JPS61210939A - Method for measuring uric acid - Google Patents

Method for measuring uric acid

Info

Publication number
JPS61210939A
JPS61210939A JP60051755A JP5175585A JPS61210939A JP S61210939 A JPS61210939 A JP S61210939A JP 60051755 A JP60051755 A JP 60051755A JP 5175585 A JP5175585 A JP 5175585A JP S61210939 A JPS61210939 A JP S61210939A
Authority
JP
Japan
Prior art keywords
uric acid
enzyme
electrode
measurement
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60051755A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kobayashi
義昭 小林
Haruyuki Date
伊達 晴行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60051755A priority Critical patent/JPS61210939A/en
Publication of JPS61210939A publication Critical patent/JPS61210939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a uric acid with high accuracy in electrical measurement of the uric acid by an electrode for detecting the uric acid by providing a film fixed with enzyme whih oxidizes and catalyzes a reducing material for hindering the measurement to an electrode. CONSTITUTION:Ag/AgCl or the like is fixed as a counter electrode on one side of a passage for a soln. to be measured in a measuring part and Pt or the like is fixed as a working electrode to the other side. The film fixed with the enzyme which oxidizes and catalyzes the reducing material for hindering the measurement is provided on the inside surface of the working electrode. Ascorbic axid oxidase, laccase, tyrosinase, phenol oxidase, etc. are used as the enzyme. The uric acid passes through the enzyme fixed film and arrives at the working electrode, by which the uric acid is oxidized when the soln. to be measured is passed between both electrodes. However, the ascorbic acid, etc. which are the disturbing material are oxidized away by the enzyme fixed film. The film fixed with the enzyme which oxidizes and catalyzes the reducing material for hindering the measurement is provided to the electrode and therefore the inexpensive electrochemical measurement of the uric acid with high sensitivity is made possible.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、尿酸の電気化学的測定法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an electrochemical measurement method for uric acid.

〔背景技術〕[Background technology]

臨床分析等において、血液、尿等の中に含まれる尿酸の
濃度の測定が、痛風や肝臓病等の診断に用いられており
、この測定の臨床的意義は大きい、最近では、測定装置
の簡略化という観点から、比色法にかわって、電極法に
より尿酸濃度の測定が行われる傾向にある。電極法では
、尿酸検出用電極により直接尿酸を電解酸化して発生す
る電流を検出する。尿酸は容易に電極酸化されて検出さ
れるが、血液や尿等を試料とする場合は、尿酸と電気化
学的性質が似ているアスコルビン酸(ビタミンC)、あ
るいは、ビリルビンやグルタチオン等の他の還元性物質
も同時に電極酸化されて検出されるので、このような還
元性物質により測定が妨害される。そこで、従来、電極
法により尿酸を測定する場合は、試料中のアスコルビン
酸等の還元性物質を取り除くための面倒な前処理が必要
であった。そのため、測定操作が繁雑になっていたこれ
に対し、最近、前処理のいらない尿酸の測定法として、
尿酸に対して特異的に作用するウリカーゼと呼ばれる酵
素を用い、これと尿酸との間の酵素反応で生成する二酸
化炭素あるいは減少する酸素(溶存酸素量)を電極(イ
オン電極等)により監視する方法が提案されている。し
かし、この方法には、ウリカーゼが高価であるので測定
費用が高くつ(という問題がある。ウリカーゼは、不安
定で失活しやすく、寿命が短いので、頻繁に酵素を取り
替える必要があるといった理由からも測定費用が高くつ
く、さらに尿酸の検出感度が低いという問題もある。
In clinical analysis, measurement of the concentration of uric acid contained in blood, urine, etc. is used to diagnose gout, liver disease, etc., and this measurement has great clinical significance. From the viewpoint of oxidation, there is a tendency for uric acid concentration to be measured using an electrode method instead of a colorimetric method. In the electrode method, uric acid is directly electrolytically oxidized using a uric acid detection electrode, and the current generated is detected. Uric acid is easily detected by electrode oxidation, but when using blood or urine as a sample, ascorbic acid (vitamin C), which has similar electrochemical properties to uric acid, or other substances such as bilirubin or glutathione may be used. Since reducing substances are also simultaneously oxidized and detected by the electrode, such reducing substances interfere with the measurement. Therefore, conventionally, when measuring uric acid using an electrode method, troublesome pretreatment was required to remove reducing substances such as ascorbic acid from the sample. As a result, the measurement operation has become complicated, but recently, a method for measuring uric acid that does not require pretreatment has been developed.
A method that uses an enzyme called uricase that specifically acts on uric acid, and uses an electrode (ion electrode, etc.) to monitor the carbon dioxide produced by the enzymatic reaction between uricase and uric acid, or the decreasing amount of oxygen (dissolved oxygen amount). is proposed. However, this method has the problem of high measurement costs because uricase is expensive.Uricase is unstable, easily deactivated, and has a short lifespan, so the enzyme needs to be replaced frequently. There are also problems in that the measurement cost is high and the detection sensitivity for uric acid is low.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みてなされたものであ
って、安価かつ簡単に、しかも、高感度で正確に尿酸の
測定を行うことのできる方法を提供することを目的とし
ている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of accurately measuring uric acid at low cost and with high sensitivity.

