JPS61186231A - Production of glass tube - Google Patents

Production of glass tube

Info

Publication number
JPS61186231A
JPS61186231A JP2357085A JP2357085A JPS61186231A JP S61186231 A JPS61186231 A JP S61186231A JP 2357085 A JP2357085 A JP 2357085A JP 2357085 A JP2357085 A JP 2357085A JP S61186231 A JPS61186231 A JP S61186231A
Authority
JP
Japan
Prior art keywords
time
sol
sol solution
temperature
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2357085A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshida
吉田 伊知朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2357085A priority Critical patent/JPS61186231A/en
Publication of JPS61186231A publication Critical patent/JPS61186231A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To produce a glass tube having uniform thickness in a short time, by gelatinizing a raw material consisting of an alkoxide of Si, etc. in a rotary container having a cylindrical inner face under specific time and temperature conditions, drying, and sintering it. CONSTITUTION:A Si alkoxide such as silicon tetramethoxide, etc. is sufficiently stirred and blended with ethanol, mixed with water containing a pH adjustor such as NH3, etc. to give a sol solution, which is put in a container which has a cylindrical inner face and is rotated in the circumferential direction. When the time of water addition is tb, the time when gelatinization starts and the sol solution loses substantially fluidity is te, the average temperature of the sol solution between the time tb and t is T1, and the average temperature of the sol solution between the time t and te is T2, the temperature of the sol solution is controlled in such a way that the time t which is in T1>T2 and tb<t<te exists, hydrolysis is advanced, and the sol solution is gelatinized. Then the gel is dried and sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾルゲル法によシガラスを製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing shigarasu by a sol-gel method.

〔従来の技術〕[Conventional technology]

現在、光ファイバーのプリフォームを作製スる方法とし
ては、VAD法をはじめとする、810t4等を火炎中
に通しガラス微粒子をターゲット上に堆積させ、得られ
たガラス多孔質体を焼結しガラス塊を得る、という方法
が主流になっている。これは高純度の多孔質ガラスを比
較的安価に得られる優れた方法である。しをしこの方法
は気相反応であるため、添加物として使える物質がガス
化できるものに限られる、という欠点があった。
Currently, methods for producing optical fiber preforms include the VAD method, in which glass particles such as 810T4 are passed through a flame and deposited on a target, and the resulting glass porous body is sintered into a glass lump. The mainstream method is to obtain This is an excellent method for obtaining high-purity porous glass at a relatively low cost. Since this method uses a gas phase reaction, it has the disadvantage that the substances that can be used as additives are limited to those that can be gasified.

そこで、近年、この欠点を補う方法として、日1 を主
体とした金属アルコキシドを加水分解し、シリカゲルあ
るいは添加元素を含むシリカゲルを得、該シリカゲルを
乾燥させた後無孔化処理等を行い透明ガラスを得る方法
が盛んに研究されている。
Therefore, in recent years, as a method to compensate for this drawback, metal alkoxides mainly composed of 30% are hydrolyzed to obtain silica gel or silica gel containing additive elements, and after drying the silica gel, a process such as making it non-porous is performed to make transparent glass. Methods to obtain this are being actively researched.

一例を挙げれば、シリコンテトラメトキシド等の81 
のアルコキシドを、エタノールと充分に攪拌混合した後
、水を加え更に攪拌して加水分解する。この詩人にはア
ンモニア等pH調整剤を加えておくことが好ましい。こ
のようにして得られたゾル液を、一端を封じたバイブに
流しこみゾル液をゲル化させる。次にこのゲルをエタノ
ール中で押し出し別の容器に移し、乾燥時間を長くでき
るようにアルミ箔等で蓋をして例えば60℃程度の恒温
槽中に保つことによシ、ゲルの乾燥を行う。乾燥するに
従ってゲルは収縮し、通常数日を経るとほぼ乾燥が終了
する。
For example, silicon tetramethoxide, etc.
After thoroughly stirring and mixing the alkoxide with ethanol, water is added and further stirred for hydrolysis. It is preferable to add a pH adjuster such as ammonia to this poet. The sol thus obtained is poured into a vibrator with one end sealed, and the sol is turned into a gel. Next, extrude this gel in ethanol, transfer it to another container, cover it with aluminum foil, etc. to prolong the drying time, and dry the gel by keeping it in a constant temperature bath at, for example, 60°C. . The gel shrinks as it dries, and drying is usually completed after several days.

