfurization process and equipment therefor
JPS6094117A (en) Wet desulfurizer
JPH0239543Y2 (en)