JPS61173196A - Remaining heat removing device for boiling water type reactor - Google Patents

Remaining heat removing device for boiling water type reactor

Info

Publication number
JPS61173196A
JPS61173196A JP60013417A JP1341785A JPS61173196A JP S61173196 A JPS61173196 A JP S61173196A JP 60013417 A JP60013417 A JP 60013417A JP 1341785 A JP1341785 A JP 1341785A JP S61173196 A JPS61173196 A JP S61173196A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
reactor
steam
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60013417A
Other languages
Japanese (ja)
Inventor
圭二 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60013417A priority Critical patent/JPS61173196A/en
Publication of JPS61173196A publication Critical patent/JPS61173196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉停止時の崩壊熱除去運転等と原子炉運転
中における主蒸気管からの余剰蒸気の抽出凝縮運転とを
選択的に行なえる沸騰水型原子炉の余熱除去装置に関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is capable of selectively performing decay heat removal operation, etc. during reactor shutdown, and extraction and condensation operation of excess steam from the main steam pipe during reactor operation. This invention relates to residual heat removal equipment for boiling water reactors.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水型原子炉では、原子炉停止時にも原子炉圧力容器
の炉心において放射性物質の崩壊熱等が発生するので、
これによる過熱を防止する目的で炉水を外部に循環させ
て冷却する余熱除去装置が設けられる。
In boiling water reactors, decay heat of radioactive materials is generated in the core of the reactor pressure vessel even when the reactor is shut down.
In order to prevent overheating caused by this, a residual heat removal device is provided that cools the reactor by circulating the reactor water outside.

第4図は、このような沸騰水型原子炉の余熱除去装置の
従来例を示している。
FIG. 4 shows a conventional example of such a residual heat removal device for a boiling water reactor.

原子炉圧力容器1から炉水循環用の配管2が導出され、
炉水循環ポンプ3により、炉水がその配管2に接続した
熱交換′a4に循環づるようになっている。熱交換器4
は伝熱管式とされ、円胴5内に多数のU字状伝熱管6が
設けである。この熱交換器4の円Ji5の内部空間に配
管2が連通接続され、この空間が炉水の流通路とされて
いる。また、伝熱管6には原子炉m器冷却用のm器冷却
熱交換器7の冷却水配管8が接続され、機器冷却水ポン
プ9により、機器冷却水が伝熱管6内を循環し、伝熱管
6の外面を流れる炉水の冷却を行なうようになっている
。なお、機器冷却熱交換器7では機器冷却水が海゛水等
10と熱交換されて冷却される。
Piping 2 for reactor water circulation is led out from the reactor pressure vessel 1,
A reactor water circulation pump 3 circulates reactor water to a heat exchanger 'a4 connected to the piping 2. heat exchanger 4
is of the heat exchanger tube type, and a large number of U-shaped heat exchanger tubes 6 are provided within the cylinder 5. Piping 2 is connected to the internal space of the circle Ji5 of this heat exchanger 4, and this space is used as a flow path for reactor water. Cooling water piping 8 of an m-unit cooling heat exchanger 7 for cooling reactor m-units is connected to the heat transfer tube 6, and equipment cooling water is circulated within the heat transfer tube 6 by an equipment cooling water pump 9. The reactor water flowing on the outer surface of the heat tube 6 is cooled. In the device cooling heat exchanger 7, the device cooling water is cooled by exchanging heat with sea water or the like 10.

ところで、原子炉圧力容器1から導出した主蒸気管11
には圧力調節弁12が設けられ、例えばタービン負荷が
減少した場合など、余剰となる蒸気を、圧力調節弁12
から排出するようになっている。この余剰蒸気を凝縮さ
せ、圧力抑制ブール13に導出するために、前記熱交換
器4を用いている。即ち、主蒸気管11に圧力調節弁1
2を介して熱交換器4を接続し、原子炉運転時には炉水
循環用の配管2の弁14を閏じ、熱交換器4に炉水に代
えて余剰蒸気を導くようにしている。そして、余剰蒸気
の凝縮運転時は、熱交換器4と圧力抑制ブール13とを
連結する凝縮水排出管15の弁16を開き、凝縮水19
を圧力抑制ブール13に排出するものである。
By the way, the main steam pipe 11 led out from the reactor pressure vessel 1
is provided with a pressure regulating valve 12, and for example, when the turbine load decreases, surplus steam is transferred to the pressure regulating valve 12.
It is designed to be discharged from The heat exchanger 4 is used to condense this excess steam and lead it to the pressure suppression boule 13. That is, the pressure regulating valve 1 is installed in the main steam pipe 11.
A heat exchanger 4 is connected through the reactor 2, and during reactor operation, the valve 14 of the reactor water circulation pipe 2 is opened to introduce excess steam to the heat exchanger 4 instead of reactor water. When condensing excess steam, the valve 16 of the condensed water discharge pipe 15 connecting the heat exchanger 4 and the pressure suppression boule 13 is opened, and the condensed water 19 is opened.
is discharged into the pressure suppression boule 13.

