JPS61202438A - Glow discharge stabilizing method - Google Patents

Glow discharge stabilizing method

Info

Publication number
JPS61202438A
JPS61202438A JP4285385A JP4285385A JPS61202438A JP S61202438 A JPS61202438 A JP S61202438A JP 4285385 A JP4285385 A JP 4285385A JP 4285385 A JP4285385 A JP 4285385A JP S61202438 A JPS61202438 A JP S61202438A
Authority
JP
Japan
Prior art keywords
discharge
power sources
power
cathode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4285385A
Other languages
Japanese (ja)
Inventor
Izumi Nakayama
泉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4285385A priority Critical patent/JPS61202438A/en
Publication of JPS61202438A publication Critical patent/JPS61202438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To obtain a stable glow discharge by providing phase controlling function in a plurality of RF power sources, and supplying powers of different phases from the power sources to discharging loads, thereby preventing an abnormal discharge. CONSTITUTION:Powers are supplied from RF power sources 7-11 of five systems to magnetron cathodes 2-5 provided in a vacuum chamber 1 and rotatable drum type etching electrode 6. Here, an RF reference signal obtained from one crystal oscillator 12 is supplied by a master oscillator 14 to the power sources 7-11. The RF power amplified by an amplifier 15 is transmitted through impedance matching circuits 16-20 to the cathodes 2-5 and the electrode 6. Automatic phase control units 22 provided in four power sources 8-11 monitor the phases of the RF voltage in the cathode 2 and detected by a phase detecting sensor 21 to control the both phase difference to the prescribed value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスパッタリング、ドライエツチング装置のよう
にRFグロー放電を利用し次真空装置に於て安定し几グ
ロー放電を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of obtaining a stable glow discharge in a vacuum apparatus using RF glow discharge such as a sputtering or dry etching apparatus.

(従来の技術) 一般にグロー放電を利用しfc真空装置に於ては、1つ
の放電負荷に対する電力糸αの等価回路t−第1図示の
工うに表わすことが出来、高周波電源aから放電負荷b
ヘインピーダンス整合回路of介して電力が供給される
。このようなF&激では、インピーダンス整合回路0か
ら放電負荷すへの電力導入部(A′−0間)及び放電負
荷すからインピーダンス整合回Pf’ aへのリターン
電流IX−が流れるバス回路CD−11’間)のM造を
確実に行なうことが安定したグロー放電′i′得るため
に極めて1要である。
(Prior art) In general, in an FC vacuum device that utilizes glow discharge, an equivalent circuit of a power thread α for one discharge load can be expressed as t - the circuit shown in Figure 1, and a high frequency power source a is connected to a discharge load b.
Power is supplied through the impedance matching circuit of. In such F & GE, there is a bus circuit CD- through which the return current IX- flows from the power introduction part (A'-0) from the impedance matching circuit 0 to the discharge load and from the discharge load to the impedance matching circuit Pf' a. 11') is extremely important in order to obtain a stable glow discharge 'i'.

(発明が解決しようとする間寵点) 前lat力導入鄭(A′−0間)のM#!は、通常イン
ピーダンス整合回路Cが電力t−供給する電極に近く配
置された表面種の大きい単一のOu板又は同軸管により
直接接続されるので基本に忠実な配m設計を行なえば、
グロー放電の不安定の原因は特に生じない。
(The point that the invention is trying to solve) M# of the previous lat force introduction Zheng (between A'-0)! Normally, the impedance matching circuit C is directly connected by a single O plate or coaxial tube with a large surface type placed close to the electrode that supplies the electric power, so if the layout design is faithful to the basics,
There is no particular cause of instability in glow discharge.

ところが、パス回路(D−B’間)は11L極に設けら
れたアースシールド、真空室壁、大気側に設けられた電
極のシールドカバー等の各署の部材の組甘せで*gされ
ており、その組合せに負荷容量の大きい即ちILの大き
い電極のα数個を同時に使用したシ、プラズマを介して
複数の放電負荷を同時に使用する装置では更に襞雑にな
シ、また1′Lの値も大きくなる。従ってこのような装
置では真空室内に於て火花放電等の異常放電が発生し易
く、これ迄の技術では、このような異常放電を防止し、
安定なグミ−放電を得るためには、パス回路を増設し九
り、パス回路の構成材料を低インピーダンスのものに変
更する等パス回路を流れる几の大き姑に応じて対処する
以外の方法がなかつ比。
However, the pass circuit (between D and B') is damaged due to the combination of various components such as the earth shield installed at the 11L pole, the vacuum chamber wall, and the electrode shield cover installed on the atmosphere side. If several electrodes with a large load capacity, that is, a large IL, are used at the same time, the combination becomes even more complex in a device that simultaneously uses multiple discharge loads via plasma. The value also increases. Therefore, in such devices, abnormal discharges such as spark discharges are likely to occur in the vacuum chamber, and conventional technology has been unable to prevent such abnormal discharges.
In order to obtain a stable gummy discharge, there are methods other than adding more pass circuits and changing the constituent materials of the pass circuit to ones with low impedance. Nakatsu ratio.

