JPS61212815A - Reflection optical system - Google Patents

Reflection optical system

Info

Publication number
JPS61212815A
JPS61212815A JP60054015A JP5401585A JPS61212815A JP S61212815 A JPS61212815 A JP S61212815A JP 60054015 A JP60054015 A JP 60054015A JP 5401585 A JP5401585 A JP 5401585A JP S61212815 A JPS61212815 A JP S61212815A
Authority
JP
Japan
Prior art keywords
mirror
optical axis
optical system
systems
reflective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60054015A
Other languages
Japanese (ja)
Other versions
JPH0644100B2 (en
Inventor
Takamasa Hirose
広瀬 隆昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60054015A priority Critical patent/JPH0644100B2/en
Publication of JPS61212815A publication Critical patent/JPS61212815A/en
Publication of JPH0644100B2 publication Critical patent/JPH0644100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To compensate various aberrations excellently by providing four mirror systems which form an object image, making the optical axis of at least one of them eccentric from those of other optical systems, and providing the whole system with reduction image formation power. CONSTITUTION:Luminous flux from an object point P1 in a specific area on an optical axis is reflected by reflecting mirrors M1, M2, and M3 of the 1st mirror system S1 in the order of a concave, a convex, and a concave mirror, to form an image at the 1st image point P'1. This image point P'1 is aligned to the image point of the 2nd mirror system S2, and the luminous flux is reflected by reflecting mirrors M4, M5, and M6 similarly and then reflected by the 3rd and the 4th mirror systems S3 and S4 to form an image at the 4th image point P'4. The optical axis L12 in which optical axes of the 1st and the 2nd mirror systems S1 and S2 are aligned and the optical axis L34 of the 3rd and the 4th mirror systems S3 and S4 are made parallel and eccentric to prevent mechanical interference among respective mirror systems and reduce the eclipse of the luminous flux, thereby compensating comatic aberration, distortion aberra tion, etc., excellently although this system is a reduction system on the whole.

Description

【発明の詳細な説明】 (技術分野) 本発明は反射光学系に関し、特にIC,LSI等の半導
体を製造するときの投影露光装置に用いられる反射光学
系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a reflective optical system, and more particularly to a reflective optical system used in a projection exposure apparatus for manufacturing semiconductors such as ICs and LSIs.

(従来技術) 従来より投影露光装置を用いIC,LSI等の集積回路
のパターンをシリ、コンウニハーニ焼付′ ける為の反
射光学系が例えば特開昭48−1203948−120
39号5公・報や特開昭52−5544号、公報では凹
面鏡と凸面鏡の2枚の反射鏡を曲率中心が′同心若しく
は非同心とな仝よ5:うKし;、かり全系の結像倍率が
等倍Kfiるようにして反射光学系を構成している。又
特開昭sa −1002:10号゛公報で・は凹面鏡と
凸面鏡の他に負の屈折力のメニスカス形状のレンズを用
い光学性能の向上を図っているよ。
(Prior Art) Conventionally, a reflective optical system for printing patterns of integrated circuits such as ICs and LSIs using a projection exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 48-1203948-120.
39 No. 5 and Japanese Patent Application Laid-Open No. 52-5544, the centers of curvature of two reflecting mirrors, a concave mirror and a convex mirror, are concentric or non-concentric. The reflective optical system is configured such that the imaging magnification is equal to Kfi. Further, in Japanese Patent Application Laid-open No. 1002:10, a meniscus-shaped lens with negative refractive power is used in addition to a concave mirror and a convex mirror to improve optical performance.

このように従来の反射光学系は結像倍率が等倍であった
為に光学系を対称に配置して構成することが出来、諸収
差の:うちコミ収差や歪曲収差等が零とな)少ない数の
反射鏡にもかかわらず比較的高い光学性能を容易に得る
ことができた。
In this way, since the conventional reflective optical system has the same imaging magnification, the optical system can be arranged symmetrically, and various aberrations (including commis aberration and distortion aberration) are eliminated. Relatively high optical performance could be easily obtained despite the small number of reflecting mirrors.

