JPS61205475A - Production of vinegar having high concentration - Google Patents

Production of vinegar having high concentration

Info

Publication number
JPS61205475A
JPS61205475A JP60044573A JP4457385A JPS61205475A JP S61205475 A JPS61205475 A JP S61205475A JP 60044573 A JP60044573 A JP 60044573A JP 4457385 A JP4457385 A JP 4457385A JP S61205475 A JPS61205475 A JP S61205475A
Authority
JP
Japan
Prior art keywords
vinegar
carbon dioxide
pressure
acetic acid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044573A
Other languages
Japanese (ja)
Inventor
Hiroshi Masai
正井 博司
Masahiro Fujimori
藤森 正宏
Tadanori Aki
安芸 忠徳
Masato Kaneko
正人 金子
Akio Tamaki
昭夫 田巻
Yasunobu Minamino
南野 康信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakano Vinegar Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Nakano Vinegar Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakano Vinegar Co Ltd, Mitsubishi Kakoki Kaisha Ltd filed Critical Nakano Vinegar Co Ltd
Priority to JP60044573A priority Critical patent/JPS61205475A/en
Publication of JPS61205475A publication Critical patent/JPS61205475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To produce concentrated vinegar having the taste and flavor of brewed vinegar and desired acetic acid concentration, by treating a vinegar with pressurized carbon dioxide gas, concentrating the extraction residue with a membrane, and mixing the extracted liquid with the concentrated liquid. CONSTITUTION:The vinegar A is pumped to the extraction column 1 under specific temperature and pressure condition, and the liquified carbon dioxide gas B is introduced into the extraction column 1 in the form of high-pressure carbon dioxide gas of critical point or thereabout. The acetic acid component and the flavoring component, etc. are extracted with the high- pressure carbon dioxide gas in the extraction part 3 and the extract is sent through the upper settler 4, decompressed with the pressure-reducing valve 9 and separated into the carbon dioxide gas and the extracted liquid in the extracted liquid separator 10. The extracted liquid is sent to the mixing tank 20. The extraction residue containing extractable components such as non-volatile acids, amino acids, sugars, etc., is sent through the lower settler 2, decompressed with the pressure-reducing value 13, deaerated with the deaerator 15 to separate carbon dioxide gas, pressurized with the pump 17, sent to the reverse-osmotic separator 18 and separated into the permeated liquid and the concentrated liquid containing the extractable components in concentrated state. The concentrated liquid is sent to the mixing tank 20 and the permeated liquid is recycled to the fermentation step.

Description

【発明の詳細な説明】 産業上の利用分野) 本発明は、通常濃度の食酢から輸送費や貯蔵設備が大幅
に節減でき、しかも香味の損なわれない高濃度食酢を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application) The present invention relates to a method for producing high-concentration vinegar from normal-concentration vinegar, which can significantly reduce transportation costs and storage equipment, and which does not impair flavor.

従来の技術) 食酢を大別すると、醗酵法で製造した醸造酢と、有機合
成法で製造した酢酸もしくは氷酢酸を水で稀釈し調味料
などの添加物を加え調合して作る合成酢とがある。
(Conventional technology) Vinegar can be roughly divided into two types: brewed vinegar produced using fermentation methods, and synthetic vinegar produced by diluting acetic acid or glacial acetic acid produced using organic synthesis methods with water and adding additives such as seasonings. be.

合成酢の多くは、氷酢酸を適宜水で稀釈するため、任意
の酢酸濃度の食酢が得られる利点を有する反面、香味の
悪さと近年の天然志向、高級志向の消費者ニーズの高ま
りから敬遠されるようになったO 一方、醗酵法で製造した醸造酢中の酢酸濃度は、5重量
/容量%(以下「%」で示す)前後のものが主流で、1
5%程度の高酸度食酢も広く食品工業用として市販、使
用されている。
Most synthetic vinegars have the advantage of being able to obtain vinegar with any acetic acid concentration because glacial acetic acid is diluted with water, but they are avoided due to their poor flavor and the increasing consumer needs for natural and luxury products in recent years. On the other hand, the concentration of acetic acid in brewed vinegar produced by the fermentation method is generally around 5% by weight/volume (hereinafter referred to as "%");
High acidity vinegar of about 5% is also widely commercially available and used in the food industry.

しかしながら、現代の最高水準の醗酵技術を駆使して酢
酸醗酵を行わせても、得られる酢酸の最高濃度は約20
%(例えば特許第1.212.786号参照)が限度で
ある。
However, even if acetic acid fermentation is carried out using the highest level of modern fermentation technology, the maximum concentration of acetic acid obtained is approximately 20%.
% (see, for example, patent no. 1.212.786).

