JPS61194190A - Method and device for reducing reverse current - Google Patents

Method and device for reducing reverse current

Info

Publication number
JPS61194190A
JPS61194190A JP60033058A JP3305885A JPS61194190A JP S61194190 A JPS61194190 A JP S61194190A JP 60033058 A JP60033058 A JP 60033058A JP 3305885 A JP3305885 A JP 3305885A JP S61194190 A JPS61194190 A JP S61194190A
Authority
JP
Japan
Prior art keywords
anode
electrolyte
cathode
rectifier
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60033058A
Other languages
Japanese (ja)
Inventor
Akihiro Sakanishi
彰博 坂西
Mitsuru Sakimura
充 崎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP60033058A priority Critical patent/JPS61194190A/en
Publication of JPS61194190A publication Critical patent/JPS61194190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the increase in running cost arising from the generation of reverse current and to reduce electric power consumption by discharging the electrolyte in an electrolytic cell disposed with an anode and cathode from the cell at the same instant when the electrolysis is suspended. CONSTITUTION:The electrolyte is fed via a supply pipe 1 to the electrolytic cell 2 where electrolysis is effected by the anode 3 and cathode 4. The electrolyte is taken out of a discharge pipe 5. The current flows from a current rectifier 6 to the electrolyte via the anode 3 and returns to the rectifier 6 via the cathode 4. A pipe 19 provided with a solenoid valve 18 is attached to the lower part of the electrolytic cell 2 and the valve 18 is connected via an electric line 20 to the rectifier 6. The valve 18 opens and the electrolyte in the cell 2 is discharged through the pipe 19 when the output from the rectifier 6 is turned off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種電解槽町配された薄膜型酸化物陽極が、
陰極から電解液を介して陽極へ流れる逆電流によシ損傷
を受けるのを防ぐ逆電流の低減方法およびこの方法を実
施するための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a thin film type oxide anode arranged in various electrolytic cells,
The present invention relates to a method for reducing reverse current that prevents damage caused by reverse current flowing from a cathode to an anode via an electrolyte, and an apparatus for implementing this method.

〔従来の技術〕[Conventional technology]

従来、各種溶液の電解(海水電解、塩水電解。 Conventionally, electrolysis of various solutions (seawater electrolysis, saltwater electrolysis).

ソーダ電解等)は第8図に示したような方法で行ってい
る。同図において電解液は電解液供給管1を通シ電解槽
2へ入り、陽極8と陰極4で電解され電解液排出管5か
ら次の筒所へ送られる。このときの電流は整流器6から
通電線7を通シ陽WiBから電解液を介して陰極4へ流
れ通電線8を介して整流器6へ戻る。
(soda electrolysis, etc.) is carried out by the method shown in Fig. 8. In the figure, the electrolytic solution enters an electrolytic cell 2 through an electrolytic solution supply pipe 1, is electrolyzed at an anode 8 and a cathode 4, and is sent to the next tube station through an electrolytic solution discharge pipe 5. The current at this time flows from the rectifier 6 through the current-carrying line 7, from the positive WiB to the cathode 4 via the electrolyte, and returns to the rectifier 6 via the current-carrying line 8.

ところで、前記電解装置の性能を判断する上で基礎とな
る性能項目として、設置された陰・陽極の消費電力や、
陽極については電流効率。
By the way, the power consumption of the installed cathode and anode,
Current efficiency for the anode.

電位、寿命等が挙げられるが、特に陽極の性能は電解装
置の性能を大きく左右する。
These include potential, lifespan, etc., but in particular, the performance of the anode greatly influences the performance of the electrolyzer.

過去、これらの電解に使用されている陽極の主流はTi
−Pt(電気メッキ)であったが、現在では省エネ、省
コスト型電極として薄膜型酸化物電極が主流となシつつ
ある。この薄膜型酸化物電極は一般にD8A(寸法安定
性アノード)と呼ばれ、Tiを基材としてその上にPt
、 Ir、 Ru。
In the past, the main anode used for these electrolysis was Ti.
-Pt (electroplated), but now thin-film oxide electrodes are becoming mainstream as energy-saving and cost-saving electrodes. This thin film type oxide electrode is generally called D8A (dimensionally stable anode), and is made of Ti as a base material and Pt on top of it.
, Ir, Ru.

