JPS6119105A - Material for photomagnetic recording - Google Patents

Material for photomagnetic recording

Info

Publication number
JPS6119105A
JPS6119105A JP13948584A JP13948584A JPS6119105A JP S6119105 A JPS6119105 A JP S6119105A JP 13948584 A JP13948584 A JP 13948584A JP 13948584 A JP13948584 A JP 13948584A JP S6119105 A JPS6119105 A JP S6119105A
Authority
JP
Japan
Prior art keywords
alloy
recording
magneto
optical recording
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13948584A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
小林 政信
Mutsumi Asano
睦己 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13948584A priority Critical patent/JPS6119105A/en
Publication of JPS6119105A publication Critical patent/JPS6119105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve corrosion-resisting property, to enhance the stability of recording and to increase the repeatability of writing-in and erasing operation by a method wherein a suitable quantity of W and Co is contained in the titled material. CONSTITUTION:A recording layer 2 is provided on a substrate 1. The material to be used for photomagnetic recording of the layer 2 consists of an Fe-R-M alloy. In this composition, R consists of one or two or more kinds selected from Gd, Tb and Dy of rare-earth element, M consists of the metal other than iron and rare-earth element, and M contains W and Co. The quantity of R is set at 20-35atom% of the total quantity of alloy, the quantity of W is set at 3-20atom% of the total quantity of Fe+M, and the quantity of Co is set at 3-20atom% of the total quantity of Fo+M. W and Co are contained in the above-mentioned alloy composition, the corrosion-resisting property of the material is remarkably improved mainly by the action of W, the stability of recording is enhanced by the above-mentioned improvement in corrosion-resisting property, and the repeatability of writing-in and erasing operations can also be enhanced remarkably. Moreover, the material is suitable for high density recording which is attributed to the characteristics of the alloy itself of the above-mentioned composition, and the reproduction of S/N can be enhanced by containing Co.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光学的記録用材料、特に光磁気記録用材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to optical recording materials, particularly magneto-optical recording materials.

(従来の技術) 情報処理技術の分野においては、情報の増大及び多様化
の急速な進展に伴ない、磁気メモリの記録容量、書込み
回数等の一層の増大化等の要求が近年益々高まってきて
いる。そこで従来の記録方式に代わるものとして、記録
媒体を用いた光記録方式が、例えば、雑誌(電子展望、
11月号(1983)誠文堂新光社、p、63〜74)
に開示されている。
(Prior Art) In the field of information processing technology, with the rapid increase and diversification of information, demands for further increases in magnetic memory recording capacity, number of writes, etc. have been increasing in recent years. There is. Therefore, as an alternative to the conventional recording method, an optical recording method using a recording medium is proposed, such as magazines (electronic outlook, etc.).
November issue (1983) Seibundo Shinkosha, p. 63-74)
has been disclosed.

ここに開示されている従来例につき説明する。The conventional example disclosed herein will be explained.

先ず、金属薄膜或いは金属含有ポリマー材料を用いたも
のがある。この方式では、記録媒体の記録部分をレーザ
光によって溶融蒸発させて穴を開けて書込む方式であり
書換えが不可能である。
First, there are those using metal thin films or metal-containing polymer materials. In this method, the recorded portion of the recording medium is melted and evaporated using a laser beam, and a hole is punched for writing, making it impossible to rewrite.