本発明はa数の放電負荷上軸え几袈籠のパス回路の複雑
なwgや容量仙に係わらず異常放電を防止し、安定した
グロー放it得る方法を提供することt目的とするもの
である0 (問題点を解決するための手段) 本発明でに、真空室内のa数の放電負荷に、夫々インピ
ーダンス整合回路を介してR7電源から電力を供給し、
該放電負荷間でグロー放電を発生させるようにしたもの
に於て、該RF電源に、各放電負荷へのR?電圧波形の
位相を互に輿ならせる位相制御機能を具備させるように
した。
It is an object of the present invention to provide a method for preventing abnormal discharge and obtaining stable glow emission regardless of the complicated WG or capacitance of a pass circuit for a shaft-mounted cage with a number of discharge loads. 0 (Means for solving the problem) In the present invention, power is supplied from the R7 power supply to a number of discharge loads in the vacuum chamber through impedance matching circuits, respectively,
In the device in which glow discharge is generated between the discharge loads, the RF power supply has R? A phase control function is provided to make the phases of the voltage waveforms match each other.

(作 用) 本発明の作用を第2図及び第3図示の2系統の放電負荷
を同時に使用した場合について説明する。第2図は2つ
の電極にかかるRF電圧波形の位相差が0°の場合、第
3因はその位相差が180°の場合を示す。これらの場
合いずれも各電極にかかるRF電圧にマイナス側にDo
的にバイアスされておシ、プラズマ中のイオンは移動度
が小さい几め、このDOバイアスに引かれてゆつく9s
動する。−万プラズマ中の電子は移wJ度が大きい友め
、各[極側の電圧波形に応じて電極に引′@斎せられた
り速夫ったりする。
(Function) The function of the present invention will be explained in the case where two systems of discharge loads shown in FIGS. 2 and 3 are used simultaneously. FIG. 2 shows a case where the phase difference between the RF voltage waveforms applied to the two electrodes is 0°, and the third factor is a case where the phase difference is 180°. In all of these cases, the RF voltage applied to each electrode is Do on the negative side.
Since the ions in the plasma have low mobility, they are attracted to this DO bias and slow down for 9s.
move. Electrons in the plasma have a large degree of mobility, and are drawn to or moved from the electrode depending on the voltage waveform on the pole side.

第2図の場合、これの両電極にかかる電圧が共に負側に
ある場合、単純化していえば電子ば両1を極から反発さ
れ、その大部分は真空室壁等のアース部分に流れ込むこ
とになる。
In the case of Figure 2, if the voltages applied to both electrodes are on the negative side, to simplify it, the electrons will be repelled from both electrodes, and most of them will flow into the ground part such as the vacuum chamber wall. Become.

ところが第3図示の場合のように、−万の’ttt極の
電圧波形が負側にめる時他方の11L柚の電圧波形が正
側にるると、電子は一万の電極の側からは反発し、他方
の電極の側へは引き寄せられることになる。従って大部
分の電子は両電極を往復することになシ真空室壜等のア
ース部分に流れ込む電子の数は大幅に減少する。
However, as in the case shown in the third diagram, when the voltage waveform of the -10,000 'ttt electrode goes to the negative side and the voltage waveform of the other 11L Yuzu goes to the positive side, the electrons are ejected from the 10,000' electrode side. It will be repelled and attracted to the other electrode. Therefore, most of the electrons go back and forth between the two electrodes, and the number of electrons flowing into the ground portion of the vacuum chamber bottle or the like is greatly reduced.

真空室壁等のアース部分は高周波的に見ればある程度の
インピーダンスを有しているのが通常であり、ここに流
れる電子の数が多いと巖常放電の発生を容易にし、プラ
ズマを不安定にする原因となる。実験に於ても、第2図
の場合に鏝も異常放電が発生し易いが、3g3図のよう
な場合は殆んど異常放電が発生せず、最も安定したグワ
ー放iIcが得られることが−かめられた。
Grounded parts such as walls of vacuum chambers usually have a certain degree of impedance from a high-frequency perspective, and if a large number of electrons flow here, it will be easy to generate constant discharge, making the plasma unstable. cause In experiments, it has been found that in the case of Fig. 2, abnormal discharge is likely to occur with the trowel, but in the case of Fig. 3g3, almost no abnormal discharge occurs, and the most stable gwar discharge iIc can be obtained. -I was bitten.