〔発明の開示〕[Disclosure of the invention]

発明者らは、高価なウリカーゼを使用せず、尿酸検出用
電極で直接尿酸を酸化して測定を行う電極法に着目し、
この方法を改良することにより前記目的を達成しようと
して研究を重ねた。その結果、還元性測定妨害物質を酵
素により酸化除去することとし、そのため、尿酸検出用
電極として、このような酵素が固定された膜を備えたも
のを用いることとすればよいということを見出し、ここ
に、この発明を完成した。
The inventors focused on an electrode method that directly oxidizes and measures uric acid with a uric acid detection electrode, without using expensive uricase.
Research has been carried out in an attempt to achieve the above objective by improving this method. As a result, we decided to oxidize and remove substances that interfere with reductive measurement using enzymes, and found that it was sufficient to use an electrode for detecting uric acid equipped with a membrane on which such an enzyme was immobilized. Here we have completed this invention.

したがって、この発明は、尿酸検出用電極により電気的
に尿酸の測定を行うにあたり、尿酸検出用電極として、
還元性の測定妨害物質を酸化触媒する酵素が固定された
膜が設けられたものを用いることを特徴とする尿酸の測
定法をその要旨としている。以下に、この発明の詳細な
説明する。
Therefore, in electrically measuring uric acid using a uric acid detection electrode, the present invention provides a
The gist of this method is a method for measuring uric acid, which is characterized by using a membrane equipped with an enzyme immobilized that catalyzes the oxidation of reducing substances that interfere with measurement. The present invention will be explained in detail below.

この発明にかかる尿酸の測定法は、たとえば、第2図に
示されている測定装置によって実施される。この測定装
置は、フロ一式であって、溶媒(キャリア液) 1が入
れられる溶媒溜め2.測定部(検出器)3および溶媒溜
め2から測定部3に溶媒1を送る通路4をそれぞれ備え
ている0通路4はフッ素樹脂(テトロン)製の管等から
なる0通路4の溶媒溜め2と測定部3の間には、通路4
に溶媒lを通すためのポンプ(定量ポンプ)5と試料注
入口(サンプルインジェクター)6が配置されている。
The method for measuring uric acid according to the present invention is carried out using, for example, the measuring apparatus shown in FIG. This measuring device consists of a flow set including a solvent reservoir (2) into which a solvent (carrier liquid) 1 is placed. The 0 passage 4 is equipped with a measuring part (detector) 3 and a passage 4 for sending the solvent 1 from the solvent reservoir 2 to the measuring part 3. There is a passage 4 between the measuring parts 3.
A pump (metering pump) 5 and a sample injection port (sample injector) 6 for passing the solvent l through are arranged.