このように、醸造酢の大部分は水であり、この水を効果
的に除去し、高濃度食酢を得る方法として、例えば ■常圧下で100℃以上に加熱した蒸留塔に原料食酢を
導入し塔頂から水を取り出し、塔底の蒸留缶から高濃度
食酢を得る蒸留法、 ■食酢を凍結し、結晶化した水と濃縮酢を固液分離して
濃縮食酢を得る凍結融解法、 ■高圧二酸化炭素を用いて希薄酢酸溶液から酢酸を抽出
する高圧二酸化炭素抽出法〔例えばBiotechno
logy and Bioengineering S
ymp、l1h12゜249 (1982))などを挙
げることができる。
In this way, most of brewed vinegar is water, and one way to effectively remove this water and obtain highly concentrated table vinegar is to introduce raw vinegar into a distillation column heated to over 100°C under normal pressure. A distillation method that extracts water from the top of the tower and obtains high-concentration vinegar from a distillation can at the bottom of the tower; ■A freeze-thaw method that freezes vinegar and separates crystallized water and concentrated vinegar to obtain concentrated vinegar; ■High pressure A high-pressure carbon dioxide extraction method in which acetic acid is extracted from a dilute acetic acid solution using carbon dioxide [for example, Biotechno
logy and Bioengineering S
ymp, l1h12°249 (1982)).

発明が解決しようとする問題点) しかしながら、食酢の高濃度化方法として、前記■蒸留
法では、水の蒸留に良質のエネルギーが多量に必要であ
るばかりか、得られる高濃度食酢の品質は褐色に着色し
異味、異臭を伴ったもので、食料品には使用することが
できない、これは、蒸留に際し、100℃以上の温度で
操作するため、食酢中の熱に弱い成分が分解したり、香
気成分が散逸するためと考えられる。
(Problems to be Solved by the Invention) However, as a method for increasing the concentration of vinegar, the above-mentioned distillation method not only requires a large amount of high-quality energy to distill water, but also the quality of the high-concentration vinegar obtained is brownish. It is colored and has a strange taste and odor, so it cannot be used in food products.During distillation, it is operated at temperatures of 100℃ or higher, so the heat-sensitive components in vinegar decompose. This is thought to be due to the aroma components dissipating.

また、■凍結融解法では、原料食酢を凍結させるために
多量のエネルギーが必要ではあるが、熱による食酢成分
の変質がなく、香気成分の散逸が少ないため、良質の高
濃度食酢が得られる。しかしながら、氷晶スラリーの分
離が難しいことと、酢酸濃度の上限が約50%程度であ
り、これ以上の高濃度食酢を製造することは、技術的に
不可能である。
In addition, (1) the freeze-thaw method requires a large amount of energy to freeze the raw vinegar, but the vinegar components do not change in quality due to heat, and the aroma components are less likely to dissipate, so high-quality, high-concentration vinegar can be obtained. However, it is difficult to separate the ice crystal slurry, and the upper limit of the acetic acid concentration is approximately 50%, making it technically impossible to produce vinegar with a higher concentration.

更に、■高圧二酸化炭素抽出法は、微妙な呈味と芳醇を
有する食料品である食酢に適用することは知られていな
い。
Furthermore, it is not known that the high-pressure carbon dioxide extraction method can be applied to vinegar, which is a food product with a delicate taste and aroma.

即ち、食料品としての高濃度食酢に求められる品質は、
単に酢酸濃度が高いばかりではなく、それぞれの酸度に
応じた香味成分を伴っていな(では商品価値がなく、そ
の点でかかる抽出法で得られるような化学工業で使用さ
れる酢酸とは、基本的に要求される品質が異なっている
In other words, the quality required for high-concentration vinegar as a food product is:
Not only does it have a high acetic acid concentration, but it also lacks flavor components corresponding to each acidity (therefore, it has no commercial value, so the acetic acid used in the chemical industry that can be obtained by such extraction methods The required quality is different.

本発明の目的は、醸造酢本来の香味を有し、かつ酢酸濃
度が任意になる高濃度の食酢を容易に得ることにある。
An object of the present invention is to easily obtain high-concentration vinegar that has the flavor inherent to brewed vinegar and can have an arbitrary acetic acid concentration.

問題点を解決するための手段) 即ち本発明は、下記(イ)〜(ハ)の工程を含むことを
特徴とする高濃度食酢の製造方法を提供するものである
Means for Solving the Problems) That is, the present invention provides a method for producing high-concentration vinegar, which is characterized by including the following steps (a) to (c).

(イ)食酢を高圧二酸化炭素を用いて抽出処理を行う第
1工程。
(a) The first step of extracting vinegar using high-pressure carbon dioxide.