Pd・・・等の貴金属に少量の卑金属を混入し、塗布焼
成したものである。これらD S A t−Ti−Pt
と比較すると電気的特性(電流効率、陽極電位等)が特
に優れている。
A small amount of base metal is mixed into a noble metal such as Pd, which is coated and fired. These D S A t-Ti-Pt
The electrical properties (current efficiency, anode potential, etc.) are particularly excellent when compared to .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、D8A特性の研究が進むにつれて、最近
2通電をしないままの状態で陽極を電解液中に浸漬して
おくと、陽極単独での腐食や陰極との電位差によって生
じる逆電流のために酸化物金属の還元が起こシ、消耗量
を増加させる等の問題が明らかとなった。特に、1枚の
基材上に隘・陽極が存在する電極や、陰・陽極を短絡さ
せた場合の陽極塗布物の消耗量は急激に増加する。以下
、これらについて図を参照して説明する。
However, as research on D8A characteristics progresses, it has recently become clear that if the anode is immersed in an electrolyte without energizing, oxides may form due to corrosion of the anode alone or a reverse current caused by the potential difference with the cathode. Problems such as metal reduction occurring and increased consumption became clear. In particular, when an electrode and an anode are present on one base material or when the cathode and anode are short-circuited, the amount of consumption of the anode coating material increases rapidly. These will be explained below with reference to the drawings.

(1)陽極単独での腐食 第4図(イ)、(+==r)K陽極を単独で浸漬した場
合の状態を示す。第4図−(イ)は通電初期の状態を示
したもので、陽Wi3が電解液9中に浸りた状態である
。陽極8はチタン10と金属酸化物11からなっている
。ここで金属酸化物11に含まれている各種金属酸化物
を、 M+ 、 Ml、MSとすると、これら金属酸化
物は固溶一体化しているため電解液9と接した面上での
電位差は、それ程大きくなく、腐食は進行しにくいと考
えてよい。ところが2通電日数の経過に伴い第4図−(
ロ)で示したような消耗箇所12゜1Bができると、金
属酸化物11の表面電位は。
(1) Corrosion of the anode alone Figure 4 (a), (+==r) shows the state when the K anode is immersed alone. FIG. 4-(A) shows the state at the initial stage of energization, in which the positive Wi 3 is immersed in the electrolytic solution 9. The anode 8 is made of titanium 10 and metal oxide 11. Here, if the various metal oxides contained in the metal oxide 11 are M+, Ml, and MS, since these metal oxides are integrated as a solid solution, the potential difference on the surface in contact with the electrolyte 9 is as follows. It is not that big, so it can be considered that corrosion will not progress easily. However, with the passage of 2 days of energization, Fig. 4-(
When a worn point 12° 1B as shown in b) is formed, the surface potential of the metal oxide 11 will be.

消耗してない部分と消耗した部分で、電位差が生じる。A potential difference occurs between the unused part and the worn part.

これは、 M+ 、 Hz 、 Msの性能に差があシ
2通電に伴う消耗量に差が生じるためである。ここで2
通電に対する耐食性の順位を、    ′M+ >Ml
 )Mlとし、酸化物単独での電位の序列を Ml )Mt )Ms 貴      卑 とすれば、消耗箇所12.18と未消耗部との間の電位
差は、第4図−(イ)の状態より大きくなシ、腐食電流
の入シ込む部分(責な部分)は還元電流のために消耗す
る。
This is because there is a difference in the performance of M+, Hz, and Ms, and a difference occurs in the amount of consumption due to energization. Here 2
The order of corrosion resistance against energization is ′M+ >Ml
)Ml, and if the order of the potential of the oxide alone is Ml)Mt)Ms noble and base, then the potential difference between the consumed part 12.18 and the unconsumed part is from the state in Figure 4-(a). The large area where the corrosion current enters (the culprit area) is consumed by the reduction current.