測定部3は第1図に示されているような構造をしている
0図にみるようにこの測定部3は、スペーサ7が、アク
リル樹脂等からなる基板8.9によりはさまれており、
これにより基板8.9は間隔をおいて互いに向かい合っ
ている。スペーサ7の中央には横長の穴7aが開けられ
ている。基板8の両側には被測定溶液の出口、入口とな
る穴8a、8bが設けられ、両穴ga、gbには被測定
溶液を排出する通路4′と前記通路4がそれぞれ接続さ
れている。基板8の内側面には、へg/^gcl電極等
の対極8Cが固定され、この対極8Cには基板8を内外
に貫通する導体10の内側端が接続されている。他方、
基板9の内側面には、白金等からなる電極本体9aの片
面に酵素が固定されたI!1I9bが設けられてなる酵
素固定化電極(尿酸検出用電極1作用極) 16が、膜
9bが内側になるようにして固定されている。酵素固定
化電極16には基板9を内外に貫通する導体11の内側
端が接続されている。スペーサの穴7aの上下面が基材
8,9で覆われてできた空間は被測定溶液が流れる通路
12になっており、この通路12の両側はそれぞれ基板
8の二つの穴8a、  8bに接続されている。また、
酵素固定化電極16と対極8cは通路12をはさんで互
いに向かい合っており、通路12を通る被測定溶液と接
しうるようになっている。酵素固定化電極16と対極8
Cにはボテジオスタット等の定電圧源13が接続されて
、両電極16.8C間に所定の電圧が印加できるように
なっている。定電圧源13には、両電極16.8c間に
流れる電流の記録計14が接続されている。
The measuring section 3 has a structure as shown in FIG. 1. As shown in FIG. ,
The substrates 8.9 thereby face each other at a distance. A horizontally long hole 7a is formed in the center of the spacer 7. Holes 8a and 8b are provided on both sides of the substrate 8 to serve as an outlet and an inlet for the solution to be measured, and a passage 4' for discharging the solution to be measured and the passage 4 are connected to both holes ga and gb, respectively. A counter electrode 8C such as a heg/^gcl electrode is fixed to the inner surface of the substrate 8, and the inner end of a conductor 10 penetrating the substrate 8 from the inside to the outside is connected to the counter electrode 8C. On the other hand,
On the inner surface of the substrate 9, an I! electrode body 9a made of platinum or the like has an enzyme immobilized on one side. An enzyme-immobilized electrode (working electrode of uric acid detection electrode 1) 16 provided with 1I9b is fixed with the membrane 9b facing inside. The enzyme-immobilized electrode 16 is connected to the inner end of a conductor 11 that penetrates the substrate 9 from inside to outside. The space created by covering the upper and lower surfaces of the hole 7a of the spacer with the base materials 8 and 9 becomes a passage 12 through which the solution to be measured flows, and both sides of this passage 12 are connected to the two holes 8a and 8b of the substrate 8, respectively. It is connected. Also,
The enzyme-immobilized electrode 16 and the counter electrode 8c face each other across the passage 12, so that they can come into contact with the solution to be measured passing through the passage 12. Enzyme immobilized electrode 16 and counter electrode 8
A constant voltage source 13 such as a botediostat is connected to C so that a predetermined voltage can be applied between both electrodes 16.8C. A recorder 14 for the current flowing between both electrodes 16.8c is connected to the constant voltage source 13.

