JPS61182285A - Electrostrictive effect element and manufacture thereof - Google Patents

Electrostrictive effect element and manufacture thereof

Info

Publication number
JPS61182285A
JPS61182285A JP60022861A JP2286185A JPS61182285A JP S61182285 A JPS61182285 A JP S61182285A JP 60022861 A JP60022861 A JP 60022861A JP 2286185 A JP2286185 A JP 2286185A JP S61182285 A JPS61182285 A JP S61182285A
Authority
JP
Japan
Prior art keywords
electrostrictive
internal electrode
whisker
electrostrictive material
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022861A
Other languages
Japanese (ja)
Inventor
Atsushi Ochi
篤 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60022861A priority Critical patent/JPS61182285A/en
Publication of JPS61182285A publication Critical patent/JPS61182285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes

Abstract

PURPOSE:To obtain an element having large mechanical strength by using paste containing mutually entangled massive whisker-shaped crystal grains as a base when internal electrode paste is applied onto an electrostrictive material green sheet consisting of electrostrictive material powder, an organic binder and an organic plasticizer and the green sheets are laminated while repeating the application of the internal electrode paste. CONSTITUTION:An extremely small quantity of an organic binder is added to electrostrictive material baking powder mainly comprising magnesium lead niobate and a titanate, and the mixture is dispersed into an organic solvent, thus producing slurry. The slurry is applied onto Mylar films and dried by employing a casting film forming device, and peeled, thus manufacturing green sheets 11, 12, etc. A platinum base to which whisker-shaped crystals 16 having 10wt% silicon nitride are added is kneaded so that an entangled state is not disintegrated, the base is scree-printed on the sheets 11, 12, etc. to form internal electrodes 13, and the bases and the sheets are hot-pressed alternately only by several hundred numbers and baked at 1,240 deg.C. Accordingly, the protruding crystals 16 are intruded into each sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の素子およびその製造方法は圧電又は電歪材料の
持つ電気串機械エネルギー変換能力を利用した駆動素子
や微小変位素子等のエレクトロメ二 力/カルデバイスに関するものである。
Detailed Description of the Invention (Industrial Field of Application) The device and the manufacturing method of the present invention are applicable to electromechanical devices such as driving devices and minute displacement devices that utilize the electrical skewer mechanical energy conversion ability of piezoelectric or electrostrictive materials. It concerns force/cal devices.

(従来技術) 電歪効果素子を分類する場合、まずその駆動方法に注目
して2つのタイプが存在すると思われる。
(Prior Art) When classifying electrostrictive effect elements, it seems that there are two types, focusing first on their driving methods.

1つは微小力変位を比較的ゆっくりした速度で精密に制
御するものである。例えばミラーの方向をコントロール
するデバイスがこれに当たる。もう1つのタイプは比較
的太き表振幅とかなりの周波数の振動を電歪効果素子に
よって作りだしその運動エネルギーを利用するものであ
る。この場合は何らかの機械的力変位拡大機構に素子を
糾み込んで使うことに彦る。その例としてはインパクト
型のプリンタヘッドがある。
One is to precisely control minute force displacement at a relatively slow speed. An example of this would be a device that controls the direction of a mirror. The other type uses an electrostrictive element to generate vibrations with a relatively large amplitude and a considerable frequency, and uses the kinetic energy of the vibrations. In this case, the element is used by incorporating it into some kind of mechanical force displacement amplifying mechanism. An example of this is an impact type printer head.

(発明が解決しようとする問題点) ところで前者の場合には素子Kかかる力は普通弱いので
素子の機械的強度はあまり問題に々らない。一方後者の
場合には素子に対して圧縮力、引張り力、曲げ、ねじり
等の様々力積類の力がかかる。当然機械的強度の大きな
素子が必要と々ってぐる。内部電極型電歪効果素子にお
いては一番弱い部分は電歪材料セラミックスと内部電極
材料金属との界面である。通常数10層から数100層
の内部電極が素子内部に埋め込まれているので界面にお
ける結合力の弱さのために主に素子の引張強度、曲げ強
度が弱くなっている。
(Problem to be Solved by the Invention) In the former case, the force applied to the element K is usually weak, so the mechanical strength of the element is not much of a problem. On the other hand, in the latter case, various impulse types of forces such as compressive force, tensile force, bending force, twisting force, etc. are applied to the element. Naturally, an element with high mechanical strength is required. In an internal electrode type electrostrictive effect element, the weakest part is the interface between the electrostrictive ceramic material and the internal electrode material metal. Usually, several tens to hundreds of layers of internal electrodes are embedded inside the device, so the tensile strength and bending strength of the device are mainly weakened due to the weak bonding force at the interface.