一方R近IC製造においてはマスクlIi上のパターン
をウェハ面上に縮少させて投影露光する所謂ステッパー
型の投影露光装置がマスク製作、=造時めゴぽ、ウエシ
・のうムシ等の点で示もして全体的にスループットが向
上する為各方面で使用・きれてきている。      
 、 :・1・[゛しがし゛ながら一般に投影露光装置
に川伝る反□射光学;系を結像倍率示縮少系とな名よう
に゛構成゛”′尤゛ようとすると光学系を非対称で構成
しな゛(1てはならず、乙の結果、等倍系゛め場谷に;
庇べそコ′17収痙や歪曲収゛差廓−が多(発生じ1、
全体的に光学゛性能を良好に維持す不のが困難σヒなつ
そくる。
On the other hand, in R-near IC manufacturing, a so-called stepper-type projection exposure apparatus that reduces the pattern on the mask IIi onto the wafer surface and exposes it by projection is used to produce the mask. It is being used and used in various fields because it improves the overall throughput.
, :・1・[However, in general, reflection optics is transmitted to projection exposure equipment; if you try to configure the system as an imaging magnification reduction system, the optical system Do not compose it asymmetrically (it must not be 1, and as a result of B, it should be a same-size system;
There are many cases of convulsions and distortion convergence (occurrence 1,
It is difficult to maintain good overall optical performance.

特に結像倍電が’A−にの本の1.゛良好に収差補正を
行うのが大変困難である。    ・この他投影露光装
置の投影系を反・射光学系に・よらず屈折光学系めみで
構成しにもの本種′々提案されている。しかし表がらL
4*mm光学系は高解像力を得る為になるぺ〈短波長側
め光を使用する為に透過率が低下となシ、更に使用する
ガラスの種類が限られて□くる為”°に色収差を良好に
補正するのが困難f′ある。1゛ (本発明の目的)′一 本発明は投影露光装置に(好適な縮□少系の高性、1 能な反射系のみ、若しくは反射系と屈折系を用い九反射
光学系の提供を目的とする。   、・1′・(本発明
の目的を達成する為の主たる特徴、)・。
Particularly, book 1 in which the imaging magnification is 'A-'. ``It is very difficult to perform good aberration correction. - In addition, various proposals have been made to configure the projection system of a projection exposure apparatus using a refractive optical system instead of a reflective optical system. However, L
The 4*mm optical system is used to obtain high resolution; however, since it uses light at shorter wavelengths, the transmittance decreases, and because the types of glass that can be used are limited, chromatic aberration occurs. It is difficult to satisfactorily correct f′.1゛(Objective of the present invention)′1 The present invention provides a projection exposure apparatus (suitable for use with a high reduction system, 1) only a reflective system capable of The object is to provide a nine-reflection optical system using a refractive system and a refractive system. , 1' (Main features for achieving the object of the present invention).

凹面鏡、凸面鏡そして凹面鏡・の順に反射2さぜ□九後
]讐物体II2を所定位置に結像させる。よう゛にした
・a 、b ノ=i ’y −’系s、’ 、 s’2
. s3’ 、 s4を順次配・置、し・(+前記42
めミ9□−系511s2,531sj射光学系であって
ζ前記4つのミラー系 8’:’      ;プに″
・おい七各夕・結像を繰シ返すように構成し九反1 ラ S2.S、S4 のうち少なくとも1つの電う・廿系の
光軸を他侃う1−系の光軸と偏心させ、1、か    
、づ光軸上の・所定領域・のみを結像用として使用する
と共に全系め結像倍率が縮少系1となる□よう・K−構
成したことであ:る’6         4.   
     :’又本発明6月的を更に良好に達成する為
の特、−徴は実施例・において詳述されている゛。  
、       ゛(実施例)、′     ・  ・
  \11・、     、;第′1図は本発明の←実
施例の光学系の概略図である。同図の反射光学系は同一
方向に曲率中     ;゛心含有しか、つ伺−光・軸
上に位置するように凹面     ′鏡、凸面鏡そl−
て凹面鏡の3つの反射@を有するミラー不全4つ配置l
−1全体の結像倍率が縮少となるように構成している。
After reflection in the order of concave mirror, convex mirror, and concave mirror, the object II2 is imaged at a predetermined position. So, a, b = i 'y -' system s, ', s'2
.. Place s3' and s4 in sequence, and (+ 42 above)
Memi 9□-system 511s2, 531sj radiation optical system with the four mirror systems ζ 8':';
・Oi Tanabata ・Constructed so that the image formation is repeated repeatedly. The optical axis of at least one of S and S4 is decentered with respect to the optical axis of the other 1-system, and
This is because only a predetermined area on the optical axis is used for imaging, and the imaging magnification of the entire system is reduced to 1.
:'Furthermore, features and features for achieving the objectives of the present invention even better are detailed in the Examples.
,゛(Example),′ ・・
\11., ,; Figure '1 is a schematic diagram of an optical system according to an embodiment of the present invention. The reflective optical system in the same figure has curvature in the same direction;
A four-mirror arrangement with three reflections of a concave mirror
-1 The overall imaging magnification is reduced.