このようにして得たゲルを取シ出し、例えば酸素を含む
■θ雰囲気中にて加熱する等によシ無孔化処理を行い、
ガラスを得る、というものである。
The gel thus obtained is taken out and subjected to a nonporous treatment, for example, by heating in an oxygen-containing ■θ atmosphere.
It's about getting glass.

また本発明者らは前記ゾル液とコロイドにならない大き
さの粒子を混合した後に固化させ、多孔質体を得、これ
を乾燥・焼結しガラスを得る方法をすでに昭和60年1
月30日付で出願した明細書中に提案している。この多
孔質体はコロイドより大きな粒子を含んでおシ、正確に
はゲルではない。その前駆体もゾル液ではない。
In addition, the present inventors have already developed a method in 1985, in which the sol liquid and particles with a size that does not form a colloid are mixed and then solidified to obtain a porous material, which is then dried and sintered to obtain glass.
The proposal was made in the specification filed on May 30th. This porous material contains particles larger than colloids and is not technically a gel. Its precursor is also not a sol liquid.

しかしここではこのような多孔質体を含め、ゾルゲル法
によシ得られた多孔質体をゲルとし、その前駆体をゾル
液とする。
However, herein, the porous bodies obtained by the sol-gel method, including such porous bodies, are referred to as gels, and the precursor thereof is referred to as a sol liquid.

以上のようなゾルゲル法によってガラス管を作るにはゾ
ル液を円筒容器に入れ、容器の中心軸を水平にして回転
させそのままゲル化させる、という方法がある〔特開昭
58−99130号公報〕号 公報間が解決しようとする問題点コ ところが上記特開昭58−99130号公報記載の方法
でガラス管を作ろうとすると、ゾル液のpHが低い場合
ゲル化に時間がかか’) 、pHが高い場合ゲル化時の
粘性増加が急であるため管がいびつになυ、その中間の
pHではゲル化に時間がかかる上書られる管がいびつに
なる、という欠点があった。
To make a glass tube using the above-mentioned sol-gel method, there is a method in which a sol solution is placed in a cylindrical container, and the central axis of the container is held horizontally, and the container is rotated to gel as it is [JP-A-58-99130]. However, when trying to make a glass tube using the method described in JP-A-58-99130, gelation takes time if the pH of the sol solution is low. If the pH is high, the viscosity increases rapidly during gelation, causing the tube to become distorted, while at an intermediate pH, it takes time for gelation to occur, causing the overwritten tube to become distorted.

本発明はこのような従来法の欠点を解消し短い時間で肉
厚の均一なゲル管を得ることにより、肉厚の均一なガラ
ス管を製造する方法に関する。
The present invention relates to a method for manufacturing a glass tube with a uniform wall thickness by solving the drawbacks of the conventional method and obtaining a gel tube with a uniform wall thickness in a short time.

〔問題点を解決するための手段] 本発明は原料の少なくとも1つをシリコンのアルコキシ
ドとし、少なくとも水を加えることにより得たゾル液を
内面が円筒形状を有し、かつ円周方向に回転する容器中
でゲル化させ、該ゲルを乾燥・焼結し、ガラス管を製造
する方法において、水を加えた時刻をtb ゲル化が起
とシゾル液が実質的に流動性を失った時刻をt8ゾル液
のtb  とtのあいだの上記ゾル液の平均温度を7重
、またtとte のあいだのゾル液の平均温度をTl 
 としたとき、実質的に’r、 ) ’r。
[Means for Solving the Problems] The present invention uses silicon alkoxide as at least one of the raw materials, and adds at least water to the resulting sol solution, which has a cylindrical inner surface and rotates in the circumferential direction. In the method of manufacturing a glass tube by gelling in a container, drying and sintering the gel, t is the time when water is added, and t8 is the time when gelation occurs and the Schizol liquid has substantially lost its fluidity. The average temperature of the sol liquid between tb and t is 7 times, and the average temperature of the sol liquid between t and te is Tl.
Then, it is effectively 'r, ) 'r.

であ’) 、tb < t< teである時刻tが存在
するようゾル液の温度をコントロールすることを特徴と
するガラス管の製造方法により上記目的を達成する。
The above object is achieved by a method for manufacturing a glass tube characterized in that the temperature of the sol solution is controlled so that a time t exists where tb < t < te.

時刻tをゲル化が始まる直前にとったとき’rl−’r
、が最大となるよう温度をコントロールすることが最も
好ましいがTl>T2であれば効果はある。
When time t is taken just before gelation begins, 'rl-'r
It is most preferable to control the temperature so that , is maximized, but it is effective if Tl>T2.