(2)  陰・陽極が整流器を通して接続されている場
合の腐食: 第8図に示したように陽W18と陰極4に整流器が接続
された場合を考える。電解時の陽極8の電位をEl、陰
極4の電位をExとすると。
(2) Corrosion when the cathode and anode are connected through a rectifier: Consider the case where a rectifier is connected to the anode W18 and the cathode 4 as shown in FIG. Let the potential of the anode 8 during electrolysis be El, and the potential of the cathode 4 be Ex.

整流器の電源を切った時の陰・陽極間には。between the negative and anode when the rectifier is turned off.

E=E凰 −Ex       (“、° Ex(0)
の電圧負荷がある。すると、陰極4から陽極8、へ逆電
流が流れ陽極3の還元が生じる。この逆電流の大きさは
、整流器抵抗、電解液抵抗、電極面積に左右され、第5
図に示したような曲線となる。また、こび曲線はA、B
E=E凰−Ex (“, ° Ex(0)
There is a voltage load of Then, a reverse current flows from the cathode 4 to the anode 8, and the anode 3 is reduced. The magnitude of this reverse current depends on the rectifier resistance, electrolyte resistance, and electrode area.
The curve will look like the one shown in the figure. Also, the curves are A, B
.

Cの8つの領域に区分できる。ここでAの領域は陽極8
→整流器6→陰Wi4への電流が整流器6の抵抗で抑制
される逆電流領域で陽極8と陰極4の電位差は短期間は
ぼ平衡を保つ領域、Bの領域は陽Wi8と陰極4の電位
差が減少するにつれて逆電流も小さくなっていく領域、
Cの領域は陽Wi8と陰Wi4の自然電位の差によって
生じる逆電流である。こうやって生じる逆電流(還元電
流)によって陽I#iSは消耗する。
It can be divided into eight areas. Here, the area A is the anode 8
→ Rectifier 6 → In the reverse current region where the current to the negative Wi4 is suppressed by the resistance of the rectifier 6, the potential difference between the anode 8 and the cathode 4 remains in equilibrium for a short period of time. Region B is the potential difference between the positive Wi8 and the negative electrode 4. The region where the reverse current also decreases as the
Region C is a reverse current generated by the difference in natural potential between positive Wi8 and negative Wi4. The positive I#iS is consumed by the reverse current (reduction current) thus generated.

(3)  陰・陽極を短絡した時又は1枚の基材上に陰
・陽極が存在する場合: 第6図−(イ)に陰・陽極を短絡した場合、第6図−(
ロ)、(ハ)に1枚の基材上に陰・陽極が存在している
状態を示す。
(3) When the cathode and anode are short-circuited or when the cathode and anode are on one substrate: When the cathode and anode are short-circuited as shown in Figure 6-(a),
B) and (C) show a state in which a cathode and an anode are present on one base material.

第6図−(イ)において、陽極8と陰極4はリード線1
4によって短絡されている。第6図−(ロ)は1枚の電
極板15上に陽極側10(表面)。
In Figure 6-(a), the anode 8 and cathode 4 are connected to the lead wire 1.
4 is shorted. FIG. 6-(b) shows the anode side 10 (front surface) on one electrode plate 15.

陰極側11(裏面)がある場合の電極を電解液9に浸し
た状態を示したもので、第6図−(ハ)は1枚の電極1
5の同一面に陽極部16と陰極部17が存在する電極を
電解液9中に浸した状態を示したものである。
This shows the electrode immersed in the electrolyte 9 when there is a cathode side 11 (back side).
5 shows a state in which an electrode having an anode portion 16 and a cathode portion 17 on the same side is immersed in an electrolytic solution 9.

これら(イ)、(ロ)、(ハ)の3状態を前記(2)の
整流器を介した状態と比較すると、整流器の抵抗がない
分だけ、単位時間内に流れる逆電流量は大きくなる。第
7図に第6図−(イ)の状態においての逆電流と電源を
切った時からの経過時間との関係を示す。
Comparing these three states (a), (b), and (c) with the state in which the rectifier is used in (2) above, the amount of reverse current flowing within a unit time increases due to the lack of resistance of the rectifier. FIG. 7 shows the relationship between the reverse current and the time elapsed since the power was turned off in the state shown in FIG. 6-(a).

