JPS6119712B2 - - Google Patents

Info

Publication number
JPS6119712B2
JPS6119712B2 JP56040074A JP4007481A JPS6119712B2 JP S6119712 B2 JPS6119712 B2 JP S6119712B2 JP 56040074 A JP56040074 A JP 56040074A JP 4007481 A JP4007481 A JP 4007481A JP S6119712 B2 JPS6119712 B2 JP S6119712B2
Authority
JP
Japan
Prior art keywords
copper powder
silane coupling
coupling agent
temperature
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56040074A
Other languages
Japanese (ja)
Other versions
JPS57155386A (en
Inventor
Tooru Kasatsugu
Toshiaki Ikeda
Koji Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP56040074A priority Critical patent/JPS57155386A/en
Publication of JPS57155386A publication Critical patent/JPS57155386A/en
Publication of JPS6119712B2 publication Critical patent/JPS6119712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は銅粉末の酸化防止法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for preventing oxidation of copper powder.

銅粉末はガラスフリツトとともに有機ワニスに
分散させてペースト状とし、これをたとえばセラ
ミツク基板上に塗布、印刷などにより被着し、さ
らに乾燥させたのち、非酸化性雰囲気中で焼成す
ることによつて、厚膜状銅被膜として電極、導電
回路パターンなどへの活用が行われる。
Copper powder is dispersed in an organic varnish together with glass frit to form a paste, which is applied onto a ceramic substrate by coating or printing, dried, and fired in a non-oxidizing atmosphere. It is used as a thick copper coating for electrodes, conductive circuit patterns, etc.

このような活用を行うに当つて、銅粉末を酸化
させないことが重要である。なぜならば、銅粉末
の酸化が進むと、ペースト状にしたときに印刷性
に難が生じたり、また焼成した結果比抵抗の増大
が見られ、さらには半田付け性の劣化および密着
強度の劣化現象を伴つた。
In performing such utilization, it is important not to oxidize the copper powder. This is because as the oxidation of copper powder progresses, printability becomes difficult when it is made into a paste, and as a result of firing, resistivity increases, and furthermore, solderability and adhesion strength deteriorate. It was accompanied by

したがつて、銅粉末を製造したのち、すばやく
酸化防止を施す処理が必要であり、いままでは次
のような酸化防止処理が行われていた。
Therefore, it is necessary to immediately perform oxidation prevention treatment after producing copper powder, and up to now the following oxidation prevention treatment has been performed.

つまり、いままでの銅粉末の酸化防止処理法と
しては、H3BO3の10%アルコール溶液中に銅粉末
を1時間程度浸漬したのち、アルコール溶液から
銅粉末を別し、200℃の温度で約10〜20分間熱
処理する方法である。この方法で得られた銅粉末
はその表面が硼素Bで覆われた状態であり、酸化
防止の効果はすぐれたものと云える。しかしなが
ら、熱処理温度は約200℃に特定され、熱処理温
度の管理を厳密に行わなければならない。これ
は、硼素の融点が184〜186℃の範囲に特定される
ためで、硼素の溶融に伴つて銅粉末の表面を硼素
で被覆するには約200℃に特定されることによ
る。もし、熱処理温度が180℃未満では硼素の溶
融を伴わず、銅粉末表面の被覆が十分に行われな
いことになり、一方200℃を越えると銅粉末の酸
化をもたらすことになる。
In other words, the conventional method for preventing oxidation of copper powder is to immerse the copper powder in a 10% alcohol solution of H 3 BO 3 for about an hour, then separate the copper powder from the alcohol solution and heat it at a temperature of 200°C. This method involves heat treatment for about 10 to 20 minutes. The surface of the copper powder obtained by this method is covered with boron B, and it can be said that the oxidation prevention effect is excellent. However, the heat treatment temperature is specified at approximately 200°C, and the heat treatment temperature must be strictly controlled. This is because the melting point of boron is specified in the range of 184 to 186°C, and in order to coat the surface of the copper powder with boron as the boron melts, it is specified to be about 200°C. If the heat treatment temperature is less than 180°C, boron will not be melted and the surface of the copper powder will not be sufficiently coated, whereas if it exceeds 200°C, the copper powder will be oxidized.

したがつて、この発明は銅粉末の酸化防止処理
を行うに当つて、その処理が簡単に行える方法を
提供するものである。
Accordingly, the present invention provides a method for easily carrying out oxidation prevention treatment of copper powder.

また、この発明は酸化防止処理工程で実施され
る熱処理温度が広い範囲で選択でき、しかも低い
温度での酸化防止処理が実施できる方法を提供す
るものである。
Further, the present invention provides a method in which the heat treatment temperature to be carried out in the oxidation prevention treatment step can be selected from a wide range, and in addition, the oxidation prevention treatment can be carried out at a low temperature.