一般にアルコキシドの加水分解は発熱反応であって、加
水分解開始時刻t1)からゲル化が起とシ流動性が失く
なる時刻t1.にいたるまで、単調な温度上昇を示し、
TILT!となることが多い。この場合には、どのより
なtを選んでみてもTI −Tlが10℃を越えること
は、まず起こ如えない。またアンモニアアルカリ性で加
水分解した場合発熱は急激で、ゲル化も早く起こる。
In general, hydrolysis of alkoxide is an exothermic reaction, and gelation occurs from time t1) when hydrolysis starts to time t1 when fluidity is lost. shows a monotonous temperature rise up to
TILT! This is often the case. In this case, no matter which value t is chosen, it is unlikely that TI - Tl will exceed 10°C. Furthermore, when hydrolyzed in ammonia alkaline conditions, heat generation is rapid and gelation occurs quickly.

本発明方法は、温度をコントロールすることによJ) 
、Tt > Tlとなるよう、かつ好ましくは’rl−
’i’、が1重℃程度以上であるようにして、ゲル化の
反応速度を下げ、粘性の変化をゆるやかにして管がいび
つになるのを防止する。
The method of the present invention is achieved by controlling the temperature.
, Tt > Tl, and preferably 'rl-
'i' is set to be about 1° C. or higher to reduce the gelation reaction rate, slow the change in viscosity, and prevent the tube from becoming distorted.

本発明における温度コントロールの具体的な方法として
は、■T1  を上げるためにゾル液の入った容器を暖
める、01重を下げるためにゾル液の入った容器を冷却
する、のいずれかもしくは、■、■の両者を併用する。
Specific methods of temperature control in the present invention include: (1) warming the container containing the sol solution in order to increase T1; cooling the container containing the sol solution in order to lower the 01 weight; or (2) , ■ are used together.

加温手段としては通常の例えば暖かい液体もしくは気体
中につけたり、恒温槽、炉中に保持することでよく、又
、冷却も通常の手段、例えば冷たい流体中に保持したシ
、液体窒素、寒剤等を用いればよい。
The heating means may be any conventional means, such as immersion in warm liquid or gas, or holding in a constant temperature bath or furnace, and the cooling may be carried out by any conventional means, such as holding in cold fluid, liquid nitrogen, cryogen, etc. You can use

また時刻tはゲル化の直前であることが好ましくこのよ
りなtを知るには、対比用のゾル液を作成しておき、対
比ゾルを加温してゲル化までの時間を早める、または本
体の方を冷却して対比ゾルのゲル化開始時間後にゲル化
が始まるようにしておけばよい。
In addition, it is preferable that the time t is just before gelation, and in order to know this t, prepare a contrast sol solution and heat the contrast sol to accelerate the gelation time, or The sol may be cooled so that gelation begins after the gelation start time of the contrast sol.

あるいは、同条件で実験して、ゲル化までの時間を測定
しておいてもよい。
Alternatively, an experiment may be conducted under the same conditions and the time until gelation may be measured.

このようにtがわかればアルコキシドを含む液に水を加
え、ゾル液を作った後、ゾル液を加熱し、ゲル化の少し
前にゾル液の加熱をやめる、あるいは冷却することによ
ってゲル化直前に’r、 + ’r、を最大とすること
が可能である。あるいはゲル液を作った後そのまま放置
し、ゲル化の少し前に冷却することによっても可能であ
る。
If t is known in this way, add water to the liquid containing the alkoxide to make a sol, heat the sol, and stop heating the sol a little before gelation, or cool it just before gelation. It is possible to maximize 'r, + 'r. Alternatively, it is also possible to prepare a gel solution, leave it as it is, and cool it a little before gelation.

ゾル液は加水分解によるシリカ粒子以外の粒子を含んで
いてもよく、例えば気相法によって造られたシリカ粒子
、ドーパントを含む粒子などを含んでいてもよい。
The sol liquid may contain particles other than silica particles produced by hydrolysis, such as silica particles produced by a gas phase method, particles containing a dopant, and the like.

例として第1図に、従来方法によるゲル化の1例におけ
るtbからteに到る温度変化の例を曲線イに示し、こ
れに本発明を行った場合の温度変化を曲線口に示す。
As an example, in FIG. 1, curve A shows an example of temperature change from tb to te in one example of gelation by a conventional method, and the temperature change when the present invention is applied to this is shown at curve end.

また第2図は、上記における粘度の経時変化について従
来法を曲線イに示し、これに本発明を行った場合を曲線
口として示す。このように本発明方法は冷却することに
より、急激な粘性増加を抑えるものである。
Further, in FIG. 2, the conventional method for the above-mentioned change in viscosity over time is shown as curve A, and the case where the present invention is applied to this is shown as curve A. In this manner, the method of the present invention suppresses a rapid increase in viscosity by cooling.