第8図は従来の内部電極型電歪効果素子の断面図である
。素子の長手方向に多数の内部電極が埋め込まれており
、従って内部電極と電歪材料セラミックスとの結合力の
弱い界面が多数存在する。
FIG. 8 is a sectional view of a conventional internal electrode type electrostrictive effect element. A large number of internal electrodes are embedded in the longitudinal direction of the element, and therefore there are many interfaces where the bonding force between the internal electrodes and the electrostrictive ceramic material is weak.

そのため、素子の曲げ強度は電歪材料セラミックスの曲
げ強度の40%から60チ程度である。曲げ強度測定の
ために破壊試験を行々うと内部電極と電歪材料セラミッ
クスの界面ではくりしてしまう。第9図は素子の曲げ強
度試験の様子を示す外観図である。第10図は同じく素
子の曲げ強度試験ておける素子の破壊の様子を示す外観
図である。
Therefore, the bending strength of the element is about 40% to 60 inches of the bending strength of the electrostrictive ceramic material. When performing a destructive test to measure bending strength, the internal electrode and the electrostrictive ceramic material crack at the interface. FIG. 9 is an external view showing the bending strength test of the element. FIG. 10 is an external view showing the state of destruction of the element in the bending strength test of the element.

図中番号11.12は電歪材料を、13は内部電極を示
す。14け曲げ強度試験機の支持台を15は同じくナイ
フェツジを示す。
In the figure, numbers 11 and 12 indicate electrostrictive materials, and 13 indicates internal electrodes. 15 indicates the support stand of the 14-digit bending strength tester as well.

素子の機械的強度はあまり問題に彦らない。一方後者の
場合には素子に対して圧縮力、引張り力、曲げ、ねじり
等の様々力積類の力がかかる。当然機械的強度の大き々
素子が必要と々ってくる。内部電極型電歪効果素子にお
いては一番弱い部分は電歪材料セラミックスと内部電極
材料金属との界面である。通常数10層から数100層
の内部電極が素子内部に埋め込まれているので界面にお
ける結合力の弱さのために主に素子の引張強度、曲げ強
度が弱くなっている。
The mechanical strength of the element is not much of a problem. On the other hand, in the latter case, various impulse types of forces such as compressive force, tensile force, bending force, twisting force, etc. are applied to the element. Naturally, an element with large mechanical strength is required. In an internal electrode type electrostrictive effect element, the weakest part is the interface between the electrostrictive ceramic material and the internal electrode material metal. Usually, several tens to hundreds of layers of internal electrodes are embedded inside the device, so the tensile strength and bending strength of the device are mainly weakened due to the weak bonding force at the interface.

これを解決するために内部電極層を微細々網目構造にし
て電極の両側のセラミック粒子間に結合を作らせたり、
内部電極にガラスや他の組成のセラミック粒子を導入し
て界面の結合力を向上させる等の試みがなされてきたが
充分とは言えない状態である。
To solve this problem, we created a fine mesh structure for the internal electrode layer to create bonds between the ceramic particles on both sides of the electrode.
Attempts have been made to improve the bonding force at the interface by introducing glass or ceramic particles of other compositions into the internal electrodes, but these efforts have not been satisfactory.

本発明の第1の目的は機械的強度が犬きく、従って大き
々振動と高い周波数で駆動しても機械的に破壊しない内
部電極型電歪効果素子を提供することである。
A first object of the present invention is to provide an internal electrode type electrostrictive effect element that has high mechanical strength and therefore does not break mechanically even when driven with large vibrations and high frequencies.

本発明の第2の目的は機械的強度の太き々内部電極型電
歪効果素子の製造方法を提供することである。
A second object of the present invention is to provide a method for manufacturing an internal electrode type electrostrictive effect element with significantly increased mechanical strength.

(問題点を解決するための手段) まず第1の発明は電歪材料層と内部電極層とが交互に積
層された積層体を構成要素とする電歪効果素子であって
、電歪材料層と内部電極層の両層にまたがるように配置
された多数のウィスカー状結晶粒子を有する電歪効果素
子である。
(Means for Solving the Problems) First, the first invention is an electrostrictive effect element having a laminate in which electrostrictive material layers and internal electrode layers are alternately laminated. This is an electrostrictive effect element having a large number of whisker-like crystal particles arranged so as to span both the internal electrode layer and the internal electrode layer.