一方、書換え可能な光記録媒体の例としては非晶質カル
コゲナイドのフォトダークニング現象を利用したものが
あるが、斯様な非晶質カルコゲナイド材料は一般に記録
感度が小さく、光吸収端が短波長側にあり、さらにその
吸収端付近の波長では吸収が小さいために、長波長の光
での記録感度が非常に小さい。ところで、一般にレーザ
光は指向性が良く極めて小さいスポットに絞れることか
ら、光記録媒体用の光源として用いて好適である。また
半導体レーザは非常に小型化出来るので、光源用として
特に注目されている。しかじながら、現在のところ半導
体レーザの発振波長領域が750〜800 nm以上で
あり、恐らく将来的にも700 nm程度と比較的長波
長である。またおおむね小型でかつ安定性のよいHe−
Neレーザでも、その波長域は832.8 nmである
し、またAr、 Kr等のレーザは短波長のレーザであ
るが、若干不安定さか増しかつ装置自体が大型である。
On the other hand, an example of a rewritable optical recording medium is one that utilizes the photodarkening phenomenon of amorphous chalcogenide, but such amorphous chalcogenide materials generally have low recording sensitivity and have a light absorption edge with a short wavelength. Furthermore, since absorption is small at wavelengths near the absorption edge, recording sensitivity for long wavelength light is extremely low. Incidentally, since laser light generally has good directivity and can be focused to an extremely small spot, it is suitable for use as a light source for optical recording media. Furthermore, since semiconductor lasers can be made extremely compact, they are attracting particular attention as light sources. However, at present, the oscillation wavelength range of semiconductor lasers is 750 to 800 nm or more, and it will probably be a relatively long wavelength of about 700 nm in the future. In addition, He-
Even the Ne laser has a wavelength range of 832.8 nm, and the Ar, Kr, etc. lasers have short wavelengths, but they are slightly more unstable and the equipment itself is larger.

これがため、前述した非晶質カルコゲナイドは、光源と
して半導体レーザ或いはHe−Neレーザを使用すると
、記録感度が小さくなってしまい、一方、Ar、 Kr
等のレーザを使用すると、メモリ装置が著しく大きなも
のとなってしまう。
For this reason, when a semiconductor laser or a He-Ne laser is used as a light source, the recording sensitivity of the amorphous chalcogenide mentioned above becomes low, whereas when Ar, Kr
If such a laser is used, the memory device will become significantly large.

また別の光記録媒体として、サーモプラスチックと光導
電体とを組合せた媒体があり、この記録媒体は光導電体
を自由に選択することにより使用波長域を変えることが
出来るメリットはあるが、書換え可能な回数が最大でも
100回程度であること、また、個々の記録ピー、)を
選択的に消去出来ず、ある領域内の全体消去となってし
まうこと等の欠点があり、最近の情報の多量化及び多様
性に応じた処理が充分に出来ない。
Another type of optical recording medium is a medium that combines thermoplastic and photoconductor.This recording medium has the advantage of being able to change the operating wavelength range by freely selecting the photoconductor, but it is rewritable. There are drawbacks such as the maximum number of times that can be erased is about 100, and the fact that it is not possible to selectively erase individual recorded copies (), instead of erasing the entire area. It is not possible to adequately handle the increase in quantity and diversity.

ところで、別の記録媒体として光磁気記録用材料を使用
したものがある。この種の記録媒体は使用する光源に関
して何等制限を有しないし、書換え可能回数も多く有望
視されている。その中でも特にGd、Tb、Dy等の希
土類元素とFe、Goの鉄属元素との合金がこの光磁気
記録用材料としての期待が大きい。
By the way, there is another recording medium using a magneto-optical recording material. This type of recording medium has no restrictions on the light source used, and is viewed as promising because it can be rewritten many times. Among these, alloys of rare earth elements such as Gd, Tb, and Dy and iron elements such as Fe and Go are particularly promising as materials for magneto-optical recording.

(発明が解決しようとする問題点) しかしながら、これら光磁気記録用材料はGO系とFe
系とに分けられ、GO系は合金組成の違いによる磁気特
性の変化が大きすぎ、また大型化等の面でFe系よりも
不利であり、一方Fe系は非常に酸化し易いという実用
上重大な欠点を有する。
(Problems to be solved by the invention) However, these magneto-optical recording materials are GO-based and Fe-based.
GO-based systems have large changes in magnetic properties due to differences in alloy composition, and are disadvantageous compared to Fe-based systems in terms of larger size, etc., while Fe-based systems are extremely susceptible to oxidation, which is a practical problem. It has some disadvantages.

また、上述した従来の光記録媒体の多くは前述したよう
な書換え性及びその書換え時にける諸物件等において必
ずしも満足出来るものが得られていないのが実情である
Furthermore, the reality is that many of the conventional optical recording media described above do not necessarily provide satisfactory rewritability and various properties during rewriting as described above.

