JPS61210236A - Liquid fuel feed control device for spark ignition type two-dimensional fuel engine - Google Patents

Liquid fuel feed control device for spark ignition type two-dimensional fuel engine

Info

Publication number
JPS61210236A
JPS61210236A JP60051282A JP5128285A JPS61210236A JP S61210236 A JPS61210236 A JP S61210236A JP 60051282 A JP60051282 A JP 60051282A JP 5128285 A JP5128285 A JP 5128285A JP S61210236 A JPS61210236 A JP S61210236A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel ratio
supply system
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60051282A
Other languages
Japanese (ja)
Inventor
Koji Furuta
古田 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP60051282A priority Critical patent/JPS61210236A/en
Publication of JPS61210236A publication Critical patent/JPS61210236A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • F02D19/0631Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To enable the air-fuel ratio of a titled engine to be reliably controlled to a desired value, by a method wherein an actual air-fuel ratio is detected by a lean burn sensor for feedback, and an amount of fuel injected is controlled so that the actual air-fuel ratio is adjusted to a given air-fuel ratio. CONSTITUTION:A two-dimensional fuel engine is provided with a gas fuel feed system 2, through which gas fuel 21 is by means of a regulator 22 and which is provided within a suction pipe 26 with a mixer 24, and a liquid fuel feed system 3 through which liquid fuel 35 is fed and which is provided within a suction pipe 36 with an injection valve 37. In this two-dimensional fuel engine, during operation of an engine, an actual air-fuel ratio is calculated from an output from a lean burn sensor 9. From outputs from a rotation detecting sensor 8 and an intake air pressure sensor 6, an injections starting time is calculated, and meanwhile, an injection time To is calculated and is corrected by means of an actual air-fuel ratio. In case a change amount of an intake air pressure is low, a correction amount of an injection time is calculated according to a different between a correction injection time Ts and an injection time To, and the injection time To is controlled by means of the correction amount to produce an actual injection time T.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、火花点火式二元燃料機関において。[Detailed description of the invention] <Industrial application field> The present invention relates to a spark ignition dual fuel engine.

リーンバーンセンサを用いて空燃比制御を行なうように
した液体燃料供給制御装置に関する。
The present invention relates to a liquid fuel supply control device that controls air-fuel ratio using a lean burn sensor.

〈従来の技術〉 互いに独立した気体燃料供給系統と液体燃料供給系統を
備えており、気体燃料供給系統には気体燃料を吸気管中
に噴射する噴射弁を有し、運転時は気体燃料と液体燃料
のいずれか一方のみを専焼する形式の火花点火式二元燃
料機関は既に知られている。この種の機関は、液体燃料
をパイロット噴射し、これを着火源として気体燃料を燃
焼させるガス・ディーゼル式二元燃料機関と比べて、ガ
ス燃料使用時にはパイロット燃料としての液体燃料が不
要であり、また燃料にはガソリンのような気化しやすい
燃料以外に、例えばアルコールや燈油のような比較的気
化しにくいものでも使用できるという利点がある。
<Prior art> The system is equipped with a gaseous fuel supply system and a liquid fuel supply system that are independent of each other, and the gaseous fuel supply system has an injection valve that injects gaseous fuel into the intake pipe. Spark ignition dual fuel engines that burn only one of the fuels are already known. This type of engine does not require liquid fuel as a pilot fuel when using gas fuel, compared to a gas/diesel dual fuel engine that pilot injects liquid fuel and uses this as an ignition source to burn gaseous fuel. In addition to fuels that easily vaporize such as gasoline, fuels that are relatively difficult to vaporize such as alcohol or kerosene can also be used.

〈発明が解決しようとする問題点〉 使用できる燃料の種類が多いという上記火花点火式二元
燃料機関の利点は、反面、燃焼条件が燃料によって一様
ではなく、更に燃料温度、負荷。
<Problems to be Solved by the Invention> The spark ignition dual fuel engine has the advantage of being able to use many types of fuel, but on the other hand, combustion conditions are not uniform depending on the fuel, and fuel temperature and load may vary.