〔作用〕[Effect]

ゲル化までに時間がかかることは上記の如くゾル液の温
度を上げることによシ解決できる。
The problem that gelation takes a long time can be solved by increasing the temperature of the sol as described above.

ゲル化時の粘性の急激な増加はゾル液の温度をゲル化直
前に下げることによシ解決できる。従って本発明のよう
に、水を加えた時刻をtbゲル化が起とシゾル液が実質
的に流動性を失った時刻をtθゾル液のtbとtのあい
だの平均温度をTl 、tとteのあいだの平均温度を
T。
The sudden increase in viscosity during gelation can be solved by lowering the temperature of the sol just before gelation. Therefore, according to the present invention, t is the time when water is added, t is the time when gelation occurs and the schizol has substantially lost its fluidity, t is the average temperature between tb and t of the sol, and Tl is the average temperature between t and t of the sol. The average temperature between T.

としたとき実質的にTI>T2であり、tb<t<t8
  である時刻tが存在するようゾル液の温度をコント
ロールすることによって両方の問題を同時に解決できる
Then, TI>T2 and tb<t<t8
Both problems can be solved simultaneously by controlling the temperature of the sol solution so that a certain time t exists.

〔実施例〕〔Example〕

以下実施例によυ本発明の方法を具体的に説明する。 The method of the present invention will be specifically explained below with reference to Examples.

実施例1 81(OCH3)4q、 s vとエタ/−ル11.5
Wを混合し、その中に13%アンモニア水2滴を加えた
水91を加えさらに混合した。この液を一端を封じた内
径8φのパイプに死はど入れ、他端を封じた後液体窒素
で数秒冷却した後室温に放置した。残りのパイプにいれ
なかったゾル液を対比サンプルとして観察しつづけ、数
分後ゲル化が始まったとき、前記パイプを横にして液体
窒素につけた。パイプ中のゾル液が凍った後とヤだし円
周方向に回転させた。しばらくするとゾル液が溶けだし
た。このとき回転数は1000rpm程度であった。さ
らに時間がたつとゾル液はゲル化し肉厚の均一なゲル質
が得られた。混合してからゲル化が完了するまで10分
程度であった。これを乾燥後焼結してガラス管を得た。
Example 1 81 (OCH3) 4q, sv and ethanol 11.5
W was mixed, and water 91 containing two drops of 13% ammonia water was added thereto and further mixed. This liquid was poured into a pipe with an inner diameter of 8φ that was sealed at one end, and after the other end was sealed, it was cooled for several seconds with liquid nitrogen and then left at room temperature. The remaining sol solution that was not put into the pipe was continued to be observed as a control sample, and after a few minutes, when gelation started, the pipe was placed on its side and immersed in liquid nitrogen. After the sol liquid in the pipe was frozen, it was spun and rotated in the circumferential direction. After a while, the sol solution started to dissolve. At this time, the rotation speed was about 1000 rpm. As time elapsed, the sol turned into a gel, and a gel with a uniform thickness was obtained. It took about 10 minutes from mixing to completion of gelation. This was dried and sintered to obtain a glass tube.

比較例1 ゾル液をパイプに入れた後冷却せず、すぐにパイプを回
転させたことの他は実施例1と同様にしてゲル管を得た
。このゲルは肉厚が不均一で極めていびつであった。
Comparative Example 1 A gel tube was obtained in the same manner as in Example 1, except that the sol solution was not cooled after being put into the pipe and the pipe was immediately rotated. This gel had a non-uniform wall thickness and was extremely distorted.

比較例2 アンモニア水に6%アンモニア水を用い1滴だけしか加
えなかったことの他は比較例1と同様にしてゲル管を得
た。ゲル化がはじまるまでに20分以上を要した上得ら
れたゲル管はいびつであった。
Comparative Example 2 A gel tube was obtained in the same manner as Comparative Example 1 except that 6% ammonia water was used as the ammonia water and only one drop was added. It took more than 20 minutes for gelation to begin, and the resulting gel tube was distorted.

比較例3 アンモニア水を加えなかったことの他は比較例1と同様
にしたが、1時間たっても液はゲル化しなかった。
Comparative Example 3 The same procedure as Comparative Example 1 was carried out except that aqueous ammonia was not added, but the liquid did not gel even after 1 hour.