従って、本発明の目的は、耐食性の優れ、記録の安定性
が良く、しかも、書込み、消去の反復性が著しく増大す
る光磁気記録用材料を提供するにある。
Therefore, an object of the present invention is to provide a magneto-optical recording material that has excellent corrosion resistance, good recording stability, and significantly increases the repeatability of writing and erasing.

この発明の他の目的は、高密度記録用として使用可能で
、記録感度が良い光磁気記録用材料を提供するにある。
Another object of the present invention is to provide a magneto-optical recording material that can be used for high-density recording and has good recording sensitivity.

(問題点を解決するための手段) この目的の達成を図るため、この発明による光磁気記録
用材料によれば、Fe −R−M系合金からなり、Fe
を鉄とし、Rを希土類元素系のGd、Tb及びayから
選らばれた少なくとも一種又は二種以上の元素とし、M
を前記鉄及び希土類元素系以外の金属系とし、前記Mは
WとGOとを含み、前記Hの量を前記合金の全体量の2
0〜35原子%とし、前記Wの量をFe+Mの全体量の
うち3〜20原子%とし、Coの量をFe+Mの全体量
のうち3〜20原子%としたことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, a magneto-optical recording material according to the present invention is made of an Fe-R-M alloy,
is iron, R is at least one or two or more elements selected from rare earth elements Gd, Tb, and ay, and M
is a metal system other than iron and rare earth elements, M includes W and GO, and the amount of H is 2 of the total amount of the alloy.
The amount of W is 3 to 20 at % of the total amount of Fe+M, and the amount of Co is 3 to 20 at % of the total amount of Fe+M.

(作用) この発明の組成合金によれば、WとCoとを含有し、主
としてWの作用により酎食性が著しく向上し、この酎食
性の向上によって記録の安定性も高まり、さらに、書込
み及び消去の反復性も著しく増大することとなる。
(Function) According to the compositional alloy of the present invention, it contains W and Co, and the erodibility is significantly improved mainly due to the action of W. The improved erodibility also increases the stability of recording. The repeatability will also increase significantly.

さらに、この組成合金自体の性質に起因して、この発明
の材料は高密度記録に適し、かつ、Goの含有によりさ
らにカー回転角が増加し、再生S/N比が高まるという
特性を有している。
Furthermore, due to the properties of this compositional alloy itself, the material of the present invention is suitable for high-density recording, and the inclusion of Go further increases the Kerr rotation angle and increases the reproduction S/N ratio. ing.

(実施例) 以下、図面を参照してこの発明の実施例につき説明する
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の光磁気記録用材料を使用した光磁気
記録媒体の一実施例をその構造が理、解出来る程度に示
す略図的断面図である。同図において、lは基板で、こ
の基板lとして充分に平滑でかつ透明なガラス基板或い
は樹脂基板を用いる。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a magneto-optical recording medium using the magneto-optical recording material of the present invention to the extent that its structure can be understood and understood. In the figure, l denotes a substrate, and a sufficiently smooth and transparent glass substrate or resin substrate is used as the substrate l.

2はこの基板1の上側に設けた記録層である。この記録
層2を上述したこの発明の光磁気記録用材料で合金層と
して形成する。
2 is a recording layer provided on the upper side of this substrate 1. This recording layer 2 is formed as an alloy layer using the above-mentioned magneto-optical recording material of the present invention.

このようにして形成された光磁気記録媒体に対し、10
mw以下のHe−Neレーザ光を用いて約1JLsの書
込み時間で記録書込みを行って、約IILm径以下の微
小記録を得、また、100000回以上の消去及び再書
込みの反復に耐えることを確認した。
For the magneto-optical recording medium thus formed, 10
Recording was performed using a He-Ne laser beam of less than mw in a writing time of about 1 JLs, and it was confirmed that minute records with a diameter of about IILm or less were obtained and that it could withstand repeated erasing and rewriting more than 100,000 times. did.