第2の発明は電歪材料粉末と有機バインダおよび有機可
塑剤とから成る電歪材料グリーンシート上に内部電極ペ
ーストを塗布する工程を備えた電歪効果素子の製造方法
において前記電歪材料および内部電極用金属材料に対し
て反応性の少ない材料でしかも互いにからみ合った塊状
のウィスカー状結晶又は針状結晶を含む内部電極ペース
トを用いることを特徴とする。
A second invention is a method for manufacturing an electrostrictive effect element comprising a step of applying an internal electrode paste on an electrostrictive material green sheet comprising an electrostrictive material powder, an organic binder, and an organic plasticizer. The present invention is characterized by the use of an internal electrode paste that is made of a material that is less reactive to the metal material for the electrodes and that contains lump-like whisker-like crystals or needle-like crystals that are entangled with each other.

(作用) 界面の結合力を改良する方法として内部電極層を貫くウ
ィスカー状結晶又は針状結晶を多数導入し両側の電歪材
料セラミックスを結合させることが考えられる。第4図
はそのよう力構造の電歪効果素子の断面図である。内部
電極層の厚みよりもやや長く垂直に貫いているウィスカ
ー状結晶により両側の電歪材料セラミックスが結合して
いる。
(Function) As a method of improving the bonding force at the interface, it is conceivable to introduce a large number of whisker-like crystals or needle-like crystals penetrating the internal electrode layer to bond the electrostrictive material ceramics on both sides. FIG. 4 is a sectional view of an electrostrictive effect element having such a force structure. The electrostrictive ceramic material on both sides is bonded by whisker-like crystals that are slightly longer than the thickness of the internal electrode layer and run vertically through the structure.

図中番号16はウィスカー状結晶を示す。Number 16 in the figure indicates a whisker-like crystal.

このような構造を実現する方法としてまず考えられるの
は、あらかじめ内部電極ペースト中に分散性の良いウィ
スカー状結晶を分散し混練しておくことである。しかし
彦がらこの方法ではペーストを電歪材料グリーンシート
に塗布するとウィスカーが塗布面に沿って配向してしま
う。積層、圧着の後焼成しても内部電極層に平行に配向
し素子強度の向上には役立た力い。第5図は電歪材料粉
末を含むグリーンシート上に分散性の良いウィスカー状
結晶を混入させた内部電極ペーストを塗布したものの断
面図である。第6図はこのグリーンシートを多数積層、
圧着【7焼成後切断して作製した電歪効果素子の断面図
である。図中番号17は電歪材料粉末を含むグリーンシ
ートを、18は内部電極ペーストを19は分散性の良い
ウィスカー状結晶を示す。このよう力構造では全く素子
強度の改善に々ら々いことは明らかである。
The first possible method for realizing such a structure is to disperse and knead whisker-like crystals with good dispersibility in the internal electrode paste in advance. However, with this method, when the paste is applied to the electrostrictive material green sheet, the whiskers are oriented along the applied surface. Even if it is fired after lamination and compression, it is oriented parallel to the internal electrode layer and is useful for improving the strength of the device. FIG. 5 is a cross-sectional view of a green sheet containing electrostrictive material powder coated with an internal electrode paste containing whisker-like crystals with good dispersibility. Figure 6 shows how many green sheets are stacked together.
7 is a cross-sectional view of an electrostrictive effect element produced by cutting after firing. In the figure, numeral 17 indicates a green sheet containing electrostrictive material powder, 18 indicates internal electrode paste, and 19 indicates whisker-shaped crystals with good dispersibility. It is clear that such a force structure does not significantly improve the element strength.

そこでウィスカー状結晶の一部を内部電極層に対して垂
直に配向させる方法としていわゆるからみを生じている
ウィスカー状結晶を用いることが有効である。ウィスカ
ーの製造においては種々の条件によってウィスカー同志
の分離が悪く互いKくっつき合った、いわゆるからみを
生じることがある。このいがぐりのよう々塊状のウィス
カー状結晶の集合体ケ用いればウィスカーの一部は内部
電極層に垂直に配向し素子の強度向上に役立つ。
Therefore, it is effective to use so-called entangled whisker-like crystals as a method for orienting part of the whisker-like crystals perpendicularly to the internal electrode layer. In the production of whiskers, various conditions may cause the whiskers to be poorly separated and stuck to each other, resulting in so-called tangles. If this aggregate of whisker-like crystals is used, some of the whiskers will be oriented perpendicularly to the internal electrode layer, which will help improve the strength of the device.