同図では反射鏡M□〜M3で第1ミラー系S工、反射鏡
M4〜M6で第2ミラー系S2、反射鏡M7〜M9で第
3ミラー系S  反射鏡M0゜〜M12で第4電ラー系
S4  を各々構成している。光軸上の所定領域内の物
点P からの光束は第1ミラー系S0の反射鏡M□9M
22M3  の順で反射し第1像点P0′に結像する。
In the figure, the first mirror system S is made up of reflecting mirrors M□ to M3, the second mirror system S2 is made up of reflecting mirrors M4 to M6, the third mirror system S is made up of reflecting mirrors M7 to M9, and the fourth mirror system is made up of reflecting mirrors M0° to M12. They each constitute a color system S4. The light flux from the object point P within a predetermined area on the optical axis is reflected by the reflecting mirror M□9M of the first mirror system S0.
It is reflected in the order of 22M3 and is imaged at the first image point P0'.

第1像点P′は第2ミラー系 S2の物点P2になり物
点P2からの光束は第2ミラー系S2の反射鏡M4. 
Ms 、 M6  の順で反射し第2像点P2′に結像
する。以下同様に第2像点P2′即ち物点P3は第3ミ
ラー系S3により第3像点P′に、物点P4は第4ミラ
ー系 S4により第4像点P4′に結像するように構成
されている。
The first image point P' becomes the object point P2 of the second mirror system S2, and the light flux from the object point P2 becomes the reflecting mirror M4 of the second mirror system S2.
It is reflected in the order of Ms and M6 and is imaged at the second image point P2'. Similarly, the second image point P2', that is, the object point P3, is imaged to the third image point P' by the third mirror system S3, and the object point P4 is imaged to the fourth image point P4' by the fourth mirror system S4. It is configured.

本実施例では各ミラー系を凹面鏡、凸面鏡そして凹面鏡
の所謂正、負、正の屈折力の3つの反射鏡全基本構成と
し、このミラー系を4つ用いることにより縮少系にもか
かわらず各ミラー系より発生する収差會少なくしつつ全
体的にコマ収差、歪曲収差等の諸収差の補正を良好に行
っている。
In this example, each mirror system has a basic configuration of a concave mirror, a convex mirror, and a concave mirror with so-called positive, negative, and positive refractive powers, and by using four of these mirror systems, each While reducing aberrations generated by the mirror system, various aberrations such as coma and distortion are well corrected overall.

又本実施例では4つのミラー系のうち少なくとも1つの
ミラー糸の光軸を他のミラー系の光軸に対して偏心させ
ることKより光軸上の所定領域、好ましくは円弧領域の
結像関係を良好に維持しつつ縮少系の反射光学系を達成
している。
Furthermore, in this embodiment, the optical axis of at least one of the mirror threads of the four mirror systems is decentered with respect to the optical axis of the other mirror systems. A reduced-reflection optical system has been achieved while maintaining good quality.

特に本実施例では第1ミラー系S工と第2ミラー系S2
の光軸を各々一致させた光軸L12と第3ミラー系S 
と第4ミラー系S4の光軸Lを各々一致させた光軸L3
4の2つの光軸を有している。そして光軸L12と光軸
L34′tl−平行偏心させることKより各ミラー系ど
おしの機械的な干渉を防止し、更に光束のケラレを少な
くし効率良く最終像面P、l/へ光束全導光させつつ全
体的に縮少系の反射光学系を構成している。
In particular, in this embodiment, the first mirror system S and the second mirror system S2
The optical axis L12 and the third mirror system S whose optical axes are aligned with each other
and the optical axis L3 of the fourth mirror system S4 are made to coincide with each other.
It has two optical axes of 4. By making the optical axis L12 and the optical axis L34'tl parallel and eccentric, K prevents mechanical interference between each mirror system, further reduces vignetting of the light beam, and efficiently directs the light beam to the final image plane P, l/. It constitutes a reflective optical system that is a reduced system as a whole while guiding all light.

このときの平行偏心量ΔXは第3ミラー系へ入射する主
光線の高さ會基準とするのが収差補正上及び光束のクラ
レを少なくする上で好ましい。
In this case, it is preferable to set the amount of parallel eccentricity ΔX based on the height of the principal ray incident on the third mirror system in order to correct aberrations and to reduce curvature of the light beam.

本実施例では物点P工の光軸L1゜からの高さをhとす
るとき像点p2′即ち物点P3の光軸”12からの高さ
h′は第1ミラー系と第2ミラー系の結像倍率が各々0
.42 、0.8  である為h/=0.336  と
なる。
In this embodiment, when the height of the object point P from the optical axis L1° is h, the height h' of the image point p2', that is, the object point P3 from the optical axis "12" is the first mirror system and the second mirror system. The imaging magnification of each system is 0.
.. 42, 0.8, so h/=0.336.