(ロ)前記第1工程で抽出されなかった抽残液を膜を用
いて濃縮する第2工程。
(b) A second step of concentrating the raffinate that was not extracted in the first step using a membrane.

(ハ)第1工程で得られた抽出液と第2工程で得られた
濃縮液を混合し高濃度食酢を得る第3工程。
(c) A third step of mixing the extract obtained in the first step and the concentrate obtained in the second step to obtain high-concentration vinegar.

以下、本発明を工程別に詳述する。Hereinafter, the present invention will be explained in detail step by step.

(イ)第1工程 第1工程では、食酢を高圧二酸化炭素によって抽出する
ことにより、該食酢中の酢酸成分および香気成分を抽出
液として抽出するものである。
(a) First step In the first step, vinegar is extracted with high-pressure carbon dioxide to extract the acetic acid component and aroma component in the vinegar as an extract.

ここで、高圧二酸化炭素とは、二酸化炭素の臨界温度(
31,1℃)と臨界圧力(72,8気圧)近傍の温度、
圧力条件にある二酸化炭素のことである。例えば、食酢
の場合には、圧力65〜300気圧、好ましくは70〜
140気圧、温度15〜40℃、好ましくは20〜40
℃である。
Here, high-pressure carbon dioxide refers to the critical temperature of carbon dioxide (
31.1℃) and a temperature near the critical pressure (72.8 atm),
It refers to carbon dioxide under pressure conditions. For example, in the case of vinegar, the pressure is 65 to 300 atm, preferably 70 to 300 atm.
140 atm, temperature 15-40°C, preferably 20-40°C
It is ℃.

また、高圧二酸化炭素により食酢を抽出する際の高圧二
酸化炭素と原料食酢との流量比は、重量比として、通常
、10〜100、好ましくは13〜20である。
Moreover, the flow rate ratio of high-pressure carbon dioxide and raw vinegar at the time of extracting vinegar with high-pressure carbon dioxide is usually 10-100, preferably 13-20 as a weight ratio.

醗酵法などによって得られる低濃度食酢を高圧二酸化炭
素に接触させると、食酢成分のうち酢酸、エタノールお
よび微量の酢酸エチル、アセトインなどの香気成分が二
酸化炭素によって抽出され、次に系を減圧および/また
は温度上昇し、好ましくは系を減圧して気体の二酸化炭
素と酢酸、香気成分および(少量の)水に分離する方法
によって、酢酸成分および香気成分が濃縮された抽出液
が得られる。このように、高圧二酸化炭素には、食酢中
の酢酸および香気成分が選択的に溶解し、更に少量の水
が溶解するという現象が生起する。
When low-concentration vinegar obtained by a fermentation method is brought into contact with high-pressure carbon dioxide, aromatic components such as acetic acid, ethanol, and trace amounts of ethyl acetate and acetoin are extracted from the vinegar components, and then the system is depressurized and/or Alternatively, an extract in which acetic acid components and aroma components are concentrated can be obtained by increasing the temperature and preferably reducing the pressure of the system to separate gaseous carbon dioxide, acetic acid, aroma components, and (a small amount) water. As described above, a phenomenon occurs in which the acetic acid and aroma components in vinegar are selectively dissolved in high-pressure carbon dioxide, and a small amount of water is further dissolved.

また、同時に食酢成分のうち、不揮発酸類、アミノ酸類
、糖類などのエキス成分を含み、水を主成分とする抽残
液が得られる。
At the same time, a raffinate solution containing extract components such as nonvolatile acids, amino acids, and saccharides among the vinegar components and having water as the main component is obtained.

ここで、第2図の酢酸−水系の相平衡図を用い、第1工
程を更に詳細に説明する。
Here, the first step will be explained in more detail using the phase equilibrium diagram of the acetic acid-water system shown in FIG.

第2図のNで示す曲線は、圧カフ60mHg下での酢酸
−水系の熱力学的平衡曲線である0曲線Nから圧カフ6
0wHg下では、酢酸を濃縮するのに、水を蒸留する方
法を取らざるを得ないことが分かる。特に醗酵食酢のよ
うな酢酸濃度の低い液では、大量の水を蒸留しなければ
ならず、良策ではない。これに対し、第2図Sで示す曲
線は、圧力80に+r/cdG、温度25℃での二酸化
炭素−水一酢酸系の熱力学的平衡関係で、各相から二酸
化炭素を控除したときの平衡曲線である。
The curve indicated by N in FIG.
It can be seen that under 0wHg, water must be distilled to concentrate acetic acid. Particularly for liquids with low acetic acid concentration, such as fermented vinegar, a large amount of water must be distilled, which is not a good idea. On the other hand, the curve shown in Figure 2 S shows the thermodynamic equilibrium relationship of the carbon dioxide-water monoacetic acid system at a pressure of 80 +r/cdG and a temperature of 25°C, and when carbon dioxide is subtracted from each phase. It is an equilibrium curve.