回転数など機関の諸条件の変化なども加わって適切な空
燃比の制御が困難になるという欠点ともなり、排気ガス
対策や燃費低減が不十分になるという問題点を生じてい
た。
This also has the disadvantage that it becomes difficult to control the air-fuel ratio appropriately due to changes in engine conditions such as engine speed, resulting in problems such as insufficient exhaust gas countermeasures and fuel consumption reduction.

本発明はこのような問題点に着目し、広範囲の各種燃料
や運転条件などに対応しなから空燃比制御を確実に行な
うことを課題としてなされたちのである。
The present invention has focused on these problems, and has been made with the object of reliably controlling the air-fuel ratio while adapting to a wide variety of fuels and operating conditions.

く問題点を解決するための手段〉 」二記課題の達成のため1本発明の液体燃料供給制御装
置は次のように構成される。すなわち、上記のような運
転時に気体燃料と液体燃料のいずれか一方のみを専焼す
る形式の火花点火式二元燃料機関において、気体燃料供
給系統の吸入空気負圧を検出する吸気負圧検出手段と、
気体燃料供給系統の吸入空気温度を検出する吸気温度検
出手段と。
Means for Solving the Problems> In order to achieve the second object, the liquid fuel supply control device of the present invention is constructed as follows. That is, in a spark ignition dual fuel engine of the type that exclusively burns either gaseous fuel or liquid fuel during operation as described above, there is provided an intake negative pressure detection means for detecting the intake air negative pressure of the gaseous fuel supply system. ,
and intake air temperature detection means for detecting the intake air temperature of the gaseous fuel supply system.

機関回転数を検出する回転数検出手段と、リーンバーン
センサにより排気中の酸素濃度を検出する酸FS’a度
検出手段と、吸気負圧、吸気温度及び機関回転数と液体
燃料噴射量との望ましい関係を記憶した記憶手段と、吸
気負圧、吸気温度及び機関回転数の検出結果と上記記憶
手段の記憶内容から求められる液体燃料の基本的噴射期
間に、酸素濃度から求められる実空燃比と目標空燃比と
を比較して両者の差を少なくするための補正量を加えた
噴射期間を演算し、噴射弁駆動信号を出力する演算手段
と、演算手段の噴射弁駆動信号に応じて噴射弁を駆動す
る駆動手段、とを備えている。
A rotation speed detection means for detecting the engine rotation speed, an acid FS'a degree detection means for detecting the oxygen concentration in the exhaust gas by a lean burn sensor, and a detection means for detecting the intake negative pressure, intake air temperature, engine rotation speed, and liquid fuel injection amount. The actual air-fuel ratio determined from the oxygen concentration and the basic injection period of the liquid fuel determined from the storage means storing the desired relationship, the detection results of intake negative pressure, intake air temperature, and engine speed, and the stored contents of the storage means. a calculation means for calculating an injection period with a correction amount added to reduce the difference between the target air-fuel ratio and outputting an injection valve drive signal; and a driving means for driving the.

〈作用〉 上記のように構成された本発明の装置では1機関の運転
状態を示す吸気負圧、吸気温度1機関回転数とともに、
リーンバーンセンサにより検出された実空燃比がフィー
ドバックされ、燃料の噴射量が補正されて所定の空燃比
となるような制御が行なわれる。
<Function> In the device of the present invention configured as described above, the intake negative pressure, intake air temperature, and engine rotation speed, which indicate the operating status of one engine,
The actual air-fuel ratio detected by the lean burn sensor is fed back, and control is performed so that the fuel injection amount is corrected to reach a predetermined air-fuel ratio.

〈実施例〉 次に1図面に示した本発明の一実施例について説明する
<Example> Next, an example of the present invention shown in one drawing will be described.

