JPS61216447A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61216447A
JPS61216447A JP60058902A JP5890285A JPS61216447A JP S61216447 A JPS61216447 A JP S61216447A JP 60058902 A JP60058902 A JP 60058902A JP 5890285 A JP5890285 A JP 5890285A JP S61216447 A JPS61216447 A JP S61216447A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
substrate
semiconductor substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60058902A
Other languages
Japanese (ja)
Other versions
JP2615541B2 (en
Inventor
Kazunari Shirai
白井 一成
Yasuji Ema
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60058902A priority Critical patent/JP2615541B2/en
Publication of JPS61216447A publication Critical patent/JPS61216447A/en
Application granted granted Critical
Publication of JP2615541B2 publication Critical patent/JP2615541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To connect a semiconductor substrate 1 and a first conductive layer 3 at the shortest distance, to increase the speed of a device and to improve the degree of integration thereof by removing one parts of the first conductive layer and an insulating layer, forming a stepped section and applying a second conductive layer onto the semiconductor substrate and the first conductive layer while covering the stepped section. CONSTITUTION:An insulating layer 2 and a first conductive layer 3 are applied onto a semiconductor substrate 1 in succession, one parts of the first conductive layer 3 and the insulating layer 2 are removed to shape a stepped section 5, and a second conductive layer 6 is applied onto the semiconductor substrate 1 and the first conductive layer 3 while covering the stepped section 5. That is, the gate 3 and the substrate 1 are connected by the wiring layer 6 applied while covering the stepped section 5. The wiring layer 6 is wired at the shortest distance, thus improving the degree of integration.

Description

【発明の詳細な説明】 〔概要〕 本発明は絶縁層上の導電層と基板を接続する場合、例え
ばMis(金属−絶縁体一半導体 構造)デバイスのゲ
ートと奉板(ソース領域)間、あるいはDRAM (ダ
イナミックランダムアクセスメモリ)用メモリセルの!
報蓄積キャパシタの下部電極と基板(ソース領域)間等
の接続を行う際、接続しようとする両方の部位を露出し
た段差を形成し、ここに導電層を被着して接続すること
により、高集積化を可能としたものである。
[Detailed Description of the Invention] [Summary] The present invention is suitable for connecting a conductive layer on an insulating layer and a substrate, for example, between a gate and a substrate (source region) of a Mis (metal-insulator-semiconductor structure) device, or Memory cells for DRAM (dynamic random access memory)!
When making a connection between the lower electrode of a storage capacitor and the substrate (source region), etc., a step is formed that exposes both parts to be connected, and a conductive layer is applied thereto to make the connection. This enables integration.

〔産業上の利用分野〕[Industrial application field]

本発明は旧Sデバイスの配線構造の形成方法に関する。 The present invention relates to a method for forming a wiring structure of an old S device.

旧S構造は論理、およびメモリ集積回路としてもっとも
多く採用されている。近年これらの機能の大規模化にと
もない、集積回路は極限まで高集積化、高密度化が要請
されている。
The old S structure is most commonly used for logic and memory integrated circuits. In recent years, as the scale of these functions has increased, integrated circuits have been required to be extremely highly integrated and densely packed.

配線構造についても、高集積化のために種々の改善がな
されている。
Various improvements have also been made to the wiring structure for higher integration.

〔従来の技術〕[Conventional technology]

第3図(1)と(2)はそれぞれ従来例によるMISデ
バイスのゲートと基板間を接続する配線構造を示す平面
図と断面図である。
FIGS. 3(1) and 3(2) are a plan view and a cross-sectional view, respectively, showing a wiring structure connecting a gate and a substrate of a conventional MIS device.

図は1層構造の接続例である。The figure shows an example of connection in a one-layer structure.

図において、31は半導体基板、32は絶縁層、33は
素子領域を画定するフィールド酸化膜、34はゲート電
極を兼ね、ゲートと基板間を接続する配線層である。
In the figure, 31 is a semiconductor substrate, 32 is an insulating layer, 33 is a field oxide film that defines an element region, and 34 is a wiring layer that also serves as a gate electrode and connects the gate and the substrate.