酵素固定化電極に用いる酵素としては、還元性測定妨害
物質を酸化触媒しうるものが用いられ、酵素の種類は還
元性測定妨害物質の種類に応じて決められる。たとえば
、アスコルビン酸を酸化触媒しうる酵素としては、アス
コルビン酸オキシダーゼ、ラッカーゼ、チロシナーゼ、
フェノールオキシダーゼ等があげられる。酵素は、2種
類以上の還元性測定妨害物質を同時に酸化除去するため
9.それぞれを酸化する2種類以上の酵素が併用される
ようであってもよい。また、1種類の還元性測定妨害物
質を酸化除去する場合であっても、これを酸化する2種
類以上の酵素が併用されるようであってもよい。
The enzyme used in the enzyme-immobilized electrode is one that can catalyze the oxidation of the reductive measurement-interfering substance, and the type of enzyme is determined depending on the type of the reductive measurement-interfering substance. For example, enzymes that can oxidize ascorbic acid include ascorbic acid oxidase, laccase, tyrosinase,
Examples include phenol oxidase. 9. Enzymes simultaneously oxidize and remove two or more types of reductive measurement interfering substances. Two or more types of enzymes that oxidize each may be used in combination. Furthermore, even when one type of reductive measurement interfering substance is oxidized and removed, two or more types of enzymes that oxidize it may be used in combination.

酵素固定化電極は、たとえば、酵素およびアルブミンの
混合物とグルタルアルデヒド等の架橋剤とを白金板等の
電極本体表面で架橋反応させて、電極本体表面に固定化
酵素膜を形成させることにより得ることができる。予め
、つくっておいた固定化酵素膜を電極本体表面に固定す
るようにしてもよい。
An enzyme-immobilized electrode can be obtained, for example, by causing a cross-linking reaction between a mixture of an enzyme and albumin and a cross-linking agent such as glutaraldehyde on the surface of an electrode body such as a platinum plate to form an immobilized enzyme film on the surface of the electrode body. Can be done. An immobilized enzyme membrane prepared in advance may be immobilized on the surface of the electrode body.

第2図に示されているような測定装置を用い、つぎのよ
うにしてこの発明にかかる尿酸の測定法を実施する。
Using a measuring device as shown in FIG. 2, the method for measuring uric acid according to the present invention is carried out as follows.

まず、ポンプ5により、所定の速さで通路4゜4′に溶
媒1を通す、そして、定電圧源13により、酵素固定化
電極16および対極8c間に一定の電圧を印加する。こ
のあと、マイクロシリンジ15により注入口6から通路
4内に試料を注入する。試料を含む溶媒は測定部3の通
路12に達する。試料中に含まれていた尿酸は、固定化
酵素膜9bを通過して電極本体9aに達し、ここで酸化
される。これに対し、試料中に含まれていた還元性測定
妨害物質は、固定化酵素膜9b中の酵素により酸化され
るため、酵素固定化膜9bを通過して作用ff19aに
達することができず、イオン交換11i9bによって酸
化除去される。還元性測定妨害物質の酸化生成物は、も
はや電極本体では酸化されない。したがって、還元性測
定妨害物質の影響をほとんど受けることなしに尿酸の測
定を行うことができる。酵素固定化電極16および対極
8C間に流れる電流の変化を記録計14で記録する。
First, the pump 5 passes the solvent 1 through the passage 4° 4' at a predetermined speed, and the constant voltage source 13 applies a constant voltage between the enzyme-immobilized electrode 16 and the counter electrode 8c. Thereafter, a sample is injected into the passageway 4 from the injection port 6 using the microsyringe 15. The solvent containing the sample reaches the passage 12 of the measuring section 3. The uric acid contained in the sample passes through the immobilized enzyme membrane 9b and reaches the electrode body 9a, where it is oxidized. On the other hand, the reductive measurement interfering substance contained in the sample is oxidized by the enzyme in the immobilized enzyme membrane 9b, so it cannot pass through the enzyme immobilized membrane 9b and reach the action ff19a. It is oxidized and removed by ion exchange 11i9b. The oxidation products of the reducible measurement interfering substances are no longer oxidized in the electrode body. Therefore, uric acid can be measured almost without being influenced by substances that interfere with reductive measurement. Changes in the current flowing between the enzyme-immobilized electrode 16 and the counter electrode 8C are recorded by the recorder 14.