次に(1)〜(3) (′第3図、第4図、第6図参照
)の各状態で、電極の電気的特性及び消耗量がどのよう
に変化するかを2以下に示す試験条件及び方法で試験を
行い、調査した。
Next, we conducted the following tests to determine how the electrical characteristics and amount of wear of the electrodes change in each state of (1) to (3) (see Figures 3, 4, and 6). We conducted tests and investigated the conditions and methods.

陽極面積: 80mm X4Gmm (Pt、 Pd主
成分)陰・陽極間距離:8mm、陰極:チタン電解液:
海水 電解液温度:25°C前後 電流密度: 15 A/’♂ 電源を切った時間: I Ho+1r 電源を切る頻度:1回/ day 電解液流速: 0.1 rr1/ see試験方法:1
5A/d♂で通電を行い1回/day×IHourだけ
電源を切る。
Anode area: 80mm x 4Gmm (Pt, Pd main components) Distance between cathode and anode: 8mm, cathode: titanium electrolyte:
Seawater electrolyte temperature: around 25°C Current density: 15 A/'♂ Power off time: I Ho+1r Power off frequency: 1 time/day Electrolyte flow rate: 0.1 rr1/see test method: 1
Turn on the power at 5A/d♂ and turn off the power only once/day x IHour.

その結果、消耗Iと電源を切った回数との関係を第8図
に、電流効率と電源を切った回数との関係を第9図に、
陽極電位と電源を切った回数との関係を第10図に示す
。電源を切った回数は62回でストップした。
As a result, the relationship between consumption I and the number of times the power was turned off is shown in Figure 8, and the relationship between current efficiency and the number of times the power was turned off is shown in Figure 9.
FIG. 10 shows the relationship between the anode potential and the number of times the power was turned off. It stopped after turning off the power 62 times.

これらの図において2曲線1は通電だけの場合2曲線2
は、陽極単独での腐食2曲線3は陰・陽極が整流器を通
して接続されている場合。
In these figures, 2 curves 1 are 2 curves 2 when only electricity is applied.
2 is the corrosion of the anode alone.Curve 3 is the case where the cathode and anode are connected through a rectifier.

曲線4は陰・陽極を短絡した場合の変化である。Curve 4 shows the change when the anode and cathode are short-circuited.

曲ts4は62回の短絡で75%消耗し、電流効率は初
期で97%程度あったのが80%になり、電位は1.1
8Vだったのが1.5v程度まで上昇した。
Song ts4 was consumed by 75% after 62 short circuits, the current efficiency was about 97% at the beginning, but it decreased to 80%, and the potential was 1.1
The voltage increased from 8V to around 1.5V.

このように陽極の性能低下が生じると1次の問題が生じ
てくる。
When the performance of the anode is degraded in this way, a first-order problem arises.

(a)  電流効率の低下及び電位の上昇に伴い、ラン
ニングコストが増大する。
(a) Running costs increase as current efficiency decreases and potential increases.

(b)  消耗量の増加によシ、電極寿命が短かぐなる
(b) Due to increased consumption, the electrode life becomes shorter.

なお、各種電解槽において、電解液を入れたままの状態
で、電解を中断する頻度は多く、(電解の種類によって
やや異なるが)、上記問題に対する解決は急務である。
In addition, in various electrolytic cells, the frequency of discontinuing electrolysis while the electrolytic solution remains in the tank is high (although it differs slightly depending on the type of electrolysis), and there is an urgent need to solve the above problem.

本発明は上記事情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

逆電流の発生に起因するランニングコストの増加及び電
極消耗量の増加を抑制し得る方法並びに装置を提供する
ことを目的とする。
It is an object of the present invention to provide a method and a device that can suppress an increase in running costs and an increase in electrode consumption due to the generation of reverse current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法は、陽極と陰極を配した電解槽内の電解液を
、電解の中止と同時に抜くことにより逆電流の発生に起
因するランニングコストの増加、並びに電極消耗量の低
減を図ったものである。
The method of the present invention aims to reduce the increase in running costs caused by the generation of reverse current and the amount of electrode wear by draining the electrolyte in the electrolytic cell containing the anode and cathode at the same time as electrolysis is stopped. be.