配線層34と基板31との接続はコンタクトホール35
においてなされる。
The connection between the wiring layer 34 and the substrate 31 is through the contact hole 35.
It is done in.

この場合、配線層はコの字型に迂回され、高集積化を阻
害している。
In this case, the wiring layer is detoured in a U-shape, which hinders high integration.

第4図(1)と(2)はそれぞれ他の従来例によるMI
Sデバイスのゲートと基板間を接続する配線構造を示す
平面図と断面図である。
Figures 4 (1) and (2) are MIs according to other conventional examples, respectively.
FIG. 2 is a plan view and a cross-sectional view showing a wiring structure connecting a gate and a substrate of an S device.

図は2層構造の接続例である。The figure shows an example of a two-layer structure.

図において、41は半導体基板、42は絶縁層、43は
素子領域を画定するフィールド酸化膜、44はゲート電
極、45はゲートと基板間を接続する配線層である。′ 配線層45と基板41、およびゲート44との接続はそ
れぞれコンタクトホール46、および47においてなさ
れる。
In the figure, 41 is a semiconductor substrate, 42 is an insulating layer, 43 is a field oxide film that defines an element region, 44 is a gate electrode, and 45 is a wiring layer that connects the gate and the substrate. ' Wiring layer 45 is connected to substrate 41 and gate 44 through contact holes 46 and 47, respectively.

この場合も、配線層はL字型に迂回され、高集積化を阻
害している。
In this case as well, the wiring layer is detoured in an L-shape, which hinders high integration.

第5図は従来例によるDRAM用メモリセルの情報蓄積
トレンチキャパシタの下部電極と基板間を接続する配線
構造を示す断面図である。
FIG. 5 is a sectional view showing a wiring structure connecting a lower electrode of an information storage trench capacitor of a conventional DRAM memory cell to a substrate.

図において、51は半導体基板、52は絶縁層、53は
素子領域を画定するフィールド酸化膜、54はゲート電
極、55はキャパシタの下部電極で第1の多結晶珪素(
ポリSt)層、56はキャパシタの誘電体でポリSi層
55を熱酸化により形成した薄い二酸化珪素(SiOz
)層、57はキャパシタの対向電極で第2のポリSiN
、58は基板51と下部電極の第1のポリSi層55を
接続するコンタクトホールである。
In the figure, 51 is a semiconductor substrate, 52 is an insulating layer, 53 is a field oxide film that defines an element region, 54 is a gate electrode, and 55 is a lower electrode of a capacitor, which is a first polycrystalline silicon (
A polySi layer 56 is a capacitor dielectric and is a thin silicon dioxide (SiOz) layer formed by thermally oxidizing the polySi layer 55.
) layer, 57 is the counter electrode of the capacitor and is the second poly-SiN layer.
, 58 are contact holes connecting the substrate 51 and the first poly-Si layer 55 of the lower electrode.

超大規模集積回路においては、このようなトレンチキャ
パシタを用いて高集積化を行っているが、コンタクトホ
ール58における高集積化に適したコンタクトの形成は
困難である。
In ultra-large scale integrated circuits, such trench capacitors are used to achieve high integration, but it is difficult to form contacts in contact holes 58 that are suitable for high integration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、絶縁層上の第1の導電層と基板を接続する場合、
例えばMISデバイスのゲートと基板間、あるいはメモ
リセルの情報蓄積キャパシタの下部電極と基板間等の接
続を行う際、接続しようとする両方の部位は距離を隔て
て接続していたため、高集積化を阻害していた。
Conventionally, when connecting a first conductive layer on an insulating layer and a substrate,
For example, when connecting between the gate and substrate of an MIS device, or between the lower electrode of the information storage capacitor of a memory cell and the substrate, the two parts to be connected are separated by a distance, making it difficult to achieve high integration. It was hindering me.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基板1上に絶縁層2と第1
の導電層3を順次被着し、 第1の導電層3と絶縁層2の1部を除去して段差5を形
成し、 段差5を覆って半導体基板1と第1の導電層3上に第2
の導電層6を被着する 工程を有する半導体装置の製造方法により達成される。
To solve the above problem, an insulating layer 2 and a first
conductive layers 3 are sequentially deposited, a portion of the first conductive layer 3 and the insulating layer 2 is removed to form a step 5, and a step 5 is formed on the semiconductor substrate 1 and the first conductive layer 3, covering the step 5. Second
This is achieved by a method for manufacturing a semiconductor device, which includes the step of depositing a conductive layer 6.