曲線Sから高圧二酸化炭素を系内に導入し、酢酸成分を
二酸化炭素相へ移動することによって、容易に高濃度に
濃縮されることが理解できる。
It can be seen from the curve S that the acetic acid component can be easily concentrated to a high concentration by introducing high pressure carbon dioxide into the system and moving the acetic acid component to the carbon dioxide phase.

このように高圧二酸化炭素による抽出法が、酢酸濃度の
低い食酢の酢酸成分の濃縮に適し、従来法より格段に優
れた方法であることが分かる。
Thus, it can be seen that the extraction method using high-pressure carbon dioxide is suitable for concentrating the acetic acid component of vinegar with a low acetic acid concentration, and is much superior to conventional methods.

(ロ)第2工程 第1工程で得られた抽残液中には、水を主成分とし、第
1工程で二酸化炭素相に移動しなかった不揮発酸類、ア
ミノ酸類、W類などのエキス成分が含まれており、本工
程ではこの抽残液を膜を用いて濃縮する。
(b) Second step The raffinate obtained in the first step contains water as the main component, and extract components such as nonvolatile acids, amino acids, and Ws that did not transfer to the carbon dioxide phase in the first step. In this step, this raffinate is concentrated using a membrane.

かかる抽残液には、前記エキス成分のほか、二酸化炭素
が溶解している。従って、このままでは溶解二酸化炭素
が膜を透過する際に気化し、膜の処理能を低下させるの
で、膜分離装置で処理する以前に該抽残液を充分に脱気
することが好ましい。
In addition to the above-mentioned extract components, carbon dioxide is dissolved in the raffinate. Therefore, if left as is, the dissolved carbon dioxide will vaporize when permeating through the membrane, reducing the throughput of the membrane, so it is preferable to sufficiently degas the raffinate before treating it with a membrane separation device.

脱気の済んだ抽残液を膜分離装置に通すことによって、
不揮発酸類、アミノ酸類、糖類などのエキス成分が濃縮
され、抽残液が濃縮液と透過液に分離される。かかる濃
縮液は、高濃度食酢用に次工程である第3工程へ送られ
、透過液は再び醗酵工程へ返送されるか、廃棄される。
By passing the degassed raffinate through a membrane separation device,
Extract components such as nonvolatile acids, amino acids, and sugars are concentrated, and the raffinate is separated into a concentrated liquid and a permeated liquid. This concentrated solution is sent to the next step, the third step, for high-concentration vinegar, and the permeate is sent back to the fermentation step or discarded.

ここで、膜とは、ある分子は透過させるがある分子は透
過させないような選択性のある膜であり、物質の移動の
駆動力に圧力差を利用した限外濾過膜、逆浸透膜、電位
差を利用した電気透析膜などが挙げられ、かかる膜の材
質としてはキュプロファン、再生セルロール、ポリアク
リロニトリル、ポリスルホン、芳香族ナイロン、ポリフ
ッ化ビニリデン、ポリベンズイミダシロン、スルホン化
ポリスルホン、スルホン化ポリフェニレンオキシドなど
を挙げることができる。
Here, a membrane is a selective membrane that allows certain molecules to pass through while others do not. Examples of the membrane materials include cuprophane, recycled cellulose, polyacrylonitrile, polysulfone, aromatic nylon, polyvinylidene fluoride, polybenzimidacylon, sulfonated polysulfone, and sulfonated polyphenylene oxide. etc. can be mentioned.

膜分離の操作温度は、通常、5〜40℃、好ましくは常
温で行い、操作圧力は、通常、2〜60kg/cdG、
好ましくは30〜40kg/cdGで行う。
The operating temperature for membrane separation is usually 5 to 40°C, preferably room temperature, and the operating pressure is usually 2 to 60 kg/cdG,
Preferably it is carried out at 30 to 40 kg/cdG.

(ハ)第3工程 第3工程では、第1工程で得られた抽出液と第2工程で
得られた濃縮液とを(必要に応じ水を加えて)混合し、
任、意の濃度の高濃度食酢を得るものである。かくて第
1工程で得られた抽出液は、主として酢酸および香気成
分が、第2工程で得られた濃縮液には不揮発酸類、アミ
ノ酸類、P!類などのエキス成分が含まれており、これ
らを混合することにより、醗酵法で得られる通常の食酢
と同様の組成からなる香味のある高濃度食酢を得ること
が可能となる。
(c) Third step In the third step, the extract obtained in the first step and the concentrate obtained in the second step are mixed (adding water as necessary),
Highly concentrated table vinegar of any concentration can be obtained. Thus, the extract obtained in the first step mainly contains acetic acid and aroma components, and the concentrate obtained in the second step contains nonvolatile acids, amino acids, and P! By mixing these extract components, it is possible to obtain flavorful and highly concentrated vinegar with a composition similar to that of ordinary vinegar obtained by fermentation.