また本発明装置は、上記本発明方法を実施するための装
置として、陽極と陰極とを配した電解槽において、電解
槽下部に電解液排出用管路を配設するとともに、上記電
解槽排出管路に整流器と電気的に接続された電磁弁を配
設したことを特徴とする逆電流の低減装置に係る。
The apparatus of the present invention is an apparatus for carrying out the method of the present invention, in which an electrolytic cell is provided with an anode and a cathode, an electrolytic solution discharge pipe is provided at the bottom of the electrolytic cell, and the electrolytic cell discharge pipe is The present invention relates to a reverse current reducing device characterized in that a solenoid valve electrically connected to a rectifier is disposed in a flow path.

〔作用〕[Effect]

本発明方法においては、電解槽内の電解液を電解の中止
と同時に電解槽外に排出することによって、陰・陽極間
の逆電流の発生をなくシ。
In the method of the present invention, the electrolytic solution in the electrolytic cell is discharged to the outside of the electrolytic cell at the same time as electrolysis is stopped, thereby eliminating the occurrence of reverse current between the cathode and the anode.

これによって上記問題点を解決している、また本発明装
置は1本発明方法を実施するための装置として、上記電
解液排出用管路および電磁弁を操作することによって、
電解の中止と同時に、容易に電解液を電解槽外に排出す
ることを可能にしている。
This solves the above-mentioned problems, and the device of the present invention is a device for carrying out the method of the present invention, by operating the electrolyte discharge pipe and the solenoid valve.
This makes it possible to easily discharge the electrolytic solution out of the electrolytic cell at the same time as stopping electrolysis.

〔実施例〕〔Example〕

次に第1図を参照して2本発明の第1実施例を説明する
Next, a first embodiment of the present invention will be described with reference to FIG.

本実施例は、電解槽2の下部に電磁弁18を具備したパ
イプ19を取シ付けたもので、電磁弁18は電気線路2
0を介して整流器6と接続されている。ここで、電解中
における電磁弁18は閉じており、整流器6の出力が切
れると同時に開くようにして、電解槽2内の電解液を排
出する。
In this embodiment, a pipe 19 equipped with a solenoid valve 18 is attached to the lower part of the electrolytic cell 2.
0 to the rectifier 6. Here, the electromagnetic valve 18 is closed during electrolysis, and is opened at the same time as the output of the rectifier 6 is cut off, so that the electrolytic solution in the electrolytic cell 2 is discharged.

以上の構成において、海水を電解液として作動させ、従
来法の項に記した試験と同様の条件及び方法で試験を行
い、消耗量と電気的性能の変化を調べた。下表にその結
果を示す。なお各試験に使用したサンプル名をA、Bと
してその条件を次に示す。単独での腐食試験は行わなか
った。
With the above configuration, a test was conducted using seawater as an electrolyte under the same conditions and method as the test described in the conventional method section, and changes in consumption and electrical performance were investigated. The results are shown in the table below. Note that the sample names used in each test are A and B, and the conditions are shown below. Separate corrosion tests were not performed.

A:陰・陽極が整流器を通して接続されている。A: The cathode and anode are connected through a rectifier.

B:陰・陽極を短絡した場合 表 ただし上記表の値は64回電源を切った後の計測値であ
る。
B: Table when cathode and anode are short-circuited However, the values in the above table are the measured values after the power was turned off 64 times.

この結果からも明らかなように、整流器の介在している
場合の消耗は全くなく、電気的特性の劣化も起こってい
ない。さらに、陰・陽極を短絡した場合の消耗は5%で
、電解液を排出しない状態での消耗の1/15ですんで
おり、電気的特性は劣化が少し進行したのみにとどまっ
た。
As is clear from this result, when a rectifier is used, there is no wear and tear, and no deterioration of electrical characteristics occurs. Furthermore, the consumption when the cathode and anode were short-circuited was 5%, which was 1/15 of the consumption when the electrolyte was not discharged, and the electrical characteristics deteriorated only slightly.

ここで、電解槽内の電解液を排出した場合の効果につい
て以下にまとめた。
Here, the effects of discharging the electrolyte in the electrolytic cell are summarized below.