ここで光軸L34に対する物点P3の光軸上の高さをb
3とすると平行偏心量Δx’xΔx = 0.336h
 +h3     − ・・・・・−・・(イ)となる
ように定めている。尚収差補正上及び光束のクラレ防止
の点から必ずしも(イ)式に限定する必要はなく 0.7(β、・β2h+h3)<Δx(1,3(β1・
β2h+h3)・・・・・・・・・ (ロ) の範囲内で平行偏心させれば本発明の目的を達成するこ
とができる。
Here, the height of the object point P3 on the optical axis with respect to the optical axis L34 is b
3, parallel eccentricity Δx'xΔx = 0.336h
+h3 −・・・・・・−・(a). Note that from the viewpoint of correcting aberrations and preventing currant light beams, it is not necessary to limit the equation to formula (A), and 0.7 (β, ・β 2 h + h 3 ) < Δx (1, 3 (β 1 ・
β2h+h3) (b) The object of the present invention can be achieved by making the parallel eccentricity within the range.

例えば第3ミラー系の光軸全本実施例の如く第1、第2
ミラー系の光軸に対して平行偏心させないと第3ミラー
系の反射鏡M7 より反射した光束は第2ミラー系の反
射鏡M5でケラしてしまう。これを避ける為には例えば
プリズムを反射鏡M6 と反射鏡M7 との間に配置し
なくてはならない。この為投影露光装置に用いる場合に
は物点P と最終像点P4′との走査方向を合致させね
ばならないので新たに平面鏡や全反射プリズムを設けな
くてはならず装置全体が複雑化してくるので好ましくな
い。本実施例の如く偏心光学系音用いれば物点P と像
点pjの走査方向を同一とすることができる。
For example, as in this embodiment, the optical axis of the third mirror system is
If the mirror system is not eccentrically parallel to the optical axis, the light beam reflected from the reflecting mirror M7 of the third mirror system will be eclipsed by the reflecting mirror M5 of the second mirror system. In order to avoid this, for example, a prism must be placed between the reflecting mirrors M6 and M7. For this reason, when used in a projection exposure device, the scanning directions of the object point P and the final image point P4' must match, which requires the installation of an additional plane mirror or total reflection prism, which complicates the entire device. So I don't like it. If decentered optical system sound is used as in this embodiment, the scanning directions of the object point P and the image point pj can be made the same.

本実施例では4つのミラー系のうち少なくとも1つのミ
ラー系全等倍若しくは拡大系で構成することによって他
のミラー系で発生する諸収差、特に球面収差、コマ収差
、像面湾曲等を打ち消す様にしている。
In this embodiment, by configuring at least one of the four mirror systems as a fully equal magnification or magnification system, various aberrations occurring in the other mirror systems, especially spherical aberration, coma aberration, field curvature, etc., can be canceled out. I have to.

例えば4つのミラー系を全て縮少系で構成すれば結像倍
率の点からすれば効率的となるが各ミラー系より発生す
る諸収差を互いに打ち消す作用が少なくなシ全体的に良
好なる収差補正が難しくなる為である。
For example, if all four mirror systems are configured as reduction systems, it will be efficient in terms of imaging magnification, but the effect of canceling out various aberrations generated by each mirror system will be small, resulting in better overall aberration correction. This is because it becomes difficult.

本実施例では第1、・第2、第3、第4ミラー系の結像
倍率は各々0.42 、0.8 、0.65 、1.1
で全体の結像倍率は0.24である。
In this example, the imaging magnifications of the first, second, third, and fourth mirror systems are 0.42, 0.8, 0.65, and 1.1, respectively.
The overall imaging magnification is 0.24.

第4ミラー系を拡大系とし第1、第2、第3ミラー系で
発生した収差を補正するようにしている。
The fourth mirror system is used as an enlargement system to correct aberrations generated in the first, second, and third mirror systems.

□尚本発明°において光軸上円弧状の範囲内の結・像性
能を特に良好に維持する為には物点から数えて第1番目
の反射鏡の曲率半径?R1,第1番目と第i −1−1
番目の空気間隔をDl とすると1RII ) 1R2
1・・・・・−・・(1)1D11 > ID21  
  、、  ・・・・・・・・・(2)1なる条件全満
足させるのが好ましい。
□In the present invention, in order to maintain particularly good formation and imaging performance within an arcuate range on the optical axis, the radius of curvature of the first reflecting mirror counting from the object point must be adjusted. R1, 1st and i-1-1
If the th air interval is Dl, then 1RII) 1R2
1...--(1) 1D11 > ID21
,, (2) It is preferable to satisfy all conditions 1.