なお、従来の余熱除去装置では、熱交換器4を縦置き型
としており、この熱交換器4の炉水または余剰蒸気の入
口17を円胴5の上部に設け、炉水および余剰蒸気凝縮
水の出口18を円胴5の下部に設けている。そして、余
剰蒸気の凝縮作用を行なう場合には、凝縮水排出管15
の弁16を開として円胴5内にS溜する凝縮水19の水
位を調節することにより、余剰蒸気の伝熱管6に対する
接触面積を調整し、これにより余剰蒸気の凝縮量を制御
するようにしている。
In the conventional residual heat removal device, the heat exchanger 4 is of a vertical type, and the inlet 17 for the reactor water or surplus steam of the heat exchanger 4 is provided in the upper part of the cylinder 5, so that the reactor water and surplus steam condensed water can be An outlet 18 is provided at the bottom of the cylinder 5. When condensing excess steam, the condensed water discharge pipe 15
By opening the valve 16 and adjusting the water level of the condensed water 19 stored in the cylinder 5, the contact area of the surplus steam with the heat transfer tube 6 is adjusted, thereby controlling the amount of condensation of the surplus steam. ing.

また、原子炉圧力容器1の炉心から発生する蒸気には、
非凝縮性ガスが含有されている。この非凝縮性ガスは、
余剰蒸気の凝縮作用に伴って熱交換器4の円胴5の内部
に蓄積し、その蓄積口が過大となると伝熱管6の表面に
よる蒸気凝縮性能を低下させることになる。このため、
円胴5の中間部に非凝縮性ガスの排出管20を設け、蓄
積した非凝縮性ガスを外部へ排出するようにしている。
In addition, the steam generated from the core of the reactor pressure vessel 1 includes
Contains non-condensable gases. This non-condensable gas is
Due to the condensation action of surplus steam, it accumulates inside the cylinder 5 of the heat exchanger 4, and if the accumulation port becomes too large, the steam condensing performance of the surface of the heat exchanger tube 6 will be reduced. For this reason,
A non-condensable gas discharge pipe 20 is provided in the middle of the cylinder 5 to discharge the accumulated non-condensable gas to the outside.

〔背景技術の問題点〕[Problems with background technology]

上記のように、従来の余熱除去装置では、熱交換器4か
ら非凝縮性ガスを排出できる構造とする必要から、炉水
または余剰蒸気を円胴5の内部に流通させるようにし、
一方、機器冷却水は伝熱管6の内部に流通させるように
している。
As mentioned above, in the conventional residual heat removal device, since it is necessary to have a structure that can discharge non-condensable gas from the heat exchanger 4, reactor water or surplus steam is made to flow inside the cylinder 5,
On the other hand, equipment cooling water is made to flow inside the heat exchanger tubes 6.

したがって、このような構成では、伝熱管6の内部を流
通する機器冷却水よりも伝熱管6の外側を流通する炉水
または余剰蒸気の圧力が高いことから、その伝熱管6を
外圧設計とせざるを得す、したがって伝熱管6の肉厚が
増大することになる。
Therefore, in such a configuration, the pressure of the reactor water or surplus steam flowing outside the heat exchanger tubes 6 is higher than that of the equipment cooling water flowing inside the heat exchanger tubes 6, so the heat exchanger tubes 6 must be designed with external pressure. Therefore, the wall thickness of the heat exchanger tube 6 increases.

このため、伝熱管6の伝熱性能が低下し、伝熱面積およ
び熱交′Mk器自体の大型化、重量増大等の不都合を生
じる問題がある。
As a result, the heat transfer performance of the heat transfer tubes 6 is lowered, resulting in problems such as an increase in the heat transfer area and the size and weight of the heat exchanger itself.