電流の変化の大きさは、還元性測定妨害物質とかかわり
なく、試料中の尿酸の濃度と正確に対応したものとなる
。このあと、溶媒は通路4′を通って排出され、廃液と
して処理される。
The magnitude of the change in current corresponds accurately to the concentration of uric acid in the sample, regardless of the reducing substance interfering with the measurement. After this, the solvent is discharged through channel 4' and treated as waste.

前記のように、この発明にかかる尿酸の測定法において
は、酵素固定化電極に設けられた固定化酵素膜の酵素と
接触させて試料中の還元性測定妨害物質を酸化除去する
ようにしているので、試料の面倒な前処理が必要でなく
、測定操作が非常に簡単ですみ、しかも、正確に尿酸の
測定を行うことができる。そのうえ、ウリカーゼと尿酸
との酵素反応で生成する二酸化炭素あるいは酸素を測定
するというように、他の物質を介して間接的に尿酸を測
定するのではなく、尿酸そのものを電極で酸化して直接
的に尿酸を測定するので検出感度が高(なる。アスコル
ビン酸オキシダーゼ、ラッカーゼ、チロシナーゼ等アス
コルビン酸酸化に用いる酵素、あるいは、その他の還元
性測定妨害物質の酸化に用いる酵素は、一般に、ウリカ
ーゼに比べて安定性が高いので、頻繁に酵素を取り替え
る必要がない、たとえば、ウリカーゼの固定化膜を備え
た酵素固定電極(センサ)の寿命が2週間程度であるの
に対し、アスコルビン酸オキシダーゼの酵素固定化電極
(センサ)の寿命は1力月以上と長い。
As described above, in the method for measuring uric acid according to the present invention, the reductive measurement interfering substances in the sample are oxidized and removed by contacting with the enzyme of the immobilized enzyme membrane provided on the enzyme-immobilized electrode. Therefore, there is no need for troublesome pretreatment of the sample, the measurement operation is very simple, and moreover, uric acid can be measured accurately. Furthermore, rather than measuring uric acid indirectly through other substances, such as by measuring carbon dioxide or oxygen produced by the enzymatic reaction between uricase and uric acid, uric acid itself is oxidized with an electrode and directly measured. Detection sensitivity is high because uric acid is measured at the same time.Enzymes used to oxidize ascorbic acid, such as ascorbic acid oxidase, laccase, and tyrosinase, or enzymes used to oxidize other reducing substances that interfere with measurement, are generally more sensitive than uricase. Because of its high stability, there is no need to frequently replace the enzyme. For example, an enzyme-immobilized electrode (sensor) with an immobilized uricase membrane has a lifespan of about two weeks, whereas an enzyme-immobilized ascorbate oxidase membrane has a lifespan of about two weeks. The electrode (sensor) has a long life of more than one month.

なお、前記実施例では、フロ一式の測定装置を用いてい
るが、試料を含む溶媒を入れた容器に酵素固定化電極を
浸して測定を行うバッチ式の測定装置を用いても同じ効
果が得られる。固定化酵素膜が設けられる電橋本体とし
て、白金板等白金からなるものを用いるようにすると、
酵素固定化電極に0.3V(対Ag/Ag91電極) 
程度(7)(ffi電圧を印加することにより尿酸を電
解酸化できるようになるので、種々の還元性物質による
妨害がいっそう少なくなるという効果が得られる。酵素
固定化膜による還元性物質の除去率は、固定化酵素膜に
固定した酵素や形成に用いた架橋剤等の膜形成に用いた
原材料の種類および固定化酵素膜の膜厚によって異なっ
てくる。また、ビリルビン等大きな分子の還元性物質は
、固定化酵素膜の通過が困難であって、このことから還
元性測定妨害物質の影響がいっそう少なくなる。
In the above examples, a flow-type measurement device is used, but the same effect can be obtained by using a batch-type measurement device in which the enzyme-immobilized electrode is immersed in a container containing a solvent containing the sample. It will be done. If a material made of platinum, such as a platinum plate, is used as the electric bridge body on which the immobilized enzyme membrane is provided,
0.3 V to the enzyme immobilized electrode (vs. Ag/Ag91 electrode)
Degree (7) (By applying an ffi voltage, uric acid can be electrolytically oxidized, which has the effect of further reducing interference by various reducing substances. Removal rate of reducing substances by the enzyme-immobilized membrane The amount varies depending on the type of raw materials used to form the membrane, such as the enzyme immobilized on the immobilized enzyme membrane and the crosslinking agent used for formation, and the thickness of the immobilized enzyme membrane. It is difficult for the enzyme to pass through the immobilized enzyme membrane, which further reduces the influence of reductive measurement interfering substances.