実施例2 水の中に粒径[1,012μ程度のシリカ粒子・ α1 α22を加えておいたことの他は実施例1と同様にして
肉厚の均一なガラス管を得た。
Example 2 A glass tube with a uniform wall thickness was obtained in the same manner as in Example 1, except that silica particles α1 α22 having a particle size of about 1,012 μm were added to water.

〔発明の効果〕〔Effect of the invention〕

本発明によれば短い時間で肉厚の均一なガラス管を製造
することのできる優れた効果を有する。
According to the present invention, a glass tube having a uniform wall thickness can be manufactured in a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゾル液がゲル化するまでの温度の経時変化を示
すグラフでイは従来法、口は本発明方法を示す。 第2図は第1図の場合の粘度の経時変化を示すグラフで
あって、イは従来法、口は本発明方法を示す。
FIG. 1 is a graph showing the change in temperature over time until the sol solution gels. A shows the conventional method, and A shows the method of the present invention. FIG. 2 is a graph showing the change in viscosity over time in the case of FIG. 1, where A shows the conventional method and A shows the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)原料の少なくとも1つをシリコンのアルコキシド
とし、少なくとも水を加えることにより得たゾル液を内
面が円筒形状を有し、かつ円周方向に回転する容器中で
ゲル化させ、該ゲルを乾燥・焼結し、ガラス管を製造す
る方法において、水を加えた時刻をt_bゲル化が起こ
りゾル液が実質的に流動性を失つた時刻をt_eゾル液
のt_bとtのあいだの上記ゾル液の平均温度をT_1
、またtとt_eのあいだのゾル液の平均温度をT_2
としたとき、実質的にT_1>T_2であり、t_b<
t<t_eである時刻tが存在するようゾル液の温度を
コントロールすることを特徴とするガラス管の製造方法
(1) At least one of the raw materials is a silicon alkoxide, and a sol solution obtained by adding at least water is gelled in a container whose inner surface has a cylindrical shape and rotates in the circumferential direction. In the method of manufacturing a glass tube by drying and sintering, the time at which water is added is t_b, and the time at which gelation occurs and the sol has substantially lost its fluidity is t_e, which is between t_b and t of the sol. The average temperature of the liquid is T_1
, and the average temperature of the sol between t and t_e is T_2
Then, substantially T_1>T_2 and t_b<
A method for manufacturing a glass tube, comprising controlling the temperature of a sol solution so that a time t exists where t<t_e.
JP2357085A 1985-02-12 1985-02-12 Production of glass tube Pending JPS61186231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2357085A JPS61186231A (en) 1985-02-12 1985-02-12 Production of glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2357085A JPS61186231A (en) 1985-02-12 1985-02-12 Production of glass tube

Publications (1)

Publication Number Publication Date
JPS61186231A true JPS61186231A (en) 1986-08-19

Family

ID=12114194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2357085A Pending JPS61186231A (en) 1985-02-12 1985-02-12 Production of glass tube

Country Status (1)

Country Link
JP (1) JPS61186231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966549A (en) * 1989-07-11 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Wafer hanger useful for thermally treating semiconductor wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966549A (en) * 1989-07-11 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Wafer hanger useful for thermally treating semiconductor wafers
US5043301A (en) * 1989-07-11 1991-08-27 Mitsubishi Denki Kabushiki Kaisha Method of thermally treating semiconductor wafers in furnace and wafer hanger useful therein

Similar Documents

Publication Publication Date Title
JPH0463119A (en) Manufacture of acid-resistant composite separation membrane
JPS61186231A (en) Production of glass tube
JPS61163124A (en) Preparation of glass
JPS61174131A (en) Production of glass
US5810899A (en) Glass production
JPS62297232A (en) Production of thin glass film
JPS6081034A (en) Manufacture of base material for optical fiber
JP4017229B2 (en) Method for producing fine sintered particles of lithium zirconate
JPH0798665B2 (en) Silica glass manufacturing method
JPS62297235A (en) Apparatus for producing gel fiber
JPS61201627A (en) Production of low oh glass
JPS61286230A (en) Production of glass
JPS6325229A (en) Production of multi-component gel
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS61174123A (en) Production of glass
JPS62265127A (en) Production of silica glass
JPH02289435A (en) Production of foam glass
JPS6186428A (en) Preparation of glass
CN113773105A (en) Porous ceramic atomizing core for electronic cigarette and preparation method and application thereof
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPS6345143A (en) Production of preform for optical fiber
JPS61256928A (en) Production of glass
JPS62100425A (en) Production of quartz glass
JPH0551539B2 (en)
JPS6355136A (en) Spinning of gel fiber and apparatus therefor