第1図は実施例装置の概念系統図であり、(1)は機関
、(2)は気体燃料供給系統、(3)は液体燃料供給系
統を示す。気体燃料供給系統(2)は、ガス燃料(21
)がレギュレータ(22) 、切替弁(23)なとを経
てミキナー(24)に供給され、エアクリーナ(4)か
ら送られた空気(41)とここで混合された後、更にス
ロットル(25)を経て吸気管(26)から欅関(1)
に供給されるように構成されている。また、液体燃料供
給系統(3)は、空気(41)が切替弁(31)、吸気
ヒータ(32)、スロッ1−ル(33)を経て供給され
FIG. 1 is a conceptual system diagram of the embodiment device, in which (1) shows the engine, (2) shows the gaseous fuel supply system, and (3) shows the liquid fuel supply system. The gas fuel supply system (2) supplies gas fuel (21
) is supplied to the mixer (24) via the regulator (22) and the switching valve (23), where it is mixed with the air (41) sent from the air cleaner (4), and then the throttle (25) is applied. From the intake pipe (26) to Keyaki Seki (1)
is configured to be supplied to Furthermore, air (41) is supplied to the liquid fuel supply system (3) via a switching valve (31), an intake heater (32), and a throttle loop (33).

またポンプ(34)によって送られた液体燃料(35)
が吸気管(3G)の下流に設けられた噴射弁(37)か
ら噴射されて空気(41)と混合され、機関(1)に供
給されるようになっている。
Also the liquid fuel (35) delivered by the pump (34)
is injected from an injection valve (37) provided downstream of the intake pipe (3G), mixed with air (41), and supplied to the engine (1).

(5)は制御部、(6)は吸気管(36)に設けられた
吸気負圧検出用の圧力センサ、(7)は吸気管(3G)
に設けられた吸気温度検出用の温度センサ、(8)は機
関(1)の軸に設けられたリングギヤ(8a)と、これ
に対応して配置された角度信号用及びTOP信号用の電
磁ピックアップ(8b) (8c)からなる回転検出セ
ンサ、(9)は機関(1)の排気経路中に設けられたリ
ーンバーンセンサである。
(5) is the control unit, (6) is the pressure sensor for detecting intake negative pressure provided in the intake pipe (36), (7) is the intake pipe (3G)
(8) is a ring gear (8a) provided on the shaft of the engine (1), and an electromagnetic pickup for angle signals and TOP signal arranged correspondingly to the ring gear (8a). (8b) A rotation detection sensor consisting of (8c), and (9) a lean burn sensor provided in the exhaust path of the engine (1).

制御部(5)には例えばマイクロコンピュータが用いら
れており、第2図に示すように、CPU、 ROM。
For example, a microcomputer is used for the control unit (5), and as shown in FIG. 2, it includes a CPU and a ROM.

RAM、入出力インターフェースなとを有するワンチッ
プマイコン(51)のほか、 A/Dコンバータ(52
)、カウンタ回路(53)、噴射弁駆動用のトランジス
タ(54)なとを備えている。このワンチップマイコン
(51)は以下に説明する本発明の制御を行なうほか、
機関(5)の運転全般についての各種制御を行なうもの
で、 ROMには、吸気負圧、吸気温度及び機関回転数
と液体燃料噴射量との望ましい関係をマツプあるいは演
算式の形で予め記憶させであるほが。
In addition to a one-chip microcomputer (51) with RAM and input/output interface, there is also an A/D converter (52).
), a counter circuit (53), and a transistor (54) for driving the injection valve. This one-chip microcomputer (51) not only controls the present invention as described below, but also
It performs various controls for the overall operation of the engine (5), and the ROM stores in advance the desired relationship between intake negative pressure, intake air temperature, engine speed, and liquid fuel injection amount in the form of a map or calculation formula. That's it.

各種の制御に必要なデータとプログラムが記憶されてい
る。
Data and programs necessary for various controls are stored.