また、第1図に示す構成と同一構成のFe−R(R= 
Tb、Gd、又はDy)系材料からなる記録媒体とこの
発明の光磁気記録用材料をもって形成した記録媒体とに
つき耐食性の比較試験を行ったところ、この発明の光磁
気記録用材料をもって形成した記録媒体は著しく耐食性
が優れていることが確認された。以下、この耐食性につ
き述べる。
Moreover, Fe-R (R=
A comparative test of corrosion resistance was conducted on a recording medium made of a Tb, Gd, or Dy)-based material and a recording medium formed using the magneto-optical recording material of the present invention. It was confirmed that the medium has significantly excellent corrosion resistance. This corrosion resistance will be described below.

一般に、Fe系の光磁気記録用材料は高湿度雰囲気中に
おいて孔食を生じ、この孔食は薄膜を貫通する。そのた
め、孔食量の増加に伴ない、透過率が増大する。従って
、透過率変化の大小で酎食性を評価することが出来る。
In general, Fe-based magneto-optical recording materials undergo pitting corrosion in a high humidity atmosphere, and this pitting corrosion penetrates through the thin film. Therefore, as the amount of pitting corrosion increases, the transmittance increases. Therefore, the edibility can be evaluated based on the magnitude of the change in transmittance.

第2図は、この発明の光磁気記録用材料のうちTb3.
 (W、 CofFe90)?、、 Tbja(W、、
 Go、、 Fe、、)7゜又は丁b)tr (Wza
 Co/□ F” 7.)7oを用いて第1図に示した
記録層2をそれぞれ形成した光磁気記録媒体と、従来(
7)Tb70Fe7D、 Gd、、Fe2.又はDy、
、 Fe2.を用いて記録層2を形成した光磁気記録媒
体とを、温度85℃及び相対湿度85%の雰囲気中に保
持した場合につき、各光磁気記録体の透過率の変化を示
した特性曲線図である。尚、同図には、比較の目的のた
め、Wを添加していないTb3.CCo1B Fe12
)7.及びT b)6 (Co to Fe F、)?
、の結果についても示しである。第2図において、各光
磁気記録体の雰囲気中での保持時間/hを横軸にプロッ
トして示し、各保持時間の経過後の透過率Tとこの雰囲
気中に入れる前の状態での透過率(初期値という)To
との比で表わした透過率比T/Toを縦軸にプロットし
て示した。記録層2が腐食されない場合には、この透過
率比はlであり、腐食量が多いほどこの比は大きくなる
FIG. 2 shows Tb3.
(W, CofFe90)? ,, Tbja(W,,
Go,, Fe,,)7゜or Dingb)tr (Wza
A magneto-optical recording medium in which the recording layer 2 shown in FIG.
7) Tb70Fe7D, Gd,, Fe2. Or Dy,
, Fe2. This is a characteristic curve diagram showing the change in transmittance of each magneto-optical recording medium when the magneto-optical recording medium in which the recording layer 2 is formed using is kept in an atmosphere with a temperature of 85° C. and a relative humidity of 85%. be. Note that for the purpose of comparison, the same figure shows Tb3. to which W is not added. CCo1B Fe12
)7. and T b) 6 (Co to Fe F,)?
The results for , are also shown. In Figure 2, the retention time/h of each magneto-optical recording medium in the atmosphere is plotted on the horizontal axis, and the transmittance T after each retention time and the transmittance before being placed in this atmosphere are plotted on the horizontal axis. Rate (referred to as initial value) To
The transmittance ratio T/To, expressed as a ratio of T/To, is plotted on the vertical axis. When the recording layer 2 is not corroded, this transmittance ratio is l, and the greater the amount of corrosion, the larger this ratio becomes.