異体的な位相差は、同時に使用する放電負荷の数によっ
て異なるが、Ry電源に位相制御機能を持たせることに
エル極めて容易に安定したグミ−放電が得られる。
Although the phase difference differs depending on the number of discharge loads used simultaneously, stable gummy discharge can be obtained very easily by providing the Ry power source with a phase control function.

RF電源に位相制御機能t−iしない従来の方法では、
各′IIL!IAに供給ぢれるRF電力の電圧波形の位
相差は、各11L#が発!?開始するタイミングや、電
源・インピーダンス整合回路・負荷のディメンジョンや
結線の状態によシ異なり、特定の好ましい状態に制御す
ることに極めて困難である。
In the conventional method that does not have a phase control function t-i in the RF power supply,
Each 'IIL! The phase difference of the voltage waveform of the RF power supplied to the IA is generated by each 11L#! ? It is extremely difficult to control to a specific preferred state, as it depends on the timing of starting, the dimensions of the power source, impedance matching circuit, load, and wiring conditions.

(実施例) 不発明の実施例を第4図の大型のマグネトロンカソード
4基と1基の大型のドラム形エツチング電a!t−有す
るR7バイアススパッタリング装置に適用しt場合につ
1!睨明する。
(Embodiment) An uninvented embodiment is shown in FIG. 4, in which four large magnetron cathodes and one large drum-shaped etching electrode a! 1 when applied to an R7 bias sputtering device with t-t! Stare at me.

第4図に於て、(1)は真空排気される真空室、(2)
+31141 +53は該真空呈tll内に設けた大型
のマグネトロンカソード、(61i該篤ill内に各マ
グネトロンカソード(2)〜(5)と対向して回転自在
に設けた大型のドラム型エツチング電極である。各カソ
ード及び電極にに5糸軌の最大15KWの出力のRF電
源(力(81(9) QG (11)から電力が供給さ
れる。而して各RF[源(7)〜αDには、1つの水晶
発振子α2から得られるRν基準イぎ号α四がマスター
オシレータα4より供給され、かくて各電源が同一の発
珈114波となり位相制御が司能となるようにし次。
In Figure 4, (1) is the vacuum chamber to be evacuated, (2)
+31141 +53 is a large magnetron cathode provided in the vacuum chamber (61i is a large drum-shaped etching electrode rotatably provided in the chamber opposite each magnetron cathode (2) to (5)) .Each cathode and electrode is supplied with power from an RF power source (81 (9) QG (11)) with a maximum output of 15 KW of 5 threads. , the Rv reference signal α4 obtained from one crystal oscillator α2 is supplied from the master oscillator α4, so that each power source becomes the same oscillating 114 wave and performs phase control.

各電源で+9r足値までアンプ(I5!で増幅嘔れたR
F電力は、インピーダンス整合回路α61(17)αu
sC!IIt−夫々介して各カソード及び電極に伝送さ
れ放電維持のために使用される。
Amplify up to +9r value with each power supply (I5! amplified R
F power is impedance matching circuit α61 (17) αu
sC! IIt- is transmitted to each cathode and electrode and used for sustaining the discharge.

各インピーダンス整合回路αト1の負荷側即ちカソード
やicmとの結合部には位相検知センサ(211が設け
られ、実施例では4つのRF電源(8)〜αυの糸に夫
々自動位相制御ユニット@ヲ接続した。
A phase detection sensor (211) is provided on the load side of each impedance matching circuit αto 1, that is, at the connection portion with the cathode and ICM, and in the embodiment, an automatic phase control unit @ I connected it.

各ユニット@はカソード(2)におけるRF電圧の位相
と、センサシυによυ自己が対応するカソードや電極の
RF電圧の位相をモニターし、面位相差を設定された一
足の値に制御する機能を有する。
Each unit @ has the function of monitoring the phase of the RF voltage at the cathode (2) and the phase of the RF voltage of the cathode or electrode corresponding to the sensor υ, and controlling the plane phase difference to a set value. has.