本発明の制御は、圧力センサ(6)、温度センサ(7)
1回転検出センサ(8)、リーンバーンセンサ(9)の
検出信号を制御部(5)に入力し、演算結果に応じて出
力される噴射弁駆動信号で噴射弁(37)を駆動するこ
とにより行なわれる。次にその手順を第3図のフローチ
ャー1・及び第4図のタイミングチャートを用いて説明
する。
The control of the present invention includes a pressure sensor (6), a temperature sensor (7)
By inputting the detection signals of the one rotation detection sensor (8) and the lean burn sensor (9) to the control unit (5), and driving the injection valve (37) with the injection valve drive signal output according to the calculation result. It is done. Next, the procedure will be explained using flowchart 1 in FIG. 3 and a timing chart in FIG. 4.

まず1回転検出センサ(8)から角度信号が例えば40
vssecごとに読込まれて機関(1)の回転数Nが算
出され、また圧力センサ(6)、温度センサ(7)とリ
ーンバーンセンサ(9)の検出値が読込まれて、吸入空
気圧力(絶対圧力)Pa、吸入空気温度T+sが検出さ
れ、実空燃比が算出される(ステップ1〜4)。
First, the angle signal from the one rotation detection sensor (8) is, for example, 40
The rotational speed N of the engine (1) is calculated every The pressure) Pa and the intake air temperature T+s are detected, and the actual air-fuel ratio is calculated (steps 1 to 4).

次に回転検出センサ(8)からのTOP信号及び機関回
転数と吸入空気圧力により、予め記憶させであるデータ
のマツプから噴射開始時期が算出され(ステップ5)、
更に噴射期間T。が次のようにして算出される(ステッ
プ6)。
Next, the injection start timing is calculated from a data map stored in advance using the TOP signal from the rotation detection sensor (8), the engine rotation speed, and the intake air pressure (step 5).
Furthermore, the injection period T. is calculated as follows (step 6).

機関1サイクル当りの吸入空気量Qaは吸入空気量Qa
=行程容積X吸入空気密度×容積効率m =に、X −XF(N) m ただし k、:定数 容積効率=回転数の関数: F(N) よって ただし kP:定数 となる。そしてステップ4で求めた実空燃比からこの(
′X)式を用いて修正噴射期間Tsを算出し、今求めた
噴射期間Toとの差e(n)を記憶しておく(ステップ
7)。
The intake air amount Qa per engine cycle is the intake air amount Qa
= stroke volume x intake air density x volumetric efficiency m =, X - XF (N) m where k: constant volumetric efficiency = function of rotational speed: F (N) Therefore, where kP: constant. Then, from the actual air-fuel ratio obtained in step 4, this (
The corrected injection period Ts is calculated using the formula 'X), and the difference e(n) from the injection period To just calculated is stored (step 7).

次に、吸入空気圧力の今回と前回の検出値を比較しくス
テップ8)、その差が大きければ先に求めた噴射開始時
期と噴射期間To (この場合は実噴射期間Tと同じ)
とをカウンタ回路(53)にセットして噴射弁駆動信号
を作り、トランジスタ(54)によって噴射弁(37)
を動作させる(ステップ9)。またこの吸入空気圧力の
差が小さければ、ステップ7で求めた修正噴射期間Ts
と噴射期間T。との差から次の(ス)式を用いて噴射期
間の補正量Sを算出し。
Next, compare the current and previous detected values of intake air pressure (step 8), and if the difference is large, the injection start time and injection period To determined previously (in this case, the same as the actual injection period T)
is set in the counter circuit (53) to create an injection valve drive signal, and the transistor (54) controls the injection valve (37).
(Step 9). If the difference in intake air pressure is small, the corrected injection period Ts obtained in step 7
and injection period T. The correction amount S for the injection period is calculated using the following equation (S) from the difference between .

その補正量Sをステップ6で求めた噴射期間roに増減
して実噴射期間Tとする(ステップlO)。
The correction amount S is increased or decreased from the injection period ro obtained in step 6 to obtain an actual injection period T (step 1O).