第2図に示す実験結果からも理解出来るようにTb )
6 (W y Cab Fep、 )、、、  Tb3
a (Wlo Cata Fezo )7.7及びTb
 30 (Wza Cota F eye )、、をそ
れぞれ用いた記録層2の透過率比は、従来のTb、、 
Fe、、 、Gd、、 Feg及びD y3. F e
7Bに比べて、同一の条件下で1/10〜1/1000
程度であり、W添加のないT b 36 (c o l
o Fe ya ) q6及びTb、、 (Co2. 
Fe、、)2.に比べて、数拾分の−である。
As can be understood from the experimental results shown in Figure 2, Tb)
6 (W y Cab Fep, ),,, Tb3
a (Wlo Cata Fezo) 7.7 and Tb
The transmittance ratio of the recording layer 2 using Tb, .
Fe, , Gd, , Feg and D y3. Fe
1/10 to 1/1000 under the same conditions compared to 7B
T b 36 (c o l
o Fe ya ) q6 and Tb, (Co2.
Fe,,)2. Compared to , it is - by several orders of magnitude.

従って、この発明の光磁気記録媒体は従来の記録媒体よ
りも著しく酎食性に優れていることが分かる。尚、第2
図にはTb合金系につきのみ示したが、Gd合金系、D
y合金系、T、M:d合金系、TbDy合金系において
もW及びGoの添加効果はTb合金系と同様な効果が見
られた。
Therefore, it can be seen that the magneto-optical recording medium of the present invention is significantly better in corrosion resistance than conventional recording media. Furthermore, the second
Although only Tb alloy system is shown in the figure, Gd alloy system, D
In the y alloy system, the T, M: d alloy system, and the TbDy alloy system, the effect of adding W and Go was similar to that in the Tb alloy system.

次にこの発明の光磁気記録媒体のカー回転角につき述べ
る。カー回転角はこれが大きいとS/N比が大きくなっ
て読出し特性が良いことが知られている。Wの添加によ
り耐食性が著しく増大する一方において、カー回転角が
小さくなるが、Fe+Mの量に対してWの量が3〜20
M子%の範囲では、カー回転角の減少量は小さく、また
、Goを添加していることによってカー回転角の減少を
抑えることが出来る。或いは、このカー回転角の小さい
分を、誘電体膜を保護層2に被着することによて、その
エンハンス効果を利用して補うことが出来るので実用上
問題はない。
Next, the Kerr rotation angle of the magneto-optical recording medium of the present invention will be described. It is known that when the Kerr rotation angle is large, the S/N ratio becomes large and the read characteristics are good. While the corrosion resistance increases significantly by adding W, the Kerr rotation angle decreases, but when the amount of W is 3 to 20
In the M% range, the amount of decrease in the Kerr rotation angle is small, and the addition of Go can suppress the decrease in the Kerr rotation angle. Alternatively, this small Kerr rotation angle can be compensated for by applying a dielectric film to the protective layer 2 and utilizing its enhancement effect, so that there is no problem in practice.

このように、この発明の光磁気記録媒体によれば、主と
してWを加えることによる酎食性が著しく向上すること
が判明したが、その原因は現在のところ次のように考え
られる。WはFeよりも化学的に活性な金属である。そ
して、Feが活性溶解するような環境においてWは不動
態になる。このため、合金が活性溶解すると、合金を構
成する主金属元素(Fe)より活性なWが反応生成物と
なって、腐食生成物中に多量に濃縮されて腐食生成物皮
膜を形成する。その後の腐食は、この腐食生成物皮膜を
通じて金属イオンが拡散することによって進行するので
、腐食進行の障壁となり、従って、合金は耐食性が向上
する。
As described above, it has been found that, according to the magneto-optical recording medium of the present invention, the erodibility is significantly improved mainly due to the addition of W, and the reason for this is currently believed to be as follows. W is a more chemically active metal than Fe. In an environment where Fe is actively dissolved, W becomes passive. Therefore, when the alloy is actively dissolved, W, which is more active than the main metal element (Fe) constituting the alloy, becomes a reaction product and is concentrated in a large amount in the corrosion product to form a corrosion product film. Subsequent corrosion progresses through the diffusion of metal ions through this corrosion product film, which acts as a barrier to the progress of corrosion, and thus improves the corrosion resistance of the alloy.

一方、Goもある程度の耐食作用があるが、このGoの
耐食作用は、Coの不活性に起因するものであり、この
発明における程度の含有量ではその効果はWに比べると
著しく小さい。
On the other hand, although Go also has a certain degree of anti-corrosion effect, this anti-corrosion effect of Go is due to the inertness of Co, and its effect is significantly smaller than that of W at the level of content in this invention.