以下、本発明を図面を用いて更に詳細に説明する。第1
図は、本発明の一実施態様であり、高濃度食酢の製造工
程図である。
Hereinafter, the present invention will be explained in more detail using the drawings. 1st
The figure is an embodiment of the present invention, and is a diagram of the manufacturing process of high-concentration vinegar.

抽出塔1は、下部セトラー2と棚段、充填物などを内部
に有する抽出部3と上部セトラー4とにより構成されて
いる。
The extraction column 1 is composed of a lower settler 2, an extraction section 3 having trays, packings, etc. therein, and an upper settler 4.

醗酵法などで得られた食酢Aは、ポンプ5、加熱器6を
経る間に所定の圧力、温度に調節され、抽出塔1へ送ら
れる。また、液化二酸化炭素Bは、ポンプ7、加熱器8
を通る間に臨界点近傍の高圧二酸化炭素となって抽出塔
1へ送られる。抽出塔1の抽出部3で食酢Aと高圧二酸
化炭素Bとが接触し、食酢成分のうち酢酸成分、香気成
分などは、高圧二酸化炭素に抽出され、上部セトラー4
を経てパルプ9に至る。この二酸化炭素相は、バルブ9
で減圧され、該二酸化炭素相に溶解していた酢酸成分、
香気成分などの抽出液は、気体二酸化炭素と抽出液分離
器10において分離される。余剰の気体二酸化炭素は、
管11を経て外部に放出されるか、または圧縮機(図示
せず)によって再圧縮、液化後糸内に再循環される。分
離された抽出液は、管12を経て後記する混合槽20へ
送られる。抽出部3で高圧二酸化炭素により抽出されな
かった不揮発酸類、アミノ酸類、I!!類などのエキス
成分を含む抽残液は、下部セトラー2を経てバルブ13
に至る。パルプ13で減圧され、抽残液に溶解していた
二酸化炭素は、分離されつつ管14を経て脱気器15に
導入され、脱気器15で抽残液は、二酸化炭素を脱気さ
れる。分離された二酸化炭素は、管16を経て外部へ放
出されるか、または圧縮機(図示せず)によって再圧縮
、液化後糸内に再循環される。脱気器15で二酸化炭素
を分離、除去された抽残液は、ポンプ17によって加圧
後、逆浸透膜分離装置18に送られる。逆浸透膜分離装
置18で抽残液は、不揮発酸類、アミノ酸類、t、e類
などのエキス成分が濃縮された濃縮液と、透過液に分離
される。−a!IN液は、管19を経て混合槽20へ送
られる。また、透過液は管21を経て醗酵工程へ再循環
される。混合槽20では、抽出液と濃縮液とを適宜混合
することにより任意の濃度の高濃縮食酢を得る。
Vinegar A obtained by a fermentation method is adjusted to a predetermined pressure and temperature while passing through a pump 5 and a heater 6, and is sent to an extraction column 1. In addition, the liquefied carbon dioxide B is supplied by a pump 7, a heater 8
While passing through, it becomes high-pressure carbon dioxide near the critical point and is sent to the extraction column 1. Vinegar A and high-pressure carbon dioxide B come into contact with each other in the extraction section 3 of the extraction tower 1, and the acetic acid component, aroma component, etc. of the vinegar components are extracted into the high-pressure carbon dioxide.
Through this process, pulp 9 is reached. This carbon dioxide phase is removed by valve 9
the acetic acid component dissolved in the carbon dioxide phase,
The extract, such as aroma components, is separated from gaseous carbon dioxide in the extract separator 10. The excess gaseous carbon dioxide is
It is either discharged to the outside via tube 11 or recycled into the thread after being recompressed and liquefied by a compressor (not shown). The separated extract is sent through a pipe 12 to a mixing tank 20, which will be described later. Nonvolatile acids, amino acids, and I! that were not extracted by high-pressure carbon dioxide in extraction section 3. ! The raffinate containing extract components such as
leading to. The pressure is reduced in the pulp 13, and the carbon dioxide dissolved in the raffinate is separated and introduced into the deaerator 15 through the pipe 14, where the carbon dioxide is degassed from the raffinate. . The separated carbon dioxide is either discharged to the outside via tube 16 or recycled into the thread after recompression and liquefaction by a compressor (not shown). The raffinate liquid from which carbon dioxide has been separated and removed by the deaerator 15 is pressurized by the pump 17 and then sent to the reverse osmosis membrane separation device 18 . In the reverse osmosis membrane separation device 18, the raffinate liquid is separated into a concentrated liquid in which extract components such as nonvolatile acids, amino acids, T, and E are concentrated, and a permeate liquid. -a! The IN liquid is sent to a mixing tank 20 via a pipe 19. The permeate is also recycled to the fermentation process via tube 21. In the mixing tank 20, highly concentrated vinegar of any concentration is obtained by appropriately mixing the extract and the concentrate.