段差5は、絶縁層4を開口して半導体基板1と第1の導
電層3の表面を露出して形成されてもよい。
The step 5 may be formed by opening the insulating layer 4 and exposing the surfaces of the semiconductor substrate 1 and the first conductive layer 3.

〔作用〕[Effect]

本発明は半導体基板1と、基板1上に被着された絶縁層
2上にパターニングして形成された第1の導電層3の1
部、または全面を露出した後、露出部に選択的に第2の
導電層6を被着して半導体基板lと第1の導電層3を最
短距離で接続することができ、デバイスの高速化、高集
積化を可能とするものである。
The present invention includes a semiconductor substrate 1 and a first conductive layer 3 formed by patterning on an insulating layer 2 deposited on the substrate 1.
After exposing a portion or the entire surface, the second conductive layer 6 is selectively deposited on the exposed portion to connect the semiconductor substrate l and the first conductive layer 3 over the shortest distance, thereby increasing the speed of the device. , which enables high integration.

〔実施例〕〔Example〕

第1図(1)と(2)はそれぞれ本発明によるHISデ
バイスのゲートと基板間を接続する配線構造を示す平面
図と断面図である。
FIGS. 1(1) and 1(2) are a plan view and a cross-sectional view, respectively, showing the wiring structure connecting the gate and substrate of the HIS device according to the present invention.

図において、1は半導体基板でSi基板、2は絶縁層で
SiO2層、3は第1の導電層でポリStよりなるゲー
ト電極、4はカバー絶縁層でSiO2層、5は段差、6
は第2の導電層でゲートと基板間を接続する配線層であ
る。
In the figure, 1 is a semiconductor substrate, which is a Si substrate, 2 is an insulating layer, which is an SiO2 layer, 3 is a first conductive layer, which is a gate electrode made of polySt, 4 is a cover insulating layer, which is a SiO2 layer, 5 is a step, and 6
is a second conductive layer and is a wiring layer that connects the gate and the substrate.

なお、11はp型珪素(St)基体、12は素子領域を
画定するフィールド酸化膜、13はn゛型ソース領域、
14はn+型トドレイン領域ある。
Note that 11 is a p-type silicon (St) substrate, 12 is a field oxide film that defines an element region, 13 is an n-type source region,
14 is an n+ type drain region.

ゲート3と基板lとの接続は段差5を覆って被着された
配線層6によってなされる。
Connection between the gate 3 and the substrate 1 is made by a wiring layer 6 deposited over the step 5.

配線層6の被着は段差5を覆ってStの選択エピタキシ
ャル成長により行う。この場合、カバー絶縁層4上には
成長しないで、基板1のSi上には単結晶が、ゲート3
のポリSi上にはポリStが成長する。
The wiring layer 6 is deposited over the step 5 by selective epitaxial growth of St. In this case, the single crystal does not grow on the cover insulating layer 4, but on the Si of the substrate 1, and the single crystal grows on the gate 3.
Poly-St grows on the poly-Si.

エピタキシャル成長は、反応ガスとしてトリクロルシラ
ン(SiHCls)、ドーパントとしてフォスヒン(P
H3)を用いて、反応容器を0.1 Torrに減圧し
、800℃で熱分解して行う。
Epitaxial growth was performed using trichlorosilane (SiHCls) as a reactive gas and phosphin (P) as a dopant.
The reaction vessel is depressurized to 0.1 Torr using H3) and thermally decomposed at 800°C.

あるいはアンドープで成長し、後でイオン注入等を用い
てドープしてもよい。
Alternatively, it may be grown undoped and then doped later using ion implantation or the like.