次に、より具体的な実施例および比較例について説明す
る。
Next, more specific examples and comparative examples will be described.

実施例1〜5および比較例では、第2図に示されている
構成の測定装置を用いることとした。ただし、実施例1
〜5および比較例は、第1表に示されている原材料比で
白金板に固定化酵素膜が形成されてなる酵素固定化電極
を用いることとした。#素としては、実施例1〜3では
アスコルビン酸オキシダーゼ、実施例4ではラフカーゼ
、実施例5ではチロシナーゼ、比較例ではウリカーゼを
用いることとした。対極は、いずれも、A g / A
gcl電極を用いることとした。固定化酵素膜の厚みも
第1表に示す。ただし、膜厚は、酵素固定化電極lll
lm2当たりで処理する酵素液量であられした。酵素液
量が多いほど膜厚が厚い。
In Examples 1 to 5 and Comparative Example, a measuring device having the configuration shown in FIG. 2 was used. However, Example 1
-5 and Comparative Examples used enzyme-immobilized electrodes in which an immobilized enzyme film was formed on a platinum plate at the raw material ratios shown in Table 1. As the # element, ascorbic acid oxidase was used in Examples 1 to 3, roughcase was used in Example 4, tyrosinase was used in Example 5, and uricase was used in the comparative example. The opposite poles are both A g / A
We decided to use a gcl electrode. The thickness of the immobilized enzyme membrane is also shown in Table 1. However, the film thickness is the same as that of the enzyme-immobilized electrode.
The amount of enzyme solution to be treated per 1 m2 was determined. The larger the amount of enzyme solution, the thicker the film.

(以 下 余 白) 第1表 低下余白) 実施例1〜5および比較例では、第2図に示されている
構成の測定装置を用い、つぎのようにして測定を行った
(Table 1 Decrease Margin) In Examples 1 to 5 and Comparative Example, measurements were performed in the following manner using a measuring device having the configuration shown in FIG. 2.

まず、ポンプ5により、3.(lsl/分の流速で通路
4.4′に溶媒(キャリア液)を流した。溶媒としては
pH7,5の緩衝液を用いた。つぎに、実施例1〜5で
は0.7v、比較例では一〇、7vの電圧(対Ag/A
gC1電極)を印加し、10醜g/41の尿酸溶液およ
び20mg/diのアスコルビン酸溶液を別々に1Op
lずつマイクロシリンジ15で注入口6から注入した。
First, by the pump 5, 3. (The solvent (carrier liquid) was flowed into the passage 4.4' at a flow rate of lsl/min. A buffer solution with a pH of 7.5 was used as the solvent. Then, the voltage of 10.7v (vs Ag/A
gC1 electrode), and 1 Op of 10 g/41 uric acid solution and 20 mg/di ascorbic acid solution
1 was injected from the injection port 6 using the microsyringe 15.