また、蒸気の潜熱は非常に大きいため、余剰蒸気の凝縮
時に必要とする交換熱聞は極めて大きく、従来ではこの
ような余剰蒸気の凝縮作用を全て熱交換器4に流通する
機器冷却水で行なうようにしているため、機器冷却熱交
換器7の構成も大型化する必要があった。
In addition, since the latent heat of steam is extremely large, the exchange heat exchanger required for condensing surplus steam is extremely large. Conventionally, all of the condensing action of such surplus steam is performed by equipment cooling water flowing through the heat exchanger 4. Therefore, the configuration of the equipment cooling heat exchanger 7 also had to be enlarged.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、非凝
縮性のガスの排出を阻害することなく、熱交換器の小型
、軽量化が図れる沸騰水型原子炉の余熱除去装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and provides a residual heat removal device for a boiling water reactor that can reduce the size and weight of a heat exchanger without inhibiting the discharge of non-condensable gases. The purpose is to

〔発明の概要) 上記の目的を達成するために、本発明は、原子炉圧力容
器から導出した炉水循環用の配管に伝熱管式の熱交換器
を接続するとともに主蒸気管に圧力調節弁を介して前記
熱交換器を接続し、これにより原子炉停止時の炉水余熱
除去運転と原子炉運転時の余剰蒸気凝縮運転とを選択的
に行なえるようにした沸騰水型原子炉の余熱除去装置に
おいて、前記熱交換器の伝熱管の入口側水室に炉水循環
用の配管および主蒸気管からの余剰蒸気導入管を接続し
て、その伝熱管内を炉水および余剰蒸気の流通路とする
とともに、その伝熱管の出口側水室を圧力抑制プールに
凝縮水排出管および蒸気排出管を介して連通接続したこ
とを特徴としている。
[Summary of the Invention] In order to achieve the above object, the present invention connects a heat exchanger type heat exchanger to the reactor water circulation piping led out from the reactor pressure vessel, and also installs a pressure control valve in the main steam pipe. The heat exchanger is connected through the boiling water reactor, thereby making it possible to selectively perform reactor water residual heat removal operation during reactor shutdown and excess steam condensation operation during reactor operation. In the apparatus, a piping for circulating reactor water and an excess steam introduction pipe from the main steam pipe are connected to the water chamber on the inlet side of the heat exchanger tube of the heat exchanger, and the inside of the heat exchanger tube is used as a flow path for reactor water and surplus steam. In addition, the water chamber on the outlet side of the heat transfer tube is connected to the pressure suppression pool through a condensed water discharge pipe and a steam discharge pipe.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

原子炉圧力容器21から炉水循環用の配管22を導出し
、炉水循環ポンプ23により炉水を循環させるようにし
ている。この配管22に熱交換器24を接続している。
A reactor water circulation pipe 22 is led out from the reactor pressure vessel 21, and a reactor water circulation pump 23 circulates the reactor water. A heat exchanger 24 is connected to this pipe 22.

この熱交換器24は横型の伝熱管式構成を有し、軸心が
水平な円II!25内に′多数のU字状伝熱管26を設
けている。U字状伝熱管26の両端部には、円胴25内
を上下に区分して入口側水室27および出口側水室28
を形成している。炉水循環用の配管22はこの熱交換器
24の伝熱管26の入口側水室27と出口側水室28と
に連通している。なお、配管22には流路開閉用の弁2
9を設けている。
This heat exchanger 24 has a horizontal heat exchanger tube type configuration, and the axis is a horizontal circle II! A large number of U-shaped heat exchanger tubes 26 are provided within the tube 25. At both ends of the U-shaped heat exchanger tube 26, the inside of the cylinder 25 is divided into upper and lower parts, and an inlet side water chamber 27 and an outlet side water chamber 28 are provided.
is formed. Piping 22 for circulating reactor water communicates with an inlet side water chamber 27 and an outlet side water chamber 28 of heat transfer tubes 26 of this heat exchanger 24 . Note that the piping 22 is equipped with a valve 2 for opening and closing the flow path.
There are 9.

また、伝熱管26の入口側水室27には、原子炉圧力容
器21から導出した主蒸気管31aの圧力調節弁30を
余剰蒸気導入管31を介して接続している。さらに、伝
熱管26の出口側水室28の下部を圧力抑制プール32
に凝縮水排出管33を介して接続している。また、出口
側水室28の上部は圧力抑制プール32のプール水34
中に蒸気排出管35を介して接続している。なお、凝縮
水排出管33および蒸気排出管35には流通制御用の弁
36.37をそれぞれ設けている。また、蒸気排出管3
5の先端には微細空気排出孔を有する先端金具いわゆる
クエンチャ38を取付けている。
Further, a pressure regulating valve 30 of a main steam pipe 31a led out from the reactor pressure vessel 21 is connected to the inlet side water chamber 27 of the heat transfer tube 26 via a surplus steam introduction pipe 31. Furthermore, the lower part of the water chamber 28 on the outlet side of the heat transfer tube 26 is connected to a pressure suppression pool 32.
It is connected to via a condensed water discharge pipe 33. In addition, the upper part of the outlet side water chamber 28 is connected to the pool water 34 of the pressure suppression pool 32.
It is connected to the inside via a steam exhaust pipe 35. Note that the condensed water discharge pipe 33 and the steam discharge pipe 35 are provided with valves 36 and 37 for flow control, respectively. In addition, the steam exhaust pipe 3
A so-called quencher 38, which is a metal fitting having a fine air discharge hole, is attached to the tip of the tube 5.