また配線層6はタングステン(!A)の選択成長によっ
も形成できる。
Further, the wiring layer 6 can also be formed by selective growth of tungsten (!A).

この場合、配線層6は最短距離で配線され、高集積化を
可能とする。
In this case, the wiring layer 6 is wired at the shortest distance, making it possible to achieve high integration.

第2図は本発明によるDRAM用メモリセルの情、報蓄
積トレンチキャパシタの下部電極と基板間を接続する配
線構造を示す断面図である。
FIG. 2 is a sectional view showing a wiring structure connecting the lower electrode of the information storage trench capacitor and the substrate of the DRAM memory cell according to the present invention.

図において、1は半導体基板でSi基板、2は絶縁層で
SiO□層、3は第1の導電層で第1のポリSi層より
なるキャパシタの下部電極、5は段差、6は第2の導電
層で下部電極と基板間を接続するSi層よりなる配線層
で、第1図と同様に段差5を覆って成長して形成する。
In the figure, 1 is a semiconductor substrate, which is a Si substrate, 2 is an insulating layer, which is a SiO□ layer, 3 is a first conductive layer, which is a lower electrode of a capacitor made of a first poly-Si layer, 5 is a step, and 6 is a second This is a wiring layer made of a Si layer that connects the lower electrode and the substrate as a conductive layer, and is grown to cover the step 5 in the same manner as in FIG.

なお、IN、tp型Si基体、12は素子領域を画定す
゛るフィールド酸化膜、13はn゛型ソース領域である
In addition, 12 is a field oxide film defining an element region, and 13 is an n-type source region.

21はキャパシタの誘電体で、下部電極3の上に成長さ
れたSi配線層6を熱酸化により形成した薄いSi02
層である。
21 is a capacitor dielectric, which is a thin SiO2 layer formed by thermal oxidation of the Si wiring layer 6 grown on the lower electrode 3.
It is a layer.

22はキャパシタの対向電極で第2のポリSi層である
22 is a second poly-Si layer which is a counter electrode of the capacitor.

この場合も、配線層6は最短距離で配線され、高集積化
を可能とする。
In this case as well, the wiring layer 6 is wired at the shortest distance, making it possible to achieve high integration.