(1)消耗量の大幅な低減が可能となった。(1) It has become possible to significantly reduce consumption.

(2)!気的特性(電流効率、並びに電位)の劣化の進
行を止める。
(2)! Stops the progress of deterioration of electrical characteristics (current efficiency and potential).

(3)その結果、ランニングコストの上昇を抑制する。(3) As a result, increases in running costs are suppressed.

次に、第2図を参照して2本発明の第2実施例を説明す
る。本実施例は整流器6の出力電源を切った後も電解液
供給管lから電解液が送られる場合の装置図である。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is a diagram of a device in which the electrolyte is sent from the electrolyte supply pipe 1 even after the output power of the rectifier 6 is turned off.

図中において、電磁弁21は供給管1に具備され、電解
槽2の電解液入口部近傍に位置し、整流器6と電気線路
22を介して接続されている。
In the figure, a solenoid valve 21 is provided in the supply pipe 1, located near the electrolyte inlet of the electrolytic cell 2, and connected to the rectifier 6 via an electric line 22.

また、電磁弁2Bは海水排出管5に具備され、電解槽2
の電解液出口部近傍に位置し、整流器6と電気線路24
を介して接続されている。さらに。
In addition, the solenoid valve 2B is provided in the seawater discharge pipe 5, and the electrolytic cell 2
The rectifier 6 and the electric line 24 are located near the electrolyte outlet of the
connected via. moreover.

供給管lと排出管5は、電磁弁25を具備したバイパス
管26で連通されており、電磁弁25は電気線路27を
介して整流器6と接続されている。本図において、!解
中の電磁弁21と23は開いた状態で、電磁弁18.2
5は閉じた状態にある。ここで整流器6の出力電源を切
ると同時に、電磁弁21、28は閉じ、電磁弁18.2
5が開く。すると電解液は、電解槽2に入らずにバイパ
ス管26を経て排出管5に入り次の場所へ送られる。こ
の時。
The supply pipe 1 and the discharge pipe 5 are communicated through a bypass pipe 26 equipped with a solenoid valve 25 , and the solenoid valve 25 is connected to the rectifier 6 via an electric line 27 . In this figure,! During disassembly, solenoid valves 21 and 23 are open, and solenoid valve 18.2
5 is in the closed state. At this point, when the output power of the rectifier 6 is turned off, the solenoid valves 21 and 28 are closed, and the solenoid valve 18.2 is closed.
5 opens. The electrolyte then enters the discharge pipe 5 via the bypass pipe 26 without entering the electrolytic cell 2 and is sent to the next location. At this time.

電解槽2内の電解液はパイプ19から槽外へ排出され、
逆電流の陽極8への流入低減を図ることにより、実施例
1と同様の効果を得ることができる。
The electrolyte in the electrolytic cell 2 is discharged from the pipe 19 to the outside of the cell,
By reducing the flow of reverse current into the anode 8, the same effects as in the first embodiment can be obtained.

ここで2本実施例1,2で説明した電磁弁18を具備し
たパイプ19にモーターポンプを取り付けることによっ
て、電解槽2内電解液を素早く排出することも可能であ
る。ただし、モーターポンプを取り付けた場合は、電解
槽2内の電解液がなくなったとき、モーターポンプの電
源が切れるように、フロートレススイッチ等の同時具備
が必要である。
By attaching a motor pump to the pipe 19 equipped with the electromagnetic valve 18 described in the two embodiments 1 and 2, it is also possible to quickly drain the electrolyte in the electrolytic cell 2. However, if a motor pump is installed, a floatless switch or the like must be provided at the same time so that the power to the motor pump can be turned off when the electrolyte in the electrolytic cell 2 runs out.