補正量S=に3 X5(n)+に4 X (e(n)−
e(n−1))   0式ただし k3.に、:定数 e(n):今回算出した差 e(n−1):前回算出した差 よって 実噴射期間T=ニステップで求めた噴射期間T。−補正
量Sとなる。そこで、ステップ5で求めた噴射時期と今
求めた実噴射期間Tとをカウンタ回路(53)にセット
して噴射弁駆動信号を作り、l−ランジスタ(54)に
よって噴射弁(37)を動作させ1機関1サイクルに必
要な液体燃料(35)が吸気管(36)内に噴射される
(ステップ9)。
Correction amount S=3 to X5(n)+4 X (e(n)-
e(n-1)) Formula 0 However, k3. :Constant e(n):Difference e(n-1) calculated this time:Difference calculated last time, actual injection period T=injection period T calculated by two steps. -The correction amount becomes S. Therefore, the injection timing obtained in step 5 and the actual injection period T obtained just now are set in the counter circuit (53) to generate an injection valve drive signal, and the injection valve (37) is operated by the L-transistor (54). Liquid fuel (35) necessary for one cycle of one engine is injected into the intake pipe (36) (step 9).

以上のような手順によって制御が行なわれるのであり、
記憶させであるマツプ(あるいは演算式)に応じて液体
燃料使用時の空燃比制御が適切に行なわれることになる
。なお、燃料の種類により実噴射期間などが一様でない
のが普通であり、その場合には、燃料に応じて複数のマ
ツプあるいは演算式を記憶させておき、これを適宜選択
する手段を設けておくなどの方法で対処すればよい、ま
た実施例では気体燃料の場合に空燃比制御を行なってい
ないが、気体燃料に対しても空燃比制御を実施しそよい
ことは勿論である。
Control is performed through the steps described above.
Air-fuel ratio control when using liquid fuel is appropriately performed in accordance with the stored map (or arithmetic expression). Note that it is normal for the actual injection period etc. to vary depending on the type of fuel, and in that case, multiple maps or calculation formulas are stored depending on the fuel, and a means is provided to select one as appropriate. In addition, although air-fuel ratio control is not performed in the case of gaseous fuel in the embodiment, it goes without saying that air-fuel ratio control is likely to be performed also for gaseous fuel.

〈発明の効果〉 上述の実施例の説明からも明らかなように、本発明の装
置は、リーンバーンセンサにより実空燃比を検出してこ
れをフィードバックし、所定の空燃比となるように燃料
の噴射量が補正されるため。
<Effects of the Invention> As is clear from the description of the embodiments above, the device of the present invention detects the actual air-fuel ratio using a lean burn sensor, feeds it back, and adjusts the fuel so that a predetermined air-fuel ratio is achieved. Because the injection amount is corrected.

使用できる燃料の種類が多いという火花点火式二元燃料
機関の特長を活かしなから空燃比を目標値に制御するこ
とができ、適切な排気ガス対策や燃費対策を実施するこ
とが可能となるのである。
Taking advantage of the feature of spark ignition dual fuel engines that can use many types of fuel, it is possible to control the air-fuel ratio to a target value, making it possible to implement appropriate exhaust gas and fuel efficiency measures. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概念系統図、第2図は制御
部のブロック図、第3図は制御のフローチャート、第4
図はタイミングチャートである。 (1)・・・機関、(2)・・・気体燃料供給系統、(
3)・・・液体燃料供給系統、(5)・・・制御部、(
6)・・・圧力センサ。 (7)・・・温度センサ、(8)・・・回転検出センサ
、(9)・・・リーンバーンセンサ、 (21)・・・
ガス燃料、(35)・・・液体燃料、(3G)・・・吸
気管、(37)・・・噴射弁、(41)・・・空気、(
51)・・・ワンチップマイコン、 (54)・・・ト
ランジスタ。
Fig. 1 is a conceptual system diagram of an embodiment of the present invention, Fig. 2 is a block diagram of the control section, Fig. 3 is a control flowchart, and Fig. 4 is a conceptual system diagram of an embodiment of the present invention.
The figure is a timing chart. (1)...engine, (2)...gaseous fuel supply system, (
3)...Liquid fuel supply system, (5)...Control unit, (
6)...Pressure sensor. (7)...Temperature sensor, (8)...Rotation detection sensor, (9)...Lean burn sensor, (21)...
Gas fuel, (35)...Liquid fuel, (3G)...Intake pipe, (37)...Injection valve, (41)...Air, (
51)...One-chip microcomputer, (54)...Transistor.