この発明による上述の組成範囲の合金、すなわち、Fe
−R−M合金であってFeは鉄、RはGd、Tb。
Alloys of the above composition range according to the present invention, namely Fe
-RM alloy, Fe is iron, R is Gd, Tb.

Dyのうちの少なくともいづれか一種又は二種以上を含
み、R量を合金全体の20〜35原子%とし、Mには必
ずWとCoとを含ませ、このWの量をFe+M全体量の
うち3〜20原子%とし、かつ、Goの量をFe+M全
体量の3〜20原子%とした材料を用いた光磁気記録媒
体について、従来のFe −R系(R=Cd、Tb、又
はDyのうちの少なくとも一種)を用いた光磁気記録媒
体と同様な特性を有することに追加して、従来の場合よ
りも著しく耐食性が向上し、記録の安定性が向上し、し
かも、書込み消去の反復性が著しく増大することが確認
された。尚、Coの量を3〜20原子%としているのは
、Co添加によってカー回転角を増大出来るが、キュリ
一点が急上昇し、過剰に添加すると光磁気記録感度が低
下するのでこれを防ぐためである。この範囲内であると
、適切なキュリ一点の値となり、かつ、W添加によるカ
ー回転角の減少を抑えることが出来る。また、Hの量を
合金全体の20〜35原子%としているが、これは垂直
磁化膜が得られ易いことを考慮したものである。この発
明によるこのような磁気光学記録用材料は上述した透明
ガラスにのみ被着されるものではなく、透明、不透明を
問わず板状、シート状、テープ状その他の形状でしかも
任意所望の材料からなる基板上に合金層として被着形成
することが出来る。
Contains at least one or two or more of Dy, the amount of R is 20 to 35 atomic% of the entire alloy, M always includes W and Co, and the amount of W is 3% of the total amount of Fe+M. Regarding magneto-optical recording media using materials with a Go content of ~20 at% and a Go content of 3 to 20 at% of the total amount of Fe+M, conventional Fe-R system (R=Cd, Tb, or Dy) In addition to having the same characteristics as magneto-optical recording media using at least one type of magneto-optical recording medium, it also has significantly improved corrosion resistance and recording stability compared to conventional media, and also has improved repeatability of writing and erasing. It was confirmed that the amount increased significantly. The reason why the amount of Co is set at 3 to 20 atomic % is to prevent the addition of Co, which can increase the Kerr rotation angle, since the Curie point increases rapidly, and the magneto-optical recording sensitivity decreases when excessively added. be. Within this range, a suitable Curie point value can be obtained, and a decrease in the Kerr rotation angle due to W addition can be suppressed. Further, the amount of H is set to 20 to 35 atomic percent of the entire alloy, but this is done in consideration of the fact that a perpendicularly magnetized film can be easily obtained. Such a magneto-optical recording material according to the present invention is not only applied to the above-mentioned transparent glass, but also can be applied in the form of a plate, sheet, tape, or other shape, regardless of whether it is transparent or opaque, and can be made of any desired material. It can be deposited as an alloy layer on a substrate.

(発明の効果) 上述したところから明らかなように、この発明による光
磁気記録用材料は、W及びGoを含有しているので、従
来のこの種の記録用材料よりも耐食性が優れており、記
録の安定性が良く、また、書込み及び消去の反復性を著
しく増大し得という利点を有すると共に、この材料自体
の特性により高密度記録が可能となり、記録感度が良い
という利点を有する。
(Effects of the Invention) As is clear from the above, the magneto-optical recording material according to the present invention contains W and Go, so it has better corrosion resistance than conventional recording materials of this type. It has the advantage of good recording stability and the ability to significantly increase the repeatability of writing and erasing.The material itself also has the advantage of enabling high-density recording and good recording sensitivity.

また、この発明の光磁気記録用材料はレーザ光を用いて
書込み及び消去が可能であり、使用光源に関する従来の
ごとき種々の制約が著しく軽減されるという利点がある
Further, the magneto-optical recording material of the present invention can be written and erased using a laser beam, and has the advantage that various conventional restrictions regarding the light source used are significantly alleviated.