そして、記録計により酵素固定化電極と対極間に流れる
電流の変化を記録した。実施例1〜5では、電流変化は
試料中の尿酸濃度と直接対応するが、比較例では、電流
変化は直接には減少する溶存酸素と対応する。実施例1
〜5および比較例における尿酸溶液およびアスコルビン
酸溶液に対する電極1lfi2当たりの検出感度を第2
表に示す、酵素固定化電極の寿命を調べた結果も第2表
に示す。
Then, changes in the current flowing between the enzyme-immobilized electrode and the counter electrode were recorded using a recorder. In Examples 1-5, the current change directly corresponds to the uric acid concentration in the sample, whereas in the comparative example, the current change corresponds directly to the decreasing dissolved oxygen. Example 1
The detection sensitivity per electrode 1lfi2 for uric acid solutions and ascorbic acid solutions in ~5 and Comparative Examples was
Table 2 also shows the results of investigating the lifespan of the enzyme-immobilized electrode shown in the table.

(以 下 余 白) 第2表 低下余白) 第1表より、実施例1〜5では比較例に比べて尿酸の検
出感度が非常に高かったことがわかる。
(Margin below) Table 2 Decrease margin) From Table 1, it can be seen that in Examples 1 to 5, the detection sensitivity of uric acid was extremely high compared to the comparative example.

また、比較例と同様、還元性測定妨害物質のアスコルビ
ン酸に対する影響がほとんどあられれないこともわかる
。さらに、実施例1〜5で用いた酵素固定化電極の寿命
は、比較例で用いたものに比べて非常に長いことがわか
る。
Further, as in the comparative example, it can be seen that there is almost no influence of the reducing measurement interfering substance on ascorbic acid. Furthermore, it can be seen that the lifespan of the enzyme-immobilized electrodes used in Examples 1 to 5 is much longer than that used in Comparative Examples.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる尿酸の測定法は、尿酸検出用電極によ
り電気的に尿酸の測定を行うにあたり、尿酸検出用電極
として、還元性の測定妨害物質を酸化触媒する酵素が固
定された膜が設けられたものを用いるので、安価かつ簡
単に、しかも、高感度で正確に尿酸の測定を行うことが
できる。
In the uric acid measurement method according to the present invention, uric acid is electrically measured using a uric acid detection electrode, and the uric acid detection electrode is provided with a membrane on which an enzyme that oxidizes and catalyzes reducing substances that interfere with measurement is immobilized. Uric acid can be measured easily, inexpensively, and with high sensitivity and accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる尿酸の測定法の1実施例で用
いる測定装置の測定部の縦断面図、第2図は、時測定装
置の概略説明図である。 9b・・・固定化酵S膜 16・・・酵素固定化電極(
尿酸検出用電極) 第1図 第2図
FIG. 1 is a longitudinal sectional view of a measuring section of a measuring device used in an embodiment of the uric acid measuring method according to the present invention, and FIG. 2 is a schematic explanatory diagram of the hour measuring device. 9b... Immobilized enzyme S membrane 16... Enzyme immobilized electrode (
(Uric acid detection electrode) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)尿酸検出用電極により電気的に尿酸の測定を行う
にあたり、尿酸検出用電極として、還元性の測定妨害物
質を酸化触媒する酵素が固定された膜が設けられたもの
を用いることを特徴とする尿酸の測定法。
(1) When electrically measuring uric acid using a uric acid detection electrode, the uric acid detection electrode is characterized by using a membrane on which an enzyme that catalyzes the oxidation of reducing substances that interfere with measurement is immobilized. A method for measuring uric acid.
(2)酵素が、還元性測定妨害物質としてのアスコルビ
ン酸を酸化触媒するものであって、アスコルビン酸オキ
シダーゼ、ラッカーゼ、チロシナーゼ、フェノールオキ
シダーゼからなる群の中から選ばれた少なくとも1種で
ある特許請求の範囲第1項記載の尿酸の測定法。
(2) A patent claim in which the enzyme is at least one selected from the group consisting of ascorbic acid oxidase, laccase, tyrosinase, and phenol oxidase, which catalyzes the oxidation of ascorbic acid as a substance that interferes with reduction measurement. The method for measuring uric acid according to item 1.
JP60051755A 1985-03-14 1985-03-14 Method for measuring uric acid Pending JPS61210939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051755A JPS61210939A (en) 1985-03-14 1985-03-14 Method for measuring uric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051755A JPS61210939A (en) 1985-03-14 1985-03-14 Method for measuring uric acid