すなわち、この発明の要旨とするところは、銅
粉末をシランカツプリング剤を含む溶液に接触さ
せ、これにより銅粉末の表面にシランカツプリン
グ剤を含む溶液を付着させ、さらに110〜150℃で
熱処理を行うことを特徴とする銅粉末の酸化防止
法である。
That is, the gist of this invention is to bring copper powder into contact with a solution containing a silane coupling agent, thereby causing the solution containing the silane coupling agent to adhere to the surface of the copper powder, and then heat-treating at 110 to 150°C. This is a method for preventing oxidation of copper powder, which is characterized by carrying out the following steps.

この発明において用いられるシランカツプリン
グ剤とは、たとえば、N−β(アミノエチル)γ
−アミノプロピルトリメトキシシラン、γ−グリ
シドキシプロピルトリメトキシシラン、N−β
(アミノエチル)γ−アミノプロピルメチルジメ
トキシシランなどがある。
The silane coupling agent used in this invention is, for example, N-β (aminoethyl)γ
-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, N-β
(aminoethyl)γ-aminopropylmethyldimethoxysilane and the like.

このシランカツプリング剤は、その分子中に2
個以上の異なつた反応基をもつ有機けい素単量体
であり、2個の反応基のうち一つは、ガラス、金
属、けい砂などの無機質と化学結合する反応基、
たとえばメトキシ基、エトキシ基、シラノール基
であり、もう一つの反応基は、種々の合成樹脂を
構成する有機質材料と化学結合する反応基、たと
えばビニール基、エポキシ基、メタアクリル基、
アミノ基、メルカプト基からなる。
This silane coupling agent has two
It is an organosilicon monomer having two or more different reactive groups, one of which is a reactive group that chemically bonds with inorganic materials such as glass, metals, and silica sand.
For example, methoxy group, ethoxy group, silanol group, and the other reactive group is a reactive group that chemically bonds with organic materials constituting various synthetic resins, such as vinyl group, epoxy group, methacrylic group,
Consists of amino group and mercapto group.

シランカツプリング剤は通常、たとえばメタノ
ール、エタノール、イソ−プロピルアルコール、
トルエンなどで0.5〜5%に希釈された溶液状態
を用いられる。
Silane coupling agents typically include methanol, ethanol, iso-propyl alcohol,
A solution diluted to 0.5-5% with toluene etc. is used.

また、銅粉末は一般にシランカツプリング剤を
含む溶液中に浸漬されることにより、シランカツ
プリング剤と接触し、その表面にシランカツプリ
ング剤を含む溶液を付着する。このほか付着手段
として、吹き付け法などを用いることによつて実
現できる。
Further, the copper powder is generally immersed in a solution containing the silane coupling agent, so that it comes into contact with the silane coupling agent, and the solution containing the silane coupling agent is deposited on the surface of the copper powder. In addition, it can be realized by using a spraying method or the like as an attachment means.

表面にシランカツプリング剤を含む溶液を付着
した銅粉末は自然雰囲気中で熱処理される。この
熱処理の温度としては110〜150℃の温度範囲で実
施される。熱処理温度が110℃未満ではシランカ
ツプリング剤の硬化が生じず、銅粉末の表面の保
護が十分に行えない。また150℃を越えるとシラ
ンカツプリング剤の官能基の分解が生じ、保護膜
として機能が果たせなくなるからである。
Copper powder with a solution containing a silane coupling agent adhered to its surface is heat treated in a natural atmosphere. This heat treatment is carried out at a temperature in the range of 110 to 150°C. If the heat treatment temperature is less than 110°C, the silane coupling agent will not harden, and the surface of the copper powder will not be sufficiently protected. Furthermore, if the temperature exceeds 150°C, the functional groups of the silane coupling agent will decompose and it will no longer function as a protective film.

また、熱処理時間は特に限定されるものではな
いが、ほぼ10〜50分間でシランカツプリング剤の
被覆が終了する。つまり、熱処理工程を経ること
によつて、銅粉末表面のシランカツプリング剤が
硬化し、銅粉末とシランカツプリング剤に含まれ
る無機質と化学結合する反応基との結合が終了
し、銅粉末の表面を被覆して銅粉末の酸化防止が
行えることになる。
Further, the heat treatment time is not particularly limited, but the coating with the silane coupling agent is completed in about 10 to 50 minutes. In other words, through the heat treatment process, the silane coupling agent on the surface of the copper powder hardens, and the bond between the copper powder and the reactive group that chemically bonds with the inorganic substance contained in the silane coupling agent is completed, and the copper powder By coating the surface, the copper powder can be prevented from oxidizing.