作用) 本発明は、高圧二酸化炭素による酢酸成分と香気成分の
抽出、膜分離法によるエキス成分の濃縮を巧みに組み答
わせることにより、香味のある高濃度食酢を効率的に得
るものである。
Effect) The present invention efficiently obtains flavorful and highly concentrated vinegar by skillfully combining the extraction of acetic acid components and aroma components using high-pressure carbon dioxide and the concentration of extract components using a membrane separation method. .

発明の効果) 以上のように本発明によれば、高濃度食酢を製造するに
当たり、従来の蒸留法のように加熱エネルギーを必要と
しないために省エネルギー的であり、かつその製造が容
易である。また、得られる高濃度食酢は、任意の濃度に
調整可能であり、かつ香味のある高品質のものを得るこ
とができ、食酢利用分野に極めて広範囲に利用すること
が可能である。
Effects of the Invention) As described above, according to the present invention, when producing high-concentration vinegar, heating energy is not required unlike the conventional distillation method, so it is energy saving and easy to produce. In addition, the obtained high-concentration vinegar can be adjusted to any concentration and can be of high quality with flavor, and can be used in a very wide range of fields where vinegar is used.

実施例) 以下、実施例を挙げ、本発明を更に具体的に説明する。Example) EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 第1図の製造工程図に従い、醗酵法で得られた15%酢
酸濃度の食酢を原料酢とし、高濃度食酢を製造した。抽
出塔1と逆浸透膜分離装置18の操作条件は、次の通り
である。
Example 1 According to the manufacturing process diagram shown in FIG. 1, high-concentration vinegar was manufactured using vinegar with a 15% acetic acid concentration obtained by fermentation as raw vinegar. The operating conditions of the extraction column 1 and the reverse osmosis membrane separation device 18 are as follows.

■大1の 乍 温度;25℃ 圧力;80kg/cjG 高圧二酸化炭素と原料酢との流量比(重量比);]、6
.7 ン”1Bの1 膜;ポリスルホン系樹脂製合成高分子複合膜圧力; 4
0 kg/cAG 温度;25℃ 前記操作条件で高濃度食酢を製造したときの高濃度食酢
と原料酢の分析値を第1表に示す。
■Temperature: 25℃ Pressure: 80kg/cjG Flow rate ratio (weight ratio) of high-pressure carbon dioxide and raw vinegar;], 6
.. 7"1B 1 Membrane; Synthetic polymer composite membrane made of polysulfone resin; Pressure; 4
0 kg/cAG Temperature: 25°C Table 1 shows the analytical values of high concentration vinegar and raw vinegar when high concentration vinegar was produced under the above operating conditions.

第1表 注)製品a、b、cは、第1工程の抽出液と第2工程の
濃縮液を酸濃度がそれぞれの濃度になるように混合した
ものである。
Table 1 Note: Products a, b, and c are obtained by mixing the extract from the first step and the concentrate from the second step so that the acid concentrations are the same.

第1表から明らかなように、本発明によれば、凍結融解
法では不可能とされている酢酸濃度50%以上の高濃度
食酢を容易に製造することができる。
As is clear from Table 1, according to the present invention, it is possible to easily produce high-concentration vinegar with an acetic acid concentration of 50% or more, which is considered impossible by the freeze-thaw method.

次に、原料酢と本実施例で製造した高濃度食酢をそれぞ
れ5.0%の酢酸濃度に稀釈して3点識別試験による官
能評価を行った結果を第2表に示す。
Next, the raw vinegar and the high-concentration vinegar produced in this example were each diluted to an acetic acid concentration of 5.0%, and a sensory evaluation was performed using a three-point discrimination test. The results are shown in Table 2.

第2表 *)5%の危険率で有意差あり。Table 2 *) There is a significant difference at a 5% risk rate.

第2表から、製品aとbは、官能的に原料酢との識別が
できない。製品Cは、香りの点で原料酢との識別はでき
ないが、味の識別は可能であった。
From Table 2, products a and b cannot be sensually distinguished from raw vinegar. Product C could not be distinguished from the raw vinegar in terms of aroma, but it was possible to distinguish the taste.