第7図はからみのある塊状のウィスカー状結晶粒子集合
体の混入した内部室“極ペーストをグリーンシートに塗
布したものの断面図である。第1図はこのグリーンシー
トを多数積層、圧着し焼成後切断して作製した電歪効果
素子の断面図である。図中番号20けからみの生じたウ
ィスカー状結晶を示す。
Figure 7 is a cross-sectional view of a green sheet coated with an inner chamber "pole paste" containing aggregates of tangled, lumpy, whisker-like crystal particles. Figure 1 shows a large number of these green sheets stacked, pressed together, and fired. It is a cross-sectional view of an electrostrictive effect element produced by cutting.No. 20 in the figure shows a whisker-like crystal in which entanglement has occurred.

(実施例) 以下本発明の実施例について図面を参照し詳細に説明す
る。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

マグネシウムニオブ酸鉛およびチタン酸鉛を主成分とす
る電歪材料予焼粉末に微量の有機バインダを添加しこA
’i有機溶媒中に分散させたスラリーを準備した。積層
セラミックコンデンサの製造に通常使用されるキャステ
ィング製膜装置によりこのスラリーをマイラーフィルム
上に約100ミクロンの厚みに塗布し乾燥させる。これ
をフィルムからはくりし電歪材料グリーンシートを得る
Adding a small amount of organic binder to electrostrictive material pre-fired powder whose main components are magnesium lead niobate and lead titanate A
'i A slurry dispersed in an organic solvent was prepared. This slurry is applied onto a Mylar film to a thickness of about 100 microns using a casting film forming apparatus commonly used in the manufacture of multilayer ceramic capacitors and dried. This is peeled off from the film to obtain an electrostrictive material green sheet.

次に使用するウィスカー状結晶について述べる。Next, the whisker-like crystals used will be described.

ウィスカーは窒化硅素ウィスカーで径02μm長さ約1
0μmで塊状でからみのあるものを用いた。
The whiskers are silicon nitride whiskers with a diameter of 02 μm and a length of approximately 1
A lumpy and tangled material with a diameter of 0 μm was used.

窒化硅素を用いた理由は電歪材料セラミックスおよびこ
れから述べる内部電極材料に対し反応性が少ないとと。
The reason for using silicon nitride is that it has low reactivity with electrostrictive ceramics and internal electrode materials that will be described below.

強度が強いこと。熱膨張が適当であること等である。Strong strength. Thermal expansion must be appropriate.

この窒化硅素ウィスカーを白金ペーストに対し10 w
t%だけ添加しからみ状態をあまりくずさないよう混練
する。このようにして得た内部電極ペーストを前記の電
歪材料グリーンシートにスクリーン印刷する。このグリ
ーンシー)を数百枚重ね、熱プレスにより圧着一体化し
た後1240℃で焼成し電歪材料積層体を得る。これを
素子形状に切断する。第1図はこのようにして作製した
電歪効果素子の断面図である。図中番号20ijからみ
のある塊状ウィスカー状結晶粒子である。
This silicon nitride whisker was added to the platinum paste at 10 w.
Add only t% and knead without disturbing the entangled state too much. The internal electrode paste thus obtained is screen printed on the electrostrictive material green sheet. Several hundred sheets of this green sea) are stacked, pressed together by a hot press, and then fired at 1240° C. to obtain an electrostrictive material laminate. This is cut into element shapes. FIG. 1 is a cross-sectional view of the electrostrictive element produced in this manner. The number 20ij in the figure is a lumpy, whisker-like crystal grain with entanglements.

この素子の曲げ強度を通常の3点法による抗折強度試験
機により測定した。測定値は900 KP/讐で電歪材
料セラミック自身の値1000 Ky/cdの90チを
達成した。また従来のよう彦内部電極と電歪材料の界面
での破壊は発生しなかった。第2図および第3図は曲げ
強度試験における装置と素子の断面図およびその破壊の
様子を表わす断面図を示す。図中番号11.12は電歪
材料、13は内部電極を示す。14は支持台を15Fi
ナイフエツジを示す。20はからみのあるウィスカー状
結晶を示す。
The bending strength of this element was measured using a conventional three-point bending strength tester. The measured value was 900 KP/cd, which was 90% of the electrostrictive material ceramic's own value of 1000 Ky/cd. In addition, no breakage occurred at the interface between the Hiko internal electrode and the electrostrictive material as in the conventional case. FIGS. 2 and 3 show a cross-sectional view of the device and element in a bending strength test, and a cross-sectional view showing the state of destruction thereof. In the figure, numbers 11 and 12 indicate electrostrictive materials, and 13 indicates internal electrodes. 14 is a support stand 15Fi
Showing knife edge. 20 indicates entangled whisker-like crystals.