条件式111 、 +21は第1ミラー系の反射鏡M1
 とM2 及び空気間隔の構成に関するものであり条件
式(xl 、 (21k外れて反射鏡M2の曲率半径が
反射鏡町の曲率半径よ)大きくなるか又は反射鏡M2と
Mjとの間隔が反射鏡M0 とM2の間隔より大きくな
るとメリデイオナルフレア・−が増大すると共に非点隔
差が増大し円弧状の結像性能を良好に維持するのが難し
くなる。
Conditional expression 111, +21 is the reflecting mirror M1 of the first mirror system.
The conditional expression (xl) is related to the configuration of M2 and air spacing, and the conditional expression (xl) (if 21k deviates, the radius of curvature of reflector M2 becomes larger than the radius of curvature of reflector town) or the distance between reflector M2 and Mj becomes larger than that of reflector Mj. If the distance is larger than the distance between M0 and M2, the meridional flare increases and the astigmatism difference increases, making it difficult to maintain good arc-shaped imaging performance.

又本発明において更に好ましくは第2、第3、第41ラ
ー系において各反射鏡及び空気間隔を|R1 /R21
>lR4/R61・・・・・・・・・(3)lR7/R
81) |R1O/R11l  ・・・・・・・・・(
4)lR9/R81) 1R12/R11l  ・・・
・・・・・・(5)+0101 ) IDII+   
    ・・・・−・・・・(6)の如く設定するのが
好ましい。
Further, in the present invention, it is more preferable that the distance between each reflecting mirror and the air in the second, third, and 41st Ra systems is |R1 /R21
>lR4/R61・・・・・・・・・(3)lR7/R
81) |R1O/R11l ・・・・・・・・・(
4) lR9/R81) 1R12/R11l...
・・・・・・(5)+0101) IDII+
It is preferable to set as shown in (6).

条件式(3)は第1ミラー系の反射鏡M、 、、M2と
第2・ミラー系の反射鏡M、 、 M6060曲率半径
限し画面全体のコマ収差を良好に補正する為であシ、条
件式(3)ヲ外れると画面全体のコマフレアーが増大し
てくる。  ・ 条件式(4)は第3ミラー系の反射鏡M7. M8と第
4ミラー系の反射鏡M1G ’ ”110曲率半径に関
するもので1)条件式+41′を外れるとナシタル  
  □フレアーが増大し又非点隔差も増大してくる。
Conditional expression (3) is intended to satisfactorily correct the coma aberration of the entire screen by limiting the radius of curvature of the first mirror system M, , , M2 and the second mirror system M, , M6060. If conditional expression (3) is violated, the coma flare of the entire screen increases. - Conditional expression (4) applies to the reflecting mirror M7 of the third mirror system. Regarding the radius of curvature of M8 and the fourth mirror system M1G'``110'', 1) If the conditional expression +41' is not satisfied, it will not be possible.
□Flare increases and astigmatism difference also increases.

条件式(5)、(6)は第8ミラー系の反射鏡M8jM
9  と第4ミラー系の反射鏡M□□9M12及び第4
ミラニ系の各反射鏡の空気間隔に関するものであシ拡大
系とした第4ミ歩=系を有効に用い良好なる収差補正を
行う為であり条件式(5) 、 (6)を外れると画面
全体にフレアーが発生し、かつ非点収差も増大し1.良
好なる光学性能を得るのが困難となってくる。    
   ・ ・第3図は本発明の他の実施例の光学系の概
略図である。同図の実施例は第゛1図の実施例において
第1ミラー系S と第2ミラーM 82との間にレンズ
群Q0を配置し〜第3ミラー糸 S3と第4ξラー系S
4との間にレンズ群□・・Q*、を配置し10径比の拡
大を図)つり色収差の補正を良好に行っている。   
・□     □特に本実施例ではレンズ群Q1を第1
ミラー系S1の像面側に凸面を向けた正の屈折力、のメ
ニスカス形状のレンズで又レンズ群・Qit第aミラー
系S3の像面側に凹面管向けた正の屈折力のンニスカス
形状のレンズで各々構成し、軸外の球面収差の補正管行
うと共に色収差の補正を良好に行い口径比の拡大を図っ
ているd尚・ンンズ群Q1、q2’ta成するレンズは
メニスカスう、アあ、、。ヶヵ□エアあっ、17あっ1
.1も良い。、、4.1□・→       ・   
′ □系の電ツー系との間と縮少系のミラ、−系Ω−4
,:部に各々配置するのが収差の補正を容易に行、う9
とが出来るので好ましい。
Conditional expressions (5) and (6) apply to the reflecting mirror M8jM of the eighth mirror system.
9 and the fourth mirror system reflector M□□9M12 and the fourth
This is related to the air spacing between each reflector in the Milani system, and the purpose is to effectively use the magnifying system to perform good aberration correction.If conditional expressions (5) and (6) are violated, the screen Flare occurs throughout, and astigmatism also increases.1. It becomes difficult to obtain good optical performance.
- Fig. 3 is a schematic diagram of an optical system according to another embodiment of the present invention. The embodiment shown in FIG. 1 is the same as the embodiment shown in FIG.
Lens groups □...Q* are placed between the lens and 4 to enlarge the aperture ratio by 10), and chromatic aberration is well corrected.
・□ □Especially in this example, the lens group Q1 is
A meniscus-shaped lens with a positive refractive power with the convex surface facing the image surface side of the mirror system S1, and a meniscus-shaped lens with a positive refractive power with the concave tube facing the image surface side of the lens group Qit a-th mirror system S3. The lens groups Q1, q2'ta are composed of lenses that correct off-axis spherical aberrations, correct chromatic aberrations well, and expand the aperture ratio. ,,. Gaka□ Air Ah, 17 Ah 1
.. 1 is also good. ,,4.1□・→・
′ Between the □ system Dentsu system and the reduced system Mira, - system Ω-4
, : positioning them in the respective parts makes it easy to correct aberrations.
It is preferable because it can be done.