図示のよりな5系統の独立した放電負荷を有する場合、
このうちの同系統を同時に使用するかによって各R?電
源の位相差の設定の仕方が異なるが、例えばカソード(
21〜(5)の4個に放電させる場合、カソード(2)
のRF電圧波形に対して、カソード(4)の位相差を0
8、カソード(3)及び(5)の位相差t−180°に
制御する。この場合各カソード(2)〜(5)に夫々1
0に’W以上の電力を供給しても極めて安定したグロー
放電か得られた。しかし各カソード(2]〜(5)の位
相差をすべてO’tC&定し九場合には、各カソードに
I KWの電力を供給しただけで異常放電が頻発した。
In the case of having five independent discharge loads as shown in the figure,
Each R depends on whether you use the same system at the same time. The method of setting the phase difference of the power supply is different, but for example, the cathode (
When discharging to four of 21 to (5), cathode (2)
The phase difference of the cathode (4) is set to 0 for the RF voltage waveform of
8. Control the phase difference between cathodes (3) and (5) to t-180°. In this case, each cathode (2) to (5) has 1
An extremely stable glow discharge was obtained even when a power of 0 W or more was supplied. However, when all the phase differences between the cathodes (2) to (5) were set to O'tC&9, abnormal discharge occurred frequently just by supplying power of I KW to each cathode.

また各カソード(2)〜(5)及び電極(6)の5個t
すべて放電させる場合、カソード(2)のRF電圧波形
に対してカソード131(4)(5;の位相差上〇°、
電m (6Jの位相差1に180°に制御するか、或は
カソード(21のR?電圧波ルに対してカソード(4)
上位相差0°、カソード(3)+5) ’(位相差12
0°、11L&(6Jt−位相差240°に制御する等
の組合せによ〕極めて安定したグロー放電が高い投入電
力に於て優られ念。
In addition, 5 pieces of each cathode (2) to (5) and electrode (6)
When discharging all, the phase difference between the cathodes 131 (4) (5) with respect to the RF voltage waveform of the cathode (2) is 0°,
Electron m (6J phase difference 1 to 180° control or cathode (21 R?voltage wave to cathode (4)
Upper phase difference 0°, cathode (3) + 5)' (phase difference 12
0°, 11L & (by controlling the 6Jt phase difference to 240°), the extremely stable glow discharge is superior at high input power.

(発明の効果) 以上のように本発明では、仮数の各RF電源に夫々位相
制御機能を具備させ、各RF電源から各放電負荷へ位相
が異なる電力全供給するようにし比ので、安定し九RF
グロー放tt−得ることが出来、比較的大電力が供給さ
れても異常放電が発生ぜず、II数の放電負荷t−有す
る真空装置に於て処理される午導体デバイスの不良品発
生率が少なくなる等の効果かある。
(Effects of the Invention) As described above, in the present invention, each RF power source of the mantissa is provided with a phase control function, so that all the power with different phases is supplied from each RF power source to each discharge load. RF
It is possible to obtain a glow discharge tt-, no abnormal discharge occurs even when a relatively large power is supplied, and the defective product incidence of the conductor device processed in a vacuum apparatus having a discharge load t- of II number is reduced. There is an effect such as decreasing the amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のグロー放電を利用した真空装置の電力系
統の等価回路図、第2図及び第5図は不発明の詳細な説
明のための線図、第4図は本発明の実施例の線図である
0 ill・・・・・・真 空 呈 12+ 131(4)+51 +61・・・・・・放電
負荷(7月81 +9)αQltllJ・・・・・・R
?電源(lbl (171(16(II Ca)・・・
・・・インピーダンス整合回路特許出願人 日本真空技
#休式会社 外2名
Figure 1 is an equivalent circuit diagram of the power system of a conventional vacuum device using glow discharge, Figures 2 and 5 are diagrams for detailed explanation of the invention, and Figure 4 is an embodiment of the present invention. 0ill...Vacuum Presentation12+ 131(4)+51 +61...Discharge load (July 81 +9) αQltllJ...R
? Power supply (lbl (171 (16 (II Ca)...
... Impedance matching circuit patent applicant: Japan Vacuum Engineering #2 people outside the company

Claims (1)

【特許請求の範囲】[Claims] 真空室内の複数の放電負荷に、夫々インピーダンス整合
回路を介してRF電源から電力を供給し、該放電負荷間
でグロー放電を発生させるようにしたものに於て、該R
F電源に、各放電へのRF電圧波形の位相を互に異なら
せる位相制御機能を具備させたことを特徴とするグロー
放電安定化方法。
In a system in which power is supplied from an RF power supply to a plurality of discharge loads in a vacuum chamber through respective impedance matching circuits, and glow discharge is generated between the discharge loads, the R
A method for stabilizing glow discharge, characterized in that an F power source is equipped with a phase control function that makes the phases of RF voltage waveforms for each discharge different from each other.
JP4285385A 1985-03-06 1985-03-06 Glow discharge stabilizing method Pending JPS61202438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285385A JPS61202438A (en) 1985-03-06 1985-03-06 Glow discharge stabilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285385A JPS61202438A (en) 1985-03-06 1985-03-06 Glow discharge stabilizing method