〔発明の効果〕 以上詳細に説明したように本発明によれば、絶縁層上の
導電層と基板を接続する場合、接続しようとする両方の
部位は、最短距離を隔てて接続されるため、デバイスの
高集積化を可能とする。
[Effects of the Invention] As described in detail above, according to the present invention, when connecting a conductive layer on an insulating layer and a substrate, both parts to be connected are connected with the shortest distance between them. Enables high integration of devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(11と(2)はそれぞれ本発明によるMISデ
バイスのゲートと基板間を接続する配線構造を示す平面
図と断面図、 第2図は本発明によるDRAM用メモリセルの情報蓄積
トレンチキャパシタの下部電極と基板間を接続する配線
構造を示す断面図、 第3図(l)と(2)はそれぞれ従来例によるMISデ
バイスのゲートと基板間を接続する配線構造を示す平面
図と断面図、 第4図(1)と(2)はそれぞれ他の従来例によるMI
Sデバイスのゲートと基板間を接続する配線構造を示す
平面図と断面図、 第5図は従来例によるDRAM用メモリセルの情報蓄積
トレンチキャパシタの下部電極と基板間を接続する配線
構造を示す断面図である。 図において、 1は半導体基板でSi基板、 2は絶縁層で5tCh層、 3は第1の導電層で第1のポリSi層よりなるゲート電
極、またはキャパシタの下部電極、4はカバー絶縁層で
5iOz層、 5は段差、 6は第2の導電層でゲート、または下部電極と基板間を
接続する配線層である。 11はp型St基体、 12は素子領域を画定するフィールド酸化膜、13はn
+型ソース領域、 14はn1型ドレイン領域、 21はキャパシタの誘電体でSiO□層、22はキャパ
シタの対向電極で第2のポリSt層/5Jll−明l二
よ5 虐乙φう(、才濁1j(シ。 系1 図 M HF4 t=よ3*−Y/rシタnl1taa*′
!62 図 8−B′断面       c−c’ @面復来介・1
4#乙秀菓1朽1立L           イ乞つO
(来イ列り自己含気オ落道り第5図       系杢
図 イ是釆j+)t=、J−5人ヤバシクシ曲を線講遣 茅5 図
FIG. 1 (11 and (2)) are a plan view and a cross-sectional view, respectively, showing the wiring structure connecting the gate and substrate of the MIS device according to the present invention, and FIG. 2 is an information storage trench capacitor of a DRAM memory cell according to the present invention. 3(l) and (2) are a plan view and a sectional view, respectively, showing the wiring structure connecting the gate and substrate of a conventional MIS device. , Figures 4 (1) and (2) respectively show MI according to other conventional examples.
A plan view and a cross-sectional view showing the wiring structure connecting the gate and the substrate of the S device, and FIG. 5 is a cross-sectional view showing the wiring structure connecting the lower electrode of the information storage trench capacitor of the conventional DRAM memory cell and the substrate It is a diagram. In the figure, 1 is a semiconductor substrate, which is a Si substrate, 2 is an insulating layer, which is a 5tCh layer, 3 is a first conductive layer, which is a gate electrode made of a first poly-Si layer, or the lower electrode of a capacitor, and 4 is a cover insulating layer. 5iOz layer, 5 is a step, and 6 is a second conductive layer, which is a wiring layer that connects the gate or the lower electrode and the substrate. 11 is a p-type St substrate, 12 is a field oxide film that defines the element region, and 13 is an n-type St substrate.
+ type source region, 14 is n1 type drain region, 21 is the dielectric of the capacitor, which is the SiO□ layer, and 22 is the counter electrode of the capacitor, which is the second polyst layer/5Jll-Meijiyo5 Said 1j (shi. System 1 Figure M HF4 t=yo3*-Y/rshita nl1taa*'
! 62 Fig. 8-B' cross section c-c' @ surface restoration 1
4# Otoshuka 1K1TachiL Ibeitsu O
(The 5th figure of the self-contained fall road in the next row, the 5th figure of the series, is the column j +) t =, J-5 people's Yabashikushi song is a line lecture 5 Figures

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板(1)上に絶縁層(2)と第1の導電
層(3)を順次被着し、 該第1の導電層(3)と該絶縁層(2)の1部を除去し
て段差(5)を形成し、 該段差(5)を覆って半導体基板(1)と第1の導電層
(3)上に第2の導電層(6)を被着する工程を有する
ことを特徴とする半導体装置の製造方法。
(1) Sequentially depositing an insulating layer (2) and a first conductive layer (3) on a semiconductor substrate (1), and depositing a part of the first conductive layer (3) and the insulating layer (2). forming a step (5) by removing the step, and depositing a second conductive layer (6) on the semiconductor substrate (1) and the first conductive layer (3) to cover the step (5). A method for manufacturing a semiconductor device, characterized in that:
(2)前記第2の導電層(6)を、半導体基板(1)と
第1の導電層(3)上に選択的に成長することを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) The semiconductor according to claim 1, characterized in that the second conductive layer (6) is selectively grown on the semiconductor substrate (1) and the first conductive layer (3). Method of manufacturing the device.
(3)半導体基板(1)と、該半導体基板(1)上に被
着された第1の絶縁層(2)の上にパターニングして形
成された第1の導電層(3)とを覆って第2の絶縁層(
4)を被着し、 該半導体基板(1)と第1の導電層(3)の表面を露出
して第2の絶縁層(4)に開口部を形成し、該開口部に
第2の導電層(6)を被着する 工程を有することを特徴とする半導体装置の製造方法。
(3) Covering the semiconductor substrate (1) and the first conductive layer (3) formed by patterning on the first insulating layer (2) deposited on the semiconductor substrate (1). and the second insulating layer (
4), exposing the surfaces of the semiconductor substrate (1) and the first conductive layer (3) and forming an opening in the second insulating layer (4), and forming a second conductive layer in the opening. A method for manufacturing a semiconductor device, comprising the step of depositing a conductive layer (6).
(4)前記第2の導電層(6)を該開口部に選択的に成
長することを特徴とする特許請求の範囲第3項記載の半
導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 3, characterized in that the second conductive layer (6) is selectively grown in the opening.
JP60058902A 1985-03-22 1985-03-22 Method for manufacturing semiconductor device Expired - Lifetime JP2615541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058902A JP2615541B2 (en) 1985-03-22 1985-03-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058902A JP2615541B2 (en) 1985-03-22 1985-03-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61216447A true JPS61216447A (en) 1986-09-26
JP2615541B2 JP2615541B2 (en) 1997-05-28