〔発明の効果〕〔Effect of the invention〕

以上のように2本発明によれば、従来に比べて電極消耗
量の大幅低減、電気的特性の劣化防止およびランニング
コストの上昇抑制が可能になるとともに、電解液排出管
路および電磁弁を設けた簡単かつ安価な装置で、電解の
中止と同時に迅速に電解液を電解槽外に排出できる利点
がある。
As described above, according to the present invention, it is possible to significantly reduce the amount of electrode consumption, prevent deterioration of electrical characteristics, and suppress increases in running costs compared to the conventional method. It is a simple and inexpensive device, and has the advantage that the electrolyte can be quickly discharged from the electrolytic cell at the same time as electrolysis is stopped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明装置の第1実施例および第
2実施例を示す概略構成図、第3図は従来の電解装置の
1例を示す概略構成図、第4図−(イ)および(ロ)は
電解液に浸漬中の未消耗陽極および消耗陽極を示す説明
図、第5図は整流器を介して、陰極から陽極へ流れる逆
電流の経時変化を示す線図、第6図−(イ)は陰極と陽
極を短絡して電解液中に浸漬した状態を示す説明図。 第6図(ロ)および(ハ)は1枚の電極中に陰極部と陽
極部が存在している電極を電解液中に浸漬をした状態を
示す説明図、第7図は整流器の出力電源を切ると同時に
陰極と陽極を短絡し、この時に流れる逆電流の経時変化
を示す線図、第8図は整流器の出力電源を1回/ da
y X 1 tfourだけ切った時の陽極酸化物消耗
量が電源を切った回数によりどのように変化するかを示
した線図。 第9図は陽極の電流効率が整流器の出力電源を切った回
数に伴う変化を示した線図、第1θ図は陽極の電位が整
流器の出力電源を切った回数に伴う変化を示した線図で
ある。 1・・・電解液供給管、2・・・電解槽93・・・陽極
。 4・・・陰極、5・・・電解液排出管、6・・・整流器
、7゜8・・・電気線回路、9・・・電解液、 10・
・・母材(チタン)、11・・・酸化物、 12.18
・・・消耗部分、14・・・短絡線、15・・・電極板
、16・・・陽極部、 17・・・陰極部。 18・・・電磁弁、 19・・・パイプ、20・・・電
気線回路、21・・・電磁弁、22・・・電気線回路、
23・・・電磁弁、24・・・電気線回路、25・・・
電磁弁、26・・・バイパス管、27・・・電気線回路
。 番 第10
1 and 2 are schematic configuration diagrams showing the first and second embodiments of the device of the present invention, FIG. 3 is a schematic configuration diagram showing an example of a conventional electrolysis device, and FIG. ) and (b) are explanatory diagrams showing unconsumed anodes and consumable anodes immersed in an electrolytic solution, FIG. 5 is a diagram showing changes over time in the reverse current flowing from the cathode to the anode via the rectifier, and FIG. 6 - (A) is an explanatory view showing a state in which the cathode and the anode are short-circuited and immersed in an electrolytic solution. Figures 6 (b) and (c) are explanatory diagrams showing a state in which an electrode in which a cathode part and an anode part are present in one electrode is immersed in an electrolyte, and Figure 7 is an output power supply of a rectifier. The cathode and anode are short-circuited at the same time as the current is turned off, and the graph showing the change over time of the reverse current flowing at this time is shown in Figure 8.
A diagram showing how the amount of anodic oxide consumption when the power is turned off by y x 1 tfour changes depending on the number of times the power is turned off. Figure 9 is a diagram showing how the current efficiency of the anode changes with the number of times the output power of the rectifier is turned off, and Figure 1θ is a diagram showing how the potential of the anode changes with the number of times the output power of the rectifier is turned off. It is. 1... Electrolyte supply pipe, 2... Electrolytic cell 93... Anode. 4... Cathode, 5... Electrolyte discharge pipe, 6... Rectifier, 7° 8... Electric wire circuit, 9... Electrolyte, 10.
... Base material (titanium), 11... Oxide, 12.18
... Consumable part, 14... Short circuit wire, 15... Electrode plate, 16... Anode part, 17... Cathode part. 18... Solenoid valve, 19... Pipe, 20... Electric line circuit, 21... Solenoid valve, 22... Electric line circuit,
23...Solenoid valve, 24...Electric line circuit, 25...
Solenoid valve, 26... bypass pipe, 27... electric line circuit. Number 10

Claims (2)