Claims (1)

【特許請求の範囲】[Claims] (1)互いに独立した気体燃料供給系統と液体燃料供給
系統を備えており、気体燃料供給系統には気体燃料を吸
気管中に噴射する噴射弁を有し、運転時は気体燃料と液
体燃料のいずれか一方のみを専焼する形式の火花点火式
二元燃料機関において、気体燃料供給系統の吸入空気負
圧を検出する吸気負圧検出手段と、 気体燃料供給系統の吸入空気温度を検出する吸気温度検
出手段と、 機関回転数を検出する回転数検出手段と、 リーンバーンセンサにより排気中の酸素濃度を検出する
酸素濃度検出手段と、 吸気負圧、吸気温度及び機関回転数と液体燃料噴射量と
の望ましい関係を記憶した記憶手段と、吸気負圧、吸気
温度及び機関回転数の検出結果と上記記憶手段の記憶内
容から求められる液体燃料の基本的噴射期間に、酸素濃
度から求められる実空燃比と目標空燃比とを比較して両
者の差を少なくするための補正量を加えた噴射期間を演
算し、噴射弁駆動信号を出力する演算手段と、 演算手段の噴射弁駆動信号に応じて噴射弁を駆動する駆
動手段、 とを備えたことを特徴とする火花点火式二元燃料機関の
液体燃料供給制御装置。
(1) It is equipped with a gaseous fuel supply system and a liquid fuel supply system that are independent of each other, and the gaseous fuel supply system has an injection valve that injects gaseous fuel into the intake pipe. In a spark ignition dual fuel engine of the type in which only one side is exclusively fired, there is provided an intake negative pressure detection means for detecting the intake air negative pressure of the gaseous fuel supply system, and an intake air temperature for detecting the intake air temperature of the gaseous fuel supply system. a detection means; a rotation speed detection means for detecting the engine rotation speed; an oxygen concentration detection means for detecting the oxygen concentration in the exhaust gas using a lean burn sensor; and a storage means that stores the desired relationship between the two, and the actual air-fuel ratio determined from the oxygen concentration during the basic injection period of the liquid fuel determined from the detection results of intake negative pressure, intake air temperature, and engine speed, and the stored contents of the storage means. and a target air-fuel ratio, calculates an injection period with a correction amount added to reduce the difference between the two, and outputs an injection valve drive signal; A liquid fuel supply control device for a spark ignition dual fuel engine, comprising: a drive means for driving a valve.
JP60051282A 1985-03-13 1985-03-13 Liquid fuel feed control device for spark ignition type two-dimensional fuel engine Pending JPS61210236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051282A JPS61210236A (en) 1985-03-13 1985-03-13 Liquid fuel feed control device for spark ignition type two-dimensional fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051282A JPS61210236A (en) 1985-03-13 1985-03-13 Liquid fuel feed control device for spark ignition type two-dimensional fuel engine

Publications (1)

Publication Number Publication Date
JPS61210236A true JPS61210236A (en) 1986-09-18

Family

ID=12882577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051282A Pending JPS61210236A (en) 1985-03-13 1985-03-13 Liquid fuel feed control device for spark ignition type two-dimensional fuel engine

Country Status (1)