この発明の光磁気記録用材料は特に記録媒体に使用して
好適である。
The magneto-optical recording material of the present invention is particularly suitable for use in recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光磁気記録用材料を適用して形成した
光磁気記録媒体を示す略図的断面図、第2図はこの発明
による光磁気記録用材料の特性の説明に夫々供する光透
過重比の実験結果を示す曲線図である。 1・・・基板、       2・・・記録層。
FIG. 1 is a schematic cross-sectional view showing a magneto-optical recording medium formed by applying the magneto-optical recording material of the present invention, and FIG. 2 is a diagram showing light transmission for explaining the characteristics of the magneto-optical recording material of the present invention. It is a curve diagram showing experimental results of gravity ratio. 1...Substrate, 2...Recording layer.

Claims (1)

【特許請求の範囲】[Claims] Fe−R−M系合金からなり、Feを鉄とし、Rを希土
類元素系のGd、Tb及びDyから選らばれた少なくと
も一種又は二種以上の元素とし、Mを前記鉄及び希土類
元素系以外の金属系とし、前記MはWとCoとを含み、
前記Rの量を前記合金の全体量の20〜35原子%とし
、前記Wの量をFe+Mの全体量のうち3〜20原子%
とし、Coの量をFe+Mの全体量のうち3〜20原子
%としたことを特徴とする光磁気記録用材料。
Fe-R-M alloy, Fe is iron, R is at least one or more elements selected from rare earth elements Gd, Tb, and Dy, and M is an element other than iron and rare earth elements. metal-based, the M includes W and Co,
The amount of R is 20 to 35 at% of the total amount of the alloy, and the amount of W is 3 to 20 at% of the total amount of Fe+M.
A magneto-optical recording material characterized in that the amount of Co is 3 to 20 at % of the total amount of Fe+M.
JP13948584A 1984-07-05 1984-07-05 Material for photomagnetic recording Pending JPS6119105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13948584A JPS6119105A (en) 1984-07-05 1984-07-05 Material for photomagnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13948584A JPS6119105A (en) 1984-07-05 1984-07-05 Material for photomagnetic recording

Publications (1)

Publication Number Publication Date
JPS6119105A true JPS6119105A (en) 1986-01-28

Family

ID=15246347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13948584A Pending JPS6119105A (en) 1984-07-05 1984-07-05 Material for photomagnetic recording

Country Status (1)

Country Link
JP (1) JPS6119105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185266A (en) * 1986-02-12 1987-08-13 Canon Inc Optical recording medium
JPH0224853A (en) * 1988-07-13 1990-01-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185266A (en) * 1986-02-12 1987-08-13 Canon Inc Optical recording medium
JPH0224853A (en) * 1988-07-13 1990-01-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
US4695514A (en) Magneto-optical memory element
JPS6119105A (en) Material for photomagnetic recording
JPS6187307A (en) Photomagnetic recording material
JPS6187306A (en) Photomagnetic recording material
JPS6184803A (en) Photo-magnetic recording medium
JPS616807A (en) Photomagnetic recording material
JPS6140011A (en) Material for photomagnetic recording
JPH0330964B2 (en)
JPS6140012A (en) Material for photomagnetic recording
JPS6184802A (en) Photo-magnetic recording medium
JPS6131291A (en) Optical information-recording medium
JP2521713B2 (en) Magneto-optical recording medium
JPS6028212A (en) Magnetic optical recording material
JPH0254643B2 (en)
JPS618752A (en) Photomagnetic recording medium
JPS6041204A (en) Magnetooptical recording material
JPS58125251A (en) Optical and magnetic recording medium
JPS59193452A (en) Optical recording medium
Bate Materials challenges in metallic, reversible, optical recording media: A review
JPS5923343A (en) Optical recording medium
JPS63173249A (en) Magneto-optical recording medium
JPH0198143A (en) Magneto-optical recording medium
JPS62273637A (en) Magneto-optical recording medium
JPS63152043A (en) Magneto-optical recording medium