本実施例においでレンズ群Q1を第1ンラー系S□とし
て、レンズ群Q2′ft第3ミ、ラー系や一部として考
えたときの結像・倍率、は各々α42゜、0.8.0.
6971 LO4;t”ある。        5・次
に第1図、第3図に示す実施例の数値実施例を示す。R
1は物点P□から数えて第弊番目    □の反射鏡の
曲率半径〜 Diは物点P□から数えて第1番目と第1
+1番目の空気間隔、StO。
In this embodiment, when the lens group Q1 is considered as the first lens system S□, and the lens group Q2'ft is considered as the third mirror system or part of the mirror system, the imaging and magnification are α42° and 0.8°, respectively. 0.
6971 LO4; t" exists. 5.Next, numerical examples of the embodiments shown in FIGS. 1 and 3 will be shown.R
1 is the radius of curvature of the reflector at □ counting from the object point P □ Di is the 1st and 1st counting from the object point P □
+1st air interval, StO.

は石英ガラスである6空気間隔は光の進行方向左方から
右方に測ったときを正、その逆を負と    、・(1
、 して水上でいる。1 数値実施り1lI R[)    N 1  −700    −275.25  −12  
−11L5    230   13  −417.1
1  −1390   −14  602.5    
335   15  154.8   −292   
−16  495.925   707.25  17
  −434.83   −240   −18  −
234.69   259.03  19  −416
.88  −114L5  −11】20α33   
−280   −112  451.72      
  1Fe−3,75 スリット幅  1.5m+n 倍   率  A 平行偏心量  jx=140 数値実施例2 RD         N 1  −700    −275.25  −12  
   −16SL5        230     
  14    207.97    −1115  
−8in25   203.82  −107&66 
 −16   607+5    335   18 
  495.925   707.07  110  
−218.34   259.04  111  −4
30.52   −345   −112   −82
&65    −35   −810213  −10
00.66   −781.43  −115   2
09.79   −280   −116   45L
72        1Fe−&5 スリット幅  1.51m 倍   率  A 平行偏心量  ΔX−140 (本発明の効果) 本発明によれば正、負そして正の屈折力の反射鏡を有す
る4つのミラー系を配置し、そのうち少なくとも1つの
ミラー系の光軸を他のミラー系の光軸と偏心させ、光軸
上一定範囲内の領域のみを使用するようにし全体的に縮
少系となるように構成することによって良好なる結像性
能の得られる反射光学系全達成することができる。
is quartz glass.6 Air spacing is positive when measured from left to right in the direction of light travel, and negative when measured from the opposite direction, ・(1
And then you're on the water. 1 Numerical implementation 1lI R[) N 1 -700 -275.25 -12
-11L5 230 13 -417.1
1 -1390 -14 602.5
335 15 154.8 -292
-16 495.925 707.25 17
-434.83 -240 -18 -
234.69 259.03 19 -416
.. 88 -114L5 -11]20α33
-280 -112 451.72
1Fe-3,75 Slit width 1.5m+n Magnification A Parallel eccentricity jx=140 Numerical example 2 RD N 1 -700 -275.25 -12
-16SL5 230
14 207.97 -1115
-8in25 203.82 -107&66
-16 607+5 335 18
495.925 707.07 110
-218.34 259.04 111 -4
30.52 -345 -112 -82
&65 -35 -810213 -10
00.66 -781.43 -115 2
09.79 -280 -116 45L
72 1Fe-&5 Slit width 1.51m Magnification A Amount of parallel eccentricity ΔX-140 (Effects of the present invention) According to the present invention, a four-mirror system having positive, negative, and positive refractive power reflecting mirrors is arranged, The optical axis of at least one of the mirror systems is decentered from the optical axis of the other mirror systems, and only a region within a certain range on the optical axis is used, resulting in an overall reduced system. It is possible to achieve a full reflective optical system that provides excellent imaging performance.