(発明の効果) 本発明の素子は内部電極型電歪効果素子の欠点である機
械的強度を大きく改善したもので電歪材料自身の強度の
90%を達成した。また窒化硅素ウィスカー等、化学的
に安定で高温に耐えかつ高強度の材料を用いれば通常の
電歪材料セラミックスや内部電極用金属材料に対して全
て適用できる汎用性の高い方法である。
(Effects of the Invention) The element of the present invention has greatly improved mechanical strength, which is a drawback of internal electrode type electrostrictive elements, and has achieved 90% of the strength of the electrostrictive material itself. Furthermore, if a chemically stable, high-temperature-resistant, and high-strength material such as silicon nitride whiskers is used, it is a highly versatile method that can be applied to all conventional electrostrictive materials, ceramics, and metal materials for internal electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電歪効果素子を説明する概略図である
。第2図#−を素子の曲げ強度試験の様子を示す外観図
である。第3図は同じく素子の曲げ強度試験における素
子の破壊の様子を示す外観図である。 第4図は内部電極層を貫く多数のウィスカー状結晶を有
する内部電極型電歪効果素子の断面図である。 第5図は電歪材料粉末を含むグリーンシート上に分散性
の良いウィスカー状結晶を含む内部電極ペーストを塗布
したものの断面図である。第6図は第5図のグリーンシ
ー1r多数積層、圧着し焼成後切断して作製した電歪効
果素子の断面図である。 第7図は塊状のウィスカー状結晶粒子集合体の混入した
内部電極ペーストをグリーンシートに塗布したものの断
面図である。第8図は従来の電歪効果素子の断面図であ
る。 第9図は従来の電歪効果素子の曲げ強度試験における装
置および素子の断面図を示す。第10図は同じく曲げ強
度試験における素子の破壊の様子を示す断面図である。 図中番号11.12は電歪材料、13は内部電極、14
.15は支持台およびナイフェツジ、16,19Uウイ
ス力−状結晶粒子、17はグリーンシート、18は内部
電極ペースト、20は塊状のからみのあるウィスカー状
11  電歪材料 12電歪材料 13内部電極 20 ウィスカー状結晶 m−〜 N  〜  さ N     N 11 電歪材料 12電歪材料 13内部電極 16 ウィスカー状結晶 ト \     N oOCy> 11 電歪材料 12電歪材料 13内部電極 19 ウィスカー状結晶 11 電歪材料 12電歪材料
FIG. 1 is a schematic diagram illustrating the electrostrictive effect element of the present invention. FIG. 2 is an external view showing the bending strength test of the device. FIG. 3 is an external view showing how the device breaks down in the bending strength test of the device. FIG. 4 is a cross-sectional view of an internal electrode type electrostrictive effect element having a large number of whisker-like crystals penetrating the internal electrode layer. FIG. 5 is a cross-sectional view of an internal electrode paste containing whisker-like crystals with good dispersibility applied onto a green sheet containing electrostrictive material powder. FIG. 6 is a sectional view of an electrostrictive effect element manufactured by laminating a large number of Green Sea 1rs shown in FIG. 5, press-bonding them, firing them, and then cutting them. FIG. 7 is a cross-sectional view of a green sheet coated with an internal electrode paste containing agglomerated whisker-like crystal particles. FIG. 8 is a sectional view of a conventional electrostrictive effect element. FIG. 9 shows a cross-sectional view of an apparatus and an element used in a conventional bending strength test of an electrostrictive element. FIG. 10 is a cross-sectional view showing how the element breaks down in the same bending strength test. In the figure, numbers 11 and 12 are electrostrictive materials, 13 is an internal electrode, and 14
.. 15 is a support base and knife, 16, 19U Wiss force-shaped crystal particles, 17 is a green sheet, 18 is an internal electrode paste, 20 is a lumpy tangled whisker shape 11 electrostrictive material 12 electrostrictive material 13 internal electrode 20 whisker Crystal in the form of m-~ N ~ SaN N 11 Electrostrictive material 12 Electrostrictive material 13 Internal electrode 16 Whisker-shaped crystal \NoOCy> 11 Electrostrictive material 12 Electrostrictive material 13 Internal electrode 19 Whisker-shaped crystal 11 Electrostrictive material 12 electrostrictive material