しかし、製品Cに少量の複合アミノ酸とグルコースを添
加して呈味の補正を行ったところ、香り、味とも官能的
に原料酢と殆ど変わらない食酢が得られた。
However, when the taste was corrected by adding a small amount of complex amino acids and glucose to Product C, a vinegar that was sensory-wise almost the same as the raw vinegar in aroma and taste was obtained.

使用例 実施例1で使用した原料酢および実施例1で得られた製
品すを用いて粉末酢を製造した。その配合処方を下記に
示す。
Example of Use Powdered vinegar was manufactured using the raw vinegar used in Example 1 and the product obtained in Example 1. The combination recipe is shown below.

侃金欠1(原料酢を使用する粉末酢用)原料酢(酢酸濃
度15%)      10kgデキストリン    
        8 kg無水酢酸ナトリウム    
    0.5−聚立処1(製品すを使用する粉末酢用
)製品b(酢酸濃度60%)       5 kgデ
キストリン            4 kg無水酢酸
ナトリウム        1 kgこのようにして調
合した溶液をそれぞれスプレードライヤー(アンハイド
ロ社製、Lab 1)を用いて、チャンバ一温度160
℃の条件で乾燥したところ、原料酢を使用する粉末酢が
約9.5kg(酢酸濃度15.0%)を、製品すを使用
する粉末酢が約7.5kg(酢酸濃度37.5%)が得
られた。
Kankin missing 1 (for powdered vinegar using raw vinegar) Raw vinegar (acetic acid concentration 15%) 10 kg dextrin
8 kg anhydrous sodium acetate
0.5-Juryoshi 1 (for powdered vinegar using product) Product B (acetic acid concentration 60%) 5 kg Dextrin 4 kg Anhydrous sodium acetate 1 kg Using the Lab 1) manufactured by Co., Ltd., the chamber temperature was
When dried under ℃ conditions, the powdered vinegar using the raw vinegar weighed approximately 9.5 kg (acetic acid concentration 15.0%), and the powdered vinegar using the finished product weighed approximately 7.5 kg (acetic acid concentration 37.5%). was gotten.

次に、それぞれの粉末酢を水に溶解して酢酸濃度を5%
水溶液とした後、官能評価に供したところ、製品すを使
用する粉末酢の方が香り、味ともに自然な香味を持ち、
明らかに優れていることが分かった。
Next, dissolve each vinegar powder in water to make the acetic acid concentration 5%.
After making it into an aqueous solution, we subjected it to sensory evaluation, and found that the powdered vinegar using the product had a more natural aroma and taste.
It turned out to be clearly superior.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様で高濃度食酢の製造工程図
、第2図は酢酸−水系の相平衡図である。 l;抽出塔    10;分離器 15:脱気器   18;逆浸透膜分離装置20;混合
槽 特許出願人  株式会社 中埜酢店 同    三菱化工機株式会社 代理人  弁理士 白 井 重 隆 箪 l 図 15#出塔    lO;分証器 I5;脱気器   ta;通罎透緘分9又五20;渥合
橿
FIG. 1 is a process diagram for producing high-concentration vinegar according to one embodiment of the present invention, and FIG. 2 is a phase equilibrium diagram of an acetic acid-water system. l; Extraction column 10; Separator 15: Deaerator 18; Reverse osmosis membrane separation device 20; Mixing tank Patent applicant Nakano Suten Co., Ltd. Mitsubishi Kakoki Co., Ltd. agent Patent attorney Ryutan Shirai l Figure 15 #Out tower lO; Separator I5; Deaerator ta; Pass through 9 and 5 20;

Claims (1)

【特許請求の範囲】[Claims] (1)下記(イ)〜(ハ)の工程を含むことを特徴とす
る高濃度食酢の製造方法。 (イ)食酢を高圧二酸化炭素を用いて抽出処理を行う第
1工程。 (ロ)前記第1工程で抽出されなかった抽残液を膜を用
いて濃縮する第2工程。 (ハ)第1工程で得られた抽出液と第2工程で得られた
濃縮液を混合し高濃度食酢を得る第3工程。
(1) A method for producing high-concentration vinegar, characterized by including the following steps (a) to (c). (a) The first step of extracting vinegar using high-pressure carbon dioxide. (b) A second step of concentrating the raffinate that was not extracted in the first step using a membrane. (c) A third step of mixing the extract obtained in the first step and the concentrate obtained in the second step to obtain high-concentration vinegar.
JP60044573A 1985-03-08 1985-03-08 Production of vinegar having high concentration Pending JPS61205475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044573A JPS61205475A (en) 1985-03-08 1985-03-08 Production of vinegar having high concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044573A JPS61205475A (en) 1985-03-08 1985-03-08 Production of vinegar having high concentration

Publications (1)

Publication Number Publication Date
JPS61205475A true JPS61205475A (en) 1986-09-11