又ミラー系の一部にレンズ群を配置すれば軸外の球面収
差と色収差の補正を良好に行い口径比の拡大全図った反
射光学系ヶ達成することができる。
Further, by arranging a lens group in a part of the mirror system, it is possible to satisfactorily correct off-axis spherical aberration and chromatic aberration, and to achieve a reflective optical system with a fully enlarged aperture ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は各々本発明の数値実施例1゜2の光学
断面図、第2図、第4図は各々本発明の数値実施例1.
2の横収差図でおる。収差図において囚はメリデイオナ
ル面、(8)はサジタル面での収差を示す。Yoii物
高、Mよ〜M12は各々反射鏡である。
FIGS. 1 and 3 are optical cross-sectional views of numerical embodiment 1.2 of the present invention, and FIGS. 2 and 4 are optical cross-sectional views of numerical embodiment 1.2 of the present invention, respectively.
This is a diagram of the lateral aberration of No. 2. In the aberration diagrams, (8) shows aberrations on the meridional plane and (8) on the sagittal plane. Yoii, M to M12 are each reflecting mirrors.

Claims (8)

【特許請求の範囲】[Claims] (1)凹面鏡、凸面鏡そして凹面鏡の順に反射させた後
、物体像を所定位置に結像させるようにした4つのミラ
ー系S_1、S_2、S_3、S_4を順次配置し、前
記4つのミラー系S_1、S_2、S_3、S_4にお
いて各々結像を繰り返すように構成した反射光学系であ
つて、前記4つのミラー系S_1、S_2、S_3、S
_4のうち少なくとも1つのミラー系の光軸を他のミラ
ー系の光軸と偏心させ、かつ光軸上の所定領域のみを結
像用として使用すると共に全系の結像倍率が縮少系とな
るように構成したことを特徴とする反射光学系。
(1) Four mirror systems S_1, S_2, S_3, and S_4 are sequentially arranged to form an object image at a predetermined position after being reflected in the order of a concave mirror, a convex mirror, and a concave mirror, and the four mirror systems S_1, A reflective optical system configured to repeatedly form images in S_2, S_3, and S_4, and the four mirror systems S_1, S_2, S_3, and
_4 The optical axis of at least one mirror system is decentered from the optical axis of the other mirror system, and only a predetermined area on the optical axis is used for imaging, and the imaging magnification of the entire system is reduced. A reflective optical system characterized by being configured so that.
(2)前記反射光学系は少なくとも1つの縮少系と少な
くとも1つの等倍若しくは拡大系のミラー系を有してい
ることを特徴とする特許請求の範囲第1項記載の反射光
学系。
(2) The reflective optical system according to claim 1, wherein the reflective optical system has at least one reduction system and at least one equal-magnification or magnification mirror system.
(3)前記ミラー系S_1を縮少系で構成したことを特
徴とする特許請求の範囲第1項記載の反射光学系。
(3) The reflective optical system according to claim 1, wherein the mirror system S_1 is configured as a reduction system.
(4)前記2つのミラー系S_1、S_2の光軸L_1
_2を共軸とし、前記2つのミラー系S_3、S_4の
光軸L_3_4を共軸とし前記光軸L_1_2と光軸L
_3_4を互いに偏心させて構成したことを特徴とする
特許請求の範囲第1項記載の反射光学系。
(4) Optical axis L_1 of the two mirror systems S_1 and S_2
The optical axis L_1_2 and the optical axis L are coaxial with the optical axis L_3_4 of the two mirror systems S_3 and S_4.
3. The reflective optical system according to claim 1, characterized in that _3_4 are eccentrically arranged relative to each other.
(5)物点から数えて第i番目の反射鏡の曲率半径をR
i、第i番目と第i+1番目の空気間隔をDiとしたと
き |Ri|>|R2| |Di|>|D2| なる条件を満足することを特徴とする特許請求の範囲第
3項記載の反射光学系。
(5) The radius of curvature of the i-th reflecting mirror counting from the object point is R
i, the i-th and the i+1-th air interval is Di, |Ri|>|R2| |Di|>|D2| Reflective optics.
(6)特許請求の範囲第5項記載の反射光学系において |R1/R2|>|R4/R6| |R7/R8|>|R10/R11| |R9/R8|>|R12/R11| |D10|>|D11| なる条件を満足することを特徴とする反射光学系。(6) In the reflective optical system according to claim 5 |R1/R2|>|R4/R6| |R7/R8|>|R10/R11| |R9/R8|>|R12/R11| |D10|>|D11| A reflective optical system characterized by satisfying the following conditions. (7)前記ミラー系S_1とS_2との間にレンズ群Q
_1を前記ミラー系S_3とS_4との間にレンズ群Q
_2を各々配置したことを特徴とする特許請求の範囲第
1項記載の反射光学系。
(7) A lens group Q is provided between the mirror systems S_1 and S_2.
_1 is connected to the lens group Q between the mirror systems S_3 and S_4.
2. The reflective optical system according to claim 1, wherein the reflective optical system is characterized in that _2 are arranged respectively.
(8)前記レンズ群Q_1を前記ミラー系S_1の像面
側に凸面を向けたメニスカス形状のレンズで、前記レン
ズ群Q_2を前記ミラー系S_3の像面側に凹面を同け
たメニスカス形状のレンズで各々構成したことを特徴と
する特許請求の範囲第7項記載の反射光学系。
(8) The lens group Q_1 is a meniscus-shaped lens with a convex surface facing the image plane of the mirror system S_1, and the lens group Q_2 is a meniscus-shaped lens with a concave surface facing the image plane of the mirror system S_3. 8. A reflective optical system according to claim 7, characterized in that the reflective optical system has the following configurations.
JP60054015A 1985-03-18 1985-03-18 Reflective optics Expired - Lifetime JPH0644100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054015A JPH0644100B2 (en) 1985-03-18 1985-03-18 Reflective optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054015A JPH0644100B2 (en) 1985-03-18 1985-03-18 Reflective optics