Claims (2)

【特許請求の範囲】[Claims] (1)電歪材料層と内部電極層とが交互に積層された積
層体を有し、電歪材料層と内部電極層の両層にまたがっ
て配置される複数のウィスカー状結晶粒子を有すること
を特徴とする電歪効果素子。
(1) It has a laminate in which electrostrictive material layers and internal electrode layers are alternately laminated, and has a plurality of whisker-like crystal particles arranged across both the electrostrictive material layer and the internal electrode layer. An electrostrictive effect element characterized by:
(2)電歪材料粉末と有機バインダおよび有機可塑剤と
から成る電歪材料グリーンシート上に内部電極ペースト
を塗布する工程を備えた電歪効果素子の製造方法におい
て、前記電歪材料および内部電極用金属材料に対して反
応性の少ない材料でしかも互いにからみ合った塊状のウ
ィスカー状結晶粒子又は針状結晶粒子を含む内部電極ペ
ーストを用いることを特徴とする電歪効果素子の製造方
法。
(2) In a method for manufacturing an electrostrictive effect element comprising a step of applying an internal electrode paste on an electrostrictive material green sheet comprising an electrostrictive material powder, an organic binder, and an organic plasticizer, the electrostrictive material and the internal electrode A method for producing an electrostrictive effect element, characterized in that an internal electrode paste is made of a material that is less reactive with respect to the metal material used for the electrostrictive element, and further includes lump-like whisker-like crystal particles or needle-like crystal particles entangled with each other.
JP60022861A 1985-02-08 1985-02-08 Electrostrictive effect element and manufacture thereof Pending JPS61182285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022861A JPS61182285A (en) 1985-02-08 1985-02-08 Electrostrictive effect element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022861A JPS61182285A (en) 1985-02-08 1985-02-08 Electrostrictive effect element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61182285A true JPS61182285A (en) 1986-08-14

Family

ID=12094492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022861A Pending JPS61182285A (en) 1985-02-08 1985-02-08 Electrostrictive effect element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61182285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299588A (en) * 1991-03-28 1992-10-22 Nec Corp Electrostriction effect element
JP2007123483A (en) * 2005-10-27 2007-05-17 Kyocera Corp Piezoelectric actuator and liquid discharger
JP2013062412A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Laminated piezoelectric element, liquid discharge head, and image forming apparatus
CN111292960A (en) * 2018-12-10 2020-06-16 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299588A (en) * 1991-03-28 1992-10-22 Nec Corp Electrostriction effect element
US5196757A (en) * 1991-03-28 1993-03-23 Nec Corporation Multilayer piezoelectric ceramic actuator
JP2007123483A (en) * 2005-10-27 2007-05-17 Kyocera Corp Piezoelectric actuator and liquid discharger
JP2013062412A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Laminated piezoelectric element, liquid discharge head, and image forming apparatus
CN111292960A (en) * 2018-12-10 2020-06-16 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
CN111292960B (en) * 2018-12-10 2023-06-09 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5359760A (en) Method of manufacture of multiple-element piezoelectric transducer
JPH04299588A (en) Electrostriction effect element
JP5361635B2 (en) Vibrator
US2640165A (en) Ceramic transducer element
JPH0412678A (en) Piezoelectric/electrostriction actuator
JPH04214686A (en) Electrostrictive effect element
Takahashi Multilayer piezoelectric ceramic actuators and their applications
JP6184182B2 (en) Vibrating body, method for manufacturing the same, and vibration type driving device
JPH0992896A (en) Piezoelectric/electrostrictive film device and manufacture thereof
JP2003258328A (en) Stacked piezoelectric actuator
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JPS61182285A (en) Electrostrictive effect element and manufacture thereof
JP3370178B2 (en) Multilayer piezoelectric element and method of manufacturing the same
CN1050229C (en) Piezoelectric/electrostrictive film element having convex diaphragm portions and method of producing the same
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
CN1050008C (en) Piezoelectric/electrostrictive film element and method of producing the same
KR100824379B1 (en) Piezoelectric ceramics, Method of manufacturing the same and Piezoelectric device
JP5153095B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JPH02237083A (en) Laminated piezoelectric element
JPH0673387B2 (en) Piezoelectric displacement element
JPH04274377A (en) Laminated piezoelectric actuator
JP2581712Y2 (en) Ceramic piezoelectric element
JP2826078B2 (en) Piezoelectric / electrostrictive film type actuator
JP2014155350A (en) Vibrator, manufacturing method thereof and vibration-type driving device
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same