【特許請求の範囲】[Claims] (1)陽極と陰極とを配した電解槽において、整流器の
出力電源を切り電解を中止すると同時に、電解槽内の電
解液を排出させることを特徴とする逆電流の低減方法。
(1) A method for reducing reverse current in an electrolytic cell equipped with an anode and a cathode, which comprises turning off the output power of a rectifier and stopping electrolysis, and at the same time draining the electrolyte in the electrolytic cell.
(2)陽極と陰極とを配した上記方法において、電解槽
下部に電解液排出用管路を配設するとともに、上記電解
槽排出管路に整流路と電気的に接続された電磁弁を配設
したことを特徴とする逆電流の低減装置。
(2) In the above method in which an anode and a cathode are arranged, an electrolyte discharge pipe is provided at the bottom of the electrolytic cell, and a solenoid valve electrically connected to a rectification path is provided in the electrolytic cell discharge pipe. A reverse current reduction device characterized by:
JP60033058A 1985-02-21 1985-02-21 Method and device for reducing reverse current Pending JPS61194190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033058A JPS61194190A (en) 1985-02-21 1985-02-21 Method and device for reducing reverse current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033058A JPS61194190A (en) 1985-02-21 1985-02-21 Method and device for reducing reverse current

Publications (1)

Publication Number Publication Date
JPS61194190A true JPS61194190A (en) 1986-08-28

Family

ID=12376149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033058A Pending JPS61194190A (en) 1985-02-21 1985-02-21 Method and device for reducing reverse current

Country Status (1)

Country Link
JP (1) JPS61194190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120944A (en) * 2013-12-20 2015-07-02 旭化成株式会社 Electrolysis cell and electrolysis tank
JP2015129345A (en) * 2014-11-07 2015-07-16 旭化成株式会社 Electric insulation method for electrolysis system
JP2019019379A (en) * 2017-07-18 2019-02-07 Jxtgエネルギー株式会社 Electro-chemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120944A (en) * 2013-12-20 2015-07-02 旭化成株式会社 Electrolysis cell and electrolysis tank
JP2015129345A (en) * 2014-11-07 2015-07-16 旭化成株式会社 Electric insulation method for electrolysis system
JP2019019379A (en) * 2017-07-18 2019-02-07 Jxtgエネルギー株式会社 Electro-chemical device

Similar Documents

Publication Publication Date Title
TWI707067B (en) Method and device for producing electroplating solution or electroplating replenishing solution for insoluble anode acid copper electroplating process
JP4346551B2 (en) Anode for electroplating
KR920014955A (en) Replenishment electrolyte cell for replenishing metal to aqueous electrolyte solution, with an improvement that the cathode is a gas diffusion electrode
JP4484414B2 (en) Method and apparatus for adjusting metal ion concentration in an electrolyte fluid, method of using the method and method of using the apparatus
US5173170A (en) Process for electroplating metals
JP2018508965A (en) Electrochemical cell with electrodeposited fuel
JPS61194190A (en) Method and device for reducing reverse current
CN109321956A (en) A kind of method of Ni―Ti anode coating production and coating reparation
CN205420596U (en) Alligatoring liquid electrolytic device
JPS6213589A (en) Method and apparatus for preventing inverse current in electrolytic cell
CN1153855C (en) Method and device for regulating concentration of substaces in electrolytes
JPS62182294A (en) Apparatus for reducing inverse current in electrolytic cell
JP2000343081A (en) Toilet bowl sterilization device
JPS61194191A (en) Method and device for reducing reverse current
KR20200140407A (en) Systems and methods for removing contamination in electroplating systems
JP3365608B2 (en) Nickel ion replenishment method and apparatus for plating
JPS61204397A (en) Plating device
JPH1136099A (en) Plating device and plating method thereby
CN218812181U (en) Electroplating solution cyclic utilization system
ES2952069T3 (en) Method for the electrolytic deposition of a zinc-nickel alloy using a membrane anode system
JP2011153037A (en) Water treatment apparatus
CN208151504U (en) Electrodeposited chromium promotes chromium density devices
JPS5839919B2 (en) How to adjust the pH of electrolytic nickel plating solution
JP3370896B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP4076666B2 (en) Electrolyzed water generator