Publications (2)

Publication Number Publication Date
JPS61212815A true JPS61212815A (en) 1986-09-20
JPH0644100B2 JPH0644100B2 (en) 1994-06-08

Family

ID=12958757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054015A Expired - Lifetime JPH0644100B2 (en) 1985-03-18 1985-03-18 Reflective optics

Country Status (1)

Country Link
JP (1) JPH0644100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071240A (en) * 1989-09-14 1991-12-10 Nikon Corporation Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
JP2005189248A (en) * 2003-12-24 2005-07-14 Nikon Corp Projection optical system and exposure device provided with the projection optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071240A (en) * 1989-09-14 1991-12-10 Nikon Corporation Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
JP2005189248A (en) * 2003-12-24 2005-07-14 Nikon Corp Projection optical system and exposure device provided with the projection optical system

Also Published As

Publication number Publication date
JPH0644100B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
KR100991584B1 (en) Catadioptric projection objective
US5071240A (en) Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
US7973908B2 (en) Six-mirror EUV projection system with low incidence angles
US6244717B1 (en) Reduction objective for extreme ultraviolet lithography
US20030058421A1 (en) Projection optical system and an exposure apparatus with the projection optical system
JP2001221950A (en) Projection exposure lens having aspheric element
US8629972B2 (en) Projection objective for microlithography
KR101388330B1 (en) Imaging optics and projection exposure installation for microlithography with an imaging optics of this type
US6577443B2 (en) Reduction objective for extreme ultraviolet lithography
EP3023824B1 (en) Catoptric imaging system for euv projection lithography
US5257139A (en) Reflection reduction projection optical system
KR20220024099A (en) Projection optical unit for microlithography and method of fabricating structured components
US7554649B2 (en) Projection optical system, exposure apparatus and device fabricating method
JP5634403B2 (en) Microlithography projection exposure apparatus having two or more operating states
JP2000098228A (en) Projection exposing device, exposing method and reflection reduction projection optical system
JPS61212815A (en) Reflection optical system
KR20010049550A (en) Projection optical system and projection exposure apparatus with the same, and device manufacturing method
JP2009276769A (en) Imaging optical instrument and projection exposing device with the same
US9377608B2 (en) Imaging optical unit
JPH0525088B2 (en)
US7046459B1 (en) Catadioptric reductions lens
JPH0525086B2 (en)
CN114253089B (en) Variable-magnification extreme ultraviolet lithography projection exposure optical system
JP2008170519A (en) Catoptric system
JPS6120920A (en) Projection lens