このようにして得られた銅粉末は、たとえば導
電ペーストを調整するために用いられる。
The copper powder thus obtained is used, for example, to prepare a conductive paste.

この導電ペーストを調整する例として、エポキ
シ、フエノールなどの熱硬化性樹脂と混合するこ
とにより得られる。そしてこの導電ペーストは基
板に塗布、印刷などの手段で被着され、そののち
熱を加えて硬化されることによつて、厚膜回路の
導電部分として使用することができる。
As an example of preparing this conductive paste, it can be obtained by mixing it with a thermosetting resin such as epoxy or phenol. This conductive paste is applied to a substrate by means such as coating or printing, and then cured by applying heat, thereby making it possible to use it as a conductive portion of a thick film circuit.

上述した例は低温焼付けタイプとしての利用に
ついて説明したが、このほか高温焼付けタイプと
しての利用も可能である。
In the above example, the use as a low-temperature baking type was explained, but it is also possible to use it as a high-temperature baking type.

つまり、銅粉末にガラスフリツト、有機ワニス
を加えたペーストをセラミツク基板上に塗布、印
刷などの手段で被着し、たとえば、900℃の温度
で焼付けすることによつて、厚膜状銅被膜が得ら
れる。このとき焼付け雰囲気は銅の酸化を防止す
るために、窒素などの非酸化性雰囲気が用いられ
る。また、ガラスフリツトについても非酸化性雰
囲気中での熱処理が可能な、たとえばPbを含有
しない硼けい酸亜鉛系のものが用いられる。
In other words, a thick copper film can be obtained by coating a paste of copper powder, glass frit, and organic varnish on a ceramic substrate, adhering it by printing or other means, and baking it at a temperature of, for example, 900°C. It will be done. At this time, a non-oxidizing atmosphere such as nitrogen is used as the baking atmosphere to prevent oxidation of the copper. Further, as for the glass frit, for example, a zinc borosilicate type glass frit which does not contain Pb is used, which can be heat treated in a non-oxidizing atmosphere.

以下、この発明を実施例に従つて詳細に説明す
る。
Hereinafter, this invention will be explained in detail according to examples.

実施例 1〜5μmの銅粉末を10g用意し、これをN−
β(アミノエチル)γ−アミノプロピルトリメト
キシシランの3%メタノール溶液100mlに浸漬し
た。次いで、銅粉末をこのの溶液から別し、自
然雰囲気中130℃で30分間熱処理した。
Example Prepare 10g of copper powder with a diameter of 1 to 5μm, and add it to N-
It was immersed in 100 ml of a 3% methanol solution of β(aminoethyl)γ-aminopropyltrimethoxysilane. The copper powder was then separated from this solution and heat treated at 130° C. for 30 minutes in natural atmosphere.

この粉末を自然雰囲気中で室温に放置したとこ
ろ、1000時間後においても銅粉末の酸化は進行せ
ず、酸化防止効果が得られていることが判明し
た。
When this powder was left at room temperature in a natural atmosphere, it was found that the oxidation of the copper powder did not proceed even after 1000 hours, and an oxidation-preventing effect was obtained.

また、この銅粉末を自然雰囲気中150℃の温度
で強制酸化処理を行つたところ、30分後において
も酸化は進行しておらず、この発明による効果が
得られていることが判明した。
Further, when this copper powder was subjected to forced oxidation treatment at a temperature of 150° C. in a natural atmosphere, it was found that oxidation did not proceed even after 30 minutes, indicating that the effects of the present invention were obtained.

次いで、上述の実施例により得られた銅粉末75
gとエポキシ樹脂25gを混合し、ペースト状とし
たものをアルミナ基板の上に印刷し、150℃で熱
処理した。このとき得られた銅被膜の抵抗値は1
〜3Ω/cm2であり、十分に導電部分として用いる
ことができる。
Next, the copper powder 75 obtained in the above example
g and 25 g of epoxy resin were mixed to form a paste, which was printed on an alumina substrate and heat-treated at 150°C. The resistance value of the copper film obtained at this time was 1
~3Ω/cm 2 and can be sufficiently used as a conductive part.

以上この発明によれば、銅粉末をシランカツプ
リング剤で処理することによつて銅粉末の酸化防
止処理が図れ、この銅粉末を用いて厚膜状銅被膜
を形成するとき、酸化防止に配慮を加える必要が
なく、使用に際して取扱い便利なものである。さ
らに銅粉末の酸化防止処理を行うに当つて、実施
される熱処理の温度が低く、しかも温度範囲を従
来にくらべて広く選択することができるなどの利
点を有する。
As described above, according to the present invention, by treating the copper powder with a silane coupling agent, the oxidation prevention treatment of the copper powder can be achieved, and when forming a thick copper coating using this copper powder, consideration is given to oxidation prevention. There is no need to add water, making it convenient to handle. Furthermore, when carrying out oxidation prevention treatment of copper powder, it has the advantage that the temperature of the heat treatment carried out is low and the temperature range can be selected from a wider range than in the past.