Publications (1)

Publication Number Publication Date
JPS61210939A true JPS61210939A (en) 1986-09-19

Family

ID=12895750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051755A Pending JPS61210939A (en) 1985-03-14 1985-03-14 Method for measuring uric acid

Country Status (1)

Country Link
JP (1) JPS61210939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055926A2 (en) * 1999-05-28 2000-11-29 Kabushiki Kaisha Meidensha Electrochemical assay using an electroconductive diamond-coated electrode, and electrochemical assay system based thereon
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor
CN103837487A (en) * 2014-03-19 2014-06-04 潍坊鑫泽生物科技有限公司 Uric acid detection method and detection kit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055926A2 (en) * 1999-05-28 2000-11-29 Kabushiki Kaisha Meidensha Electrochemical assay using an electroconductive diamond-coated electrode, and electrochemical assay system based thereon
EP1055926A3 (en) * 1999-05-28 2001-11-14 Kabushiki Kaisha Meidensha Electrochemical assay using an electroconductive diamond-coated electrode, and electrochemical assay system based thereon
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor
US8182663B2 (en) 2004-09-02 2012-05-22 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor
US8236517B2 (en) 2004-09-02 2012-08-07 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor
CN103837487A (en) * 2014-03-19 2014-06-04 潍坊鑫泽生物科技有限公司 Uric acid detection method and detection kit

Similar Documents

Publication Publication Date Title
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
US5312590A (en) Amperometric sensor for single and multicomponent analysis
Turner [7] Amperometric biosensors based on mediator-modified electrodes
JP4879459B2 (en) Electrochemical biosensor strip for analysis of liquid samples
RU2262890C2 (en) Electrochemical method and devices usable for determining concentration of substances under study with correction on hematocrit number
US5462645A (en) Dialysis electrode device
CA2941312C (en) Gated amperometry
Niwa et al. Small-volume on-line sensor for continuous measurement of γ-aminobutyric acid
JPH0617889B2 (en) Biochemical sensor
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
Wang et al. Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins
Niwa et al. On-line electrochemical sensor for selective continuous measurement of acetylcholine in cultured brain tissue
Palmisano et al. An in situ electrosynthesized amperometric biosensor based on lactate oxidase immobilized in a poly-o-phenylenediamine film: Determination of lactate in serum by flow injection analysis
Zen et al. Voltammetric determination of serotonin in human blood using a chemically modified electrode
D’Orazio et al. Electrochemistry and chemical sensors
JP2006337375A (en) Testing system
Paixão et al. Development of a dual‐band amperometric detector for determination of ascorbic acid and glucose
JPS61210939A (en) Method for measuring uric acid
Mori et al. Amperometric detection with microelectrodes in flow injection analysis: theoretical aspects and application in the determination of nitrite in saliva
JP2004053363A (en) Electrochemical test piece having multiple reaction chamber and method for using the same
Wang et al. Critical comparison of metallized and mediator‐based carbon paste glucose biosensors
Schwarz Enzyme‐catalyzed amperometric oxidation of neurotransmitters in chip‐capillary electrophoresis
Pungor et al. The flat surfaced membrane coated mercury electrode as analytical tool in the continuous voltammetric analysis
KR20080110356A (en) Bio-sensor
Macholán et al. Continuous determination of phenol, vitamin C, lysine and glucose in flowing solutions by means of an amperometric enzyme electrode