Publications (1)

Publication Number Publication Date
JPS61202438A true JPS61202438A (en) 1986-09-08

Family

ID=12647572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285385A Pending JPS61202438A (en) 1985-03-06 1985-03-06 Glow discharge stabilizing method

Country Status (1)

Country Link
JP (1) JPS61202438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130513A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Method for forming thin film and manufacturing apparatus therefor
US4908330A (en) * 1988-02-01 1990-03-13 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing group IV atoms or silicon atoms and group IV atoms by microwave plasma chemical vapor deposition process
US4908329A (en) * 1988-02-01 1990-03-13 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing groups II and VI atoms by microwave plasma chemical vapor deposition process
US4914052A (en) * 1988-02-01 1990-04-03 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing groups III and V atoms by microwave plasma chemical vapor deposition process
JPH02501608A (en) * 1987-09-15 1990-05-31 プラズマ・サイエンス・インコーポレーテツド Multi-electrode plasma reactor power distribution device
JPH04215430A (en) * 1990-12-14 1992-08-06 Matsushita Electric Ind Co Ltd Plasma generation and its apparatus
JPH04268727A (en) * 1991-02-25 1992-09-24 Matsushita Electric Ind Co Ltd Method and adevice for dry etching
JP2004165644A (en) * 2000-09-12 2004-06-10 Hitachi Ltd Apparatus and method for plasma processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164224A (en) * 1985-01-17 1986-07-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Plasma generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164224A (en) * 1985-01-17 1986-07-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Plasma generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130513A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Method for forming thin film and manufacturing apparatus therefor
JPH02501608A (en) * 1987-09-15 1990-05-31 プラズマ・サイエンス・インコーポレーテツド Multi-electrode plasma reactor power distribution device
US4908330A (en) * 1988-02-01 1990-03-13 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing group IV atoms or silicon atoms and group IV atoms by microwave plasma chemical vapor deposition process
US4908329A (en) * 1988-02-01 1990-03-13 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing groups II and VI atoms by microwave plasma chemical vapor deposition process
US4914052A (en) * 1988-02-01 1990-04-03 Canon Kabushiki Kaisha Process for the formation of a functional deposited film containing groups III and V atoms by microwave plasma chemical vapor deposition process
JPH04215430A (en) * 1990-12-14 1992-08-06 Matsushita Electric Ind Co Ltd Plasma generation and its apparatus
JPH04268727A (en) * 1991-02-25 1992-09-24 Matsushita Electric Ind Co Ltd Method and adevice for dry etching
JP2004165644A (en) * 2000-09-12 2004-06-10 Hitachi Ltd Apparatus and method for plasma processing

Similar Documents

Publication Publication Date Title
TWI538051B (en) Plasma processing device
JP5894275B2 (en) Wafer chucking system for advanced plasma ion energy processing system
US4950956A (en) Plasma processing apparatus
WO2020121819A1 (en) Substrate processing apparatus and substrate processing method
US6167835B1 (en) Two chamber plasma processing apparatus
TW201342467A (en) Plasma processing device
JPH0576126B2 (en)
JPS61202438A (en) Glow discharge stabilizing method
JP5500794B2 (en) Power supply
JPH02156080A (en) Sputtering device
You et al. Power dissipation mode transition by a magnetic field
JPH08167500A (en) Power source for high frequency plasma generating device
JPH05205898A (en) Plasma processing device
JPH08236294A (en) High frequency plasma applied device
CN110491767B (en) Mass spectrometer with multiple dynode multipliers for high dynamic range operation
JPH08106872A (en) Ion source
US2611884A (en) Amplifier gas tube
JPS5941475A (en) Apparatus for monitoring discharge state in discharge treatment apparatus
JPH08330079A (en) Power source device for multi-electrode discharge
JP2020002440A (en) Sputtering device
JPS61231172A (en) Method and apparatus for sputtering
JPS629324Y2 (en)
JPH06124673A (en) Plasma generating method in ion implantation apparatus
JPS60213026A (en) Dry etching device
JP2985230B2 (en) Plasma equipment