Claims (1)

【特許請求の範囲】 1 銅粉末をシランカツプリング剤を含む溶液に
接触させ、これにより銅粉末の表面にシランカツ
プリング剤を含む溶液を付着させ、さらに110〜
150℃で熱処理を行うことを特徴とする銅粉末の
酸化防止法。 2 シランカツプリング剤を含む溶液に銅粉末を
浸漬することにより、銅粉末をシランカツプリン
グ剤を含む溶液に接触させる特許請求の範囲第1
項記載の銅粉末の酸化防止法。
[Claims] 1 Copper powder is brought into contact with a solution containing a silane coupling agent, thereby causing the solution containing a silane coupling agent to adhere to the surface of the copper powder, and further
A method for preventing oxidation of copper powder, which is characterized by heat treatment at 150℃. 2. Claim 1, in which the copper powder is brought into contact with a solution containing a silane coupling agent by immersing the copper powder in a solution containing a silane coupling agent.
Method for preventing oxidation of copper powder as described in section.
JP56040074A 1981-03-18 1981-03-18 Preventing method for oxidation of copper powder Granted JPS57155386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56040074A JPS57155386A (en) 1981-03-18 1981-03-18 Preventing method for oxidation of copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56040074A JPS57155386A (en) 1981-03-18 1981-03-18 Preventing method for oxidation of copper powder

Publications (2)

Publication Number Publication Date
JPS57155386A JPS57155386A (en) 1982-09-25
JPS6119712B2 true JPS6119712B2 (en) 1986-05-19

Family

ID=12570770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56040074A Granted JPS57155386A (en) 1981-03-18 1981-03-18 Preventing method for oxidation of copper powder

Country Status (1)

Country Link
JP (1) JPS57155386A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676810B2 (en) * 1988-08-31 1997-11-17 株式会社島津製作所 Thermal conductivity detector
JP2578273B2 (en) * 1991-08-22 1997-02-05 第一工業製薬株式会社 Method for manufacturing multilayer electrode substrate
JP5358776B2 (en) * 2010-11-18 2013-12-04 株式会社本螺子製作所 Metal surface protective agent, metal surface protective agent production method and metal surface treatment method
JP6324253B2 (en) * 2014-07-30 2018-05-16 Jx金属株式会社 Conductive paste and manufacturing method thereof
JP6515829B2 (en) * 2015-03-16 2019-05-22 住友金属鉱山株式会社 Copper powder and method for producing the same
WO2020138274A1 (en) 2018-12-27 2020-07-02 Jx金属株式会社 PRODUCTION METHOD FOR ADDITIVE-MANUFACTURED PRODUCT USING PURE COPPER POWDER HAVING Si COATING
JP6722838B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Pure copper powder having Si coating, method for producing the same, and layered model using the pure copper powder
JP7121173B1 (en) * 2021-07-19 2022-08-17 大陽日酸株式会社 Composite copper nanoparticles and method for producing composite copper nanoparticles

Also Published As

Publication number Publication date
JPS57155386A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US3146125A (en) Method of making printed circuits
US4487811A (en) Electrical conductor
US4404237A (en) Fabrication of electrical conductor by replacement of metallic powder in polymer with more noble metal
KR900008274B1 (en) Thick film resistor circuits
JPH0530620B2 (en)
JPS63260197A (en) Manufacture of multilayer circuit structure
JPH01128488A (en) Thick film copper conductor ink
JPS6119712B2 (en)
US4409261A (en) Process for air firing oxidizable conductors
JPH0213898B2 (en)
US4689270A (en) Composite substrate for printed circuits and printed circuit-substrate combination
JPS6341208B2 (en)
JPH0247545B2 (en)
US3684569A (en) Process of producing conductive gold patterns
JPH04190502A (en) Copper conductor paste
US3903344A (en) Adherent solderable cermet conductor
US3676087A (en) Technique for the fabrication of a photolithographically definable,glass covered gold conductor pattern
GB979779A (en) Method of making printed circuits
JPH0227832B2 (en) SERAMITSUKUSUKIBAN
JP2531002B2 (en) Electronic component manufacturing method
JPS62130595A (en) Manufacture of electric circuit device
JPS6162558A (en) Electroconductive resin composition
JP2001234355A (en) Surface metallizing method
JP2733613B2 (en) Conductive paste and circuit board
JP2560729B2 (en) Method of manufacturing circuit element