Family

ID=12695243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044573A Pending JPS61205475A (en) 1985-03-08 1985-03-08 Production of vinegar having high concentration

Country Status (1)

Country Link
JP (1) JPS61205475A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755610A1 (en) * 1996-11-14 1998-05-15 Dukan Pierre Preparation of dry extract from vinegar that has been enriched with sludge from filtration of crude vinegar
WO2004081216A1 (en) * 2003-03-12 2004-09-23 Mitsukan Group Corporation Alcohol dehydrogenase gene of acetic acid bacterium
JP2004305209A (en) * 2003-03-27 2004-11-04 Mitsukan Group Honsha:Kk Gene associated with proliferation promoting function of acetic acid bacteria
WO2005001095A1 (en) * 2003-06-26 2005-01-06 Mitsukan Group Corporation Gene participating in growth promoting function of acetic acid bacterium and utilization of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125885A (en) * 1982-12-10 1984-07-20 ユ−オ−ピ−・インコ−ポレイテツド Concentration fo alcohol benerage
JPS608747A (en) * 1983-06-29 1985-01-17 Morinaga & Co Ltd Analyzer using supercritical fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125885A (en) * 1982-12-10 1984-07-20 ユ−オ−ピ−・インコ−ポレイテツド Concentration fo alcohol benerage
JPS608747A (en) * 1983-06-29 1985-01-17 Morinaga & Co Ltd Analyzer using supercritical fluid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755610A1 (en) * 1996-11-14 1998-05-15 Dukan Pierre Preparation of dry extract from vinegar that has been enriched with sludge from filtration of crude vinegar
WO2004081216A1 (en) * 2003-03-12 2004-09-23 Mitsukan Group Corporation Alcohol dehydrogenase gene of acetic acid bacterium
US7354751B2 (en) 2003-03-12 2008-04-08 Mitsukan Group Corporation Alcohol dehydrogenase gene of acetic acid bacterium
JP2004305209A (en) * 2003-03-27 2004-11-04 Mitsukan Group Honsha:Kk Gene associated with proliferation promoting function of acetic acid bacteria
WO2005001095A1 (en) * 2003-06-26 2005-01-06 Mitsukan Group Corporation Gene participating in growth promoting function of acetic acid bacterium and utilization of the same
JPWO2005001095A1 (en) * 2003-06-26 2006-10-26 株式会社ミツカングループ本社 Genes involved in the growth promoting function of acetic acid bacteria and use thereof
US7541491B2 (en) 2003-06-26 2009-06-02 Mitsukan Group Corporation Gene involved in growth-promoting function of acetic acid bacteria and uses thereof
JP4551870B2 (en) * 2003-06-26 2010-09-29 株式会社ミツカングループ本社 Genes involved in the growth promoting function of acetic acid bacteria and use thereof

Similar Documents

Publication Publication Date Title
Mangindaan et al. Beverage dealcoholization processes: Past, present, and future
KR890001591B1 (en) Production of low alcoholic content beverages
US4792402A (en) Concentration of alcoholic beverages
SE459098B (en) PROCEDURES FOR PREPARING ALCOHOLIC REDUCED WINE
Cassano et al. A comprehensive review of membrane distillation and osmotic distillation in agro-food applications
CN109692571A (en) A kind of milk method for concentration and system based on forward osmosis technology
JP2023055702A (en) Production of flavor concentrates by osmosis
US5510125A (en) Process for selective removal of sugar from beverages
US4491600A (en) Process for concentrating aqueous solutions having temperature-sensitive components
JPS61205475A (en) Production of vinegar having high concentration
RU2046134C1 (en) Process for selectively removing non-volatile substances from non-alcoholic or alcoholic beverage or sugar-containing solution
JPS60145074A (en) Apparatus and method for producing wine free from alcohol
JPH0330663A (en) Production of alcoholic drink
FI76369B (en) ALKOHOLDRYCKER OCH FOERFARANDE FOER DERAS FRAMSTAELLNING.
EP0473744A1 (en) Process for selective removal of volatile substances from liquids
JPH0817683B2 (en) Concentrated reduced juice manufacturing method
Sheu et al. Influence of reverse osmosis on sugar retention in apple juice concentration
Braddock et al. Reverse osmosis concentration of aqueous‐phase citrus juice essence
JP3977139B2 (en) Production methods for non-suspension plum juice and non-swelling / non-foaming plum extract
US5736182A (en) Aroma concentration process
CN111867969A (en) Isotopic composition II
JPH0391465A (en) Concentration of tomato juice
JPH0391464A (en) Concentration of tomato juice
US2573699A (en) Process for making frozen concentrated fruit juices
US8945645B2 (en) Method for simultaneous concentration and rectification of grape must using nanofiltration and electrodialysis