Country Link
JP (1) JPS61210236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628294A (en) * 1993-09-21 1997-05-13 Gentec B.V. System and method for metering the fuel supply to a combustion installation operating on more than one type of fuel
WO2021079354A1 (en) * 2019-10-25 2021-04-29 Dumenko Petro Locomotive diesel engine control method and system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156226A (en) * 1979-05-24 1980-12-05 Mazda Motor Corp Fuel controller for engine with supercharger
JPS5720527A (en) * 1980-07-10 1982-02-03 Nissan Motor Co Ltd Fuel supply device
JPS5776231A (en) * 1980-10-29 1982-05-13 Toyota Motor Corp Electronically controlled fuel injection
JPS5722669B2 (en) * 1978-05-22 1982-05-14
JPS5896139A (en) * 1981-12-02 1983-06-08 Hitachi Ltd Engine control device
JPS58144645A (en) * 1981-10-23 1983-08-29 アウトボ−ド・マ−リン・コ−ポレ−シヨン Control mechanism for selectively operating internal combustion engine using two kinds of fuels
JPS595848A (en) * 1982-06-30 1984-01-12 Kubota Ltd Operation controlling apparatus for two-kind fuel engine
JPS59101564A (en) * 1982-11-30 1984-06-12 Mazda Motor Corp Air-fuel ratio controller of multi-cylinder engine
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS59208141A (en) * 1983-05-12 1984-11-26 Toyota Motor Corp Method of controlling lean air-fuel ratio in electronic control engine
JPS606050A (en) * 1983-06-22 1985-01-12 Nippon Denso Co Ltd Fuel injection quantity control unit for diesel engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722669B2 (en) * 1978-05-22 1982-05-14
JPS55156226A (en) * 1979-05-24 1980-12-05 Mazda Motor Corp Fuel controller for engine with supercharger
JPS5720527A (en) * 1980-07-10 1982-02-03 Nissan Motor Co Ltd Fuel supply device
JPS5776231A (en) * 1980-10-29 1982-05-13 Toyota Motor Corp Electronically controlled fuel injection
JPS58144645A (en) * 1981-10-23 1983-08-29 アウトボ−ド・マ−リン・コ−ポレ−シヨン Control mechanism for selectively operating internal combustion engine using two kinds of fuels
JPS5896139A (en) * 1981-12-02 1983-06-08 Hitachi Ltd Engine control device
JPS595848A (en) * 1982-06-30 1984-01-12 Kubota Ltd Operation controlling apparatus for two-kind fuel engine
JPS59101564A (en) * 1982-11-30 1984-06-12 Mazda Motor Corp Air-fuel ratio controller of multi-cylinder engine
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS59208141A (en) * 1983-05-12 1984-11-26 Toyota Motor Corp Method of controlling lean air-fuel ratio in electronic control engine
JPS606050A (en) * 1983-06-22 1985-01-12 Nippon Denso Co Ltd Fuel injection quantity control unit for diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628294A (en) * 1993-09-21 1997-05-13 Gentec B.V. System and method for metering the fuel supply to a combustion installation operating on more than one type of fuel
WO2021079354A1 (en) * 2019-10-25 2021-04-29 Dumenko Petro Locomotive diesel engine control method and system

Similar Documents

Publication Publication Date Title
JPH03271544A (en) Control device of internal combustion engine
JPS62247142A (en) Air-fuel ratio controller for internal combustion engine
US6516608B1 (en) Method for controlling the injection and ignition in a direct-injection endothermic engine, in order to accelerate heating of the catalytic converter
JPH1150889A (en) Control device for engine
JPS61210236A (en) Liquid fuel feed control device for spark ignition type two-dimensional fuel engine
JP3843492B2 (en) Engine intake control device
JPH1162658A (en) Control device for internal combustion engine
JP2505750B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
JP3006304B2 (en) Air-fuel ratio controller for multi-fuel engines
JP2005180228A (en) Fuel supply method and device for internal combustion engine
JPH0577867B2 (en)
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JPH07189768A (en) At-starting air-fuel ratio control device for internal combustion engine
JP3668912B2 (en) Fuel control device for internal combustion engine
JPH09287506A (en) Throttle valve controller for internal combustion engine
JPS58135331A (en) Control device for air-fuel ratio
JPS6321832B2 (en)
JPS63176647A (en) Electric control device for diesel engine
JPS639659A (en) Load detector for internal combustion engine
KR970006824A (en) Air-fuel ratio control system for lean burn engine vehicle
JPH0577866B2 (en)
JPS63289266A (en) Engine controller