Family

ID=13097732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058902A Expired - Lifetime JP2615541B2 (en) 1985-03-22 1985-03-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2615541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189938A (en) * 1988-01-26 1989-07-31 Mitsubishi Electric Corp Semiconductor device having electric contact structure
US5250458A (en) * 1987-02-25 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor memory device having stacked memory capacitors
US5427972A (en) * 1987-02-13 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Method of making a sidewall contact

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587479A (en) * 1978-12-25 1980-07-02 Mitsubishi Electric Corp Insulated gate type field effect transistor
JPS5673473A (en) * 1979-11-06 1981-06-18 Yokogawa Hewlett Packard Ltd Manufacture of semiconductor element
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode
JPS5893255A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS58200557A (en) * 1982-05-18 1983-11-22 Nec Corp Forming method for multilayer wiring
JPS593964A (en) * 1982-06-29 1984-01-10 Semiconductor Res Found Semiconductor integrated circuit
JPS59141262A (en) * 1983-02-02 1984-08-13 Nec Corp Semiconductor memory cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587479A (en) * 1978-12-25 1980-07-02 Mitsubishi Electric Corp Insulated gate type field effect transistor
JPS5673473A (en) * 1979-11-06 1981-06-18 Yokogawa Hewlett Packard Ltd Manufacture of semiconductor element
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode
JPS5893255A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS58200557A (en) * 1982-05-18 1983-11-22 Nec Corp Forming method for multilayer wiring
JPS593964A (en) * 1982-06-29 1984-01-10 Semiconductor Res Found Semiconductor integrated circuit
JPS59141262A (en) * 1983-02-02 1984-08-13 Nec Corp Semiconductor memory cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427972A (en) * 1987-02-13 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Method of making a sidewall contact
US5250458A (en) * 1987-02-25 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor memory device having stacked memory capacitors
JPH01189938A (en) * 1988-01-26 1989-07-31 Mitsubishi Electric Corp Semiconductor device having electric contact structure

Also Published As

Publication number Publication date
JP2615541B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US5091761A (en) Semiconductor device having an arrangement of IGFETs and capacitors stacked thereover
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
JPH01198065A (en) Semiconductor memory device
JPH0326547B2 (en)
JPS61216447A (en) Manufacture of semiconductor device
JPH1022467A (en) Semiconductor device and manufacture thereof
JP2772375B2 (en) Semiconductor storage device
JPH01270344A (en) Manufacture of semiconductor device
JPH0423467A (en) Manufacture of semiconductor memory
JPH01270343A (en) Manufacture of semiconductor device
JPH0254960A (en) Manufacture of semiconductor device
JPS63237456A (en) Semiconductor device
JPS6113388B2 (en)
JPS6185857A (en) Manufacture of semiconductor memory
JP3067329B2 (en) Semiconductor memory device and method of manufacturing the same
JPS62113467A (en) Semiconductor memory device
JP3104262B2 (en) Semiconductor device and manufacturing method thereof
JPS609155A (en) Memory device
JPS62247560A (en) Dynamic random access memory cell
JPH01260857A (en) Semiconductor device and manufacture thereof
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPS61289657A (en) Semiconductor storage device
JPH0363828B2 (en)
JPH03112151A (en) Active layer stacked element
JPH06338593A (en) Manufacture of semiconductor memory device