一方、熱交換器24の円胴25の内部空間に機器冷却熱
交換器39の冷却水配管40を接続し、機器冷却水ポン
プ41により、III器冷却水を円胴25内に循環させ
るようにしている。機器冷却熱交換器39では機器冷却
水を海水等42と熱交換させる。
On the other hand, the cooling water piping 40 of the equipment cooling heat exchanger 39 is connected to the internal space of the cylinder 25 of the heat exchanger 24, and the equipment cooling water pump 41 circulates the III-cooling water into the cylinder 25. ing. The device cooling heat exchanger 39 exchanges heat between the device cooling water and seawater or the like 42 .

次に作用を説明する。原子炉停止時に崩壊熱等による余
熱を除去する場合には、炉水循環用の配管22の弁29
を開き、炉水循環ポンプ23を駆動する。また、機器冷
却熱交換器39の機器冷却水ポンプ41を駆動し、冷I
J1水配管40に機器冷却水を流通させる。なお、この
場合は凝縮水排出管33および蒸気排出管35の弁36
.37は閉じておく。これにより、余熱除去用の熱交換
器24では、伝熱管26内を流通する炉水が円胴25内
を流通する機器冷却水と熱交換されて冷却され、その低
温となった炉水が原子炉圧力容器21内に循環して余熱
除去作用が行なわれる。
Next, the effect will be explained. When removing residual heat due to decay heat etc. during reactor shutdown, valve 29 of piping 22 for reactor water circulation
, and the reactor water circulation pump 23 is driven. Also, the equipment cooling water pump 41 of the equipment cooling heat exchanger 39 is driven, and the cooling I
Equipment cooling water is made to flow through the J1 water pipe 40. In this case, the valves 36 of the condensed water discharge pipe 33 and the steam discharge pipe 35
.. 37 is closed. As a result, in the heat exchanger 24 for residual heat removal, the reactor water flowing through the heat transfer tubes 26 is cooled by exchanging heat with the equipment cooling water flowing inside the cylinder 25, and the reactor water that has become low temperature is The residual heat is circulated into the furnace pressure vessel 21 to remove residual heat.

また、原子炉運転時に発生する余剰蒸気を凝縮させる場
合には、炉水循環用の配管22の弁29を閉じるととも
に、凝縮水排出管33および蒸気排出管35の弁36.
37を開く。そうすると、主蒸気管31aにおける余剰
蒸気は圧力調節弁30を介し余剰蒸気導入管31から入
口側水室27に流入し、その後伝熱管26を通り機器冷
却水によって熱交換されて凝縮し、出口側水室28に排
出される。なお、伝熱管26内を通る余剰蒸気の一部は
凝縮されずに蒸気のままで凝縮水とともに伝熱管26か
ら出口側水室28に排出される。そして、蒸気と凝縮水
とは出口側水室28の中で分離し、出口側水室28内の
下部に溜った凝縮水は凝縮水排出管35を介して圧力抑
制プール32に排出される。一方、出口側水室28の上
部に排出された蒸気は、蒸気排出管35を介σて圧力抑
制プール32のプール水34中に放出され、凝縮する。
In addition, when surplus steam generated during reactor operation is to be condensed, the valve 29 of the reactor water circulation pipe 22 is closed, and the valves 36 of the condensed water discharge pipe 33 and the steam discharge pipe 35 are closed.
Open 37. Then, surplus steam in the main steam pipe 31a flows from the surplus steam introduction pipe 31 into the inlet side water chamber 27 via the pressure control valve 30, and then passes through the heat transfer pipe 26 and is condensed by heat exchange with equipment cooling water. It is discharged into the water chamber 28. Note that a part of the surplus steam passing through the heat exchanger tube 26 is not condensed and is discharged from the heat exchanger tube 26 to the outlet side water chamber 28 together with the condensed water as steam. The steam and condensed water are separated in the outlet water chamber 28, and the condensed water accumulated in the lower part of the outlet water chamber 28 is discharged to the pressure suppression pool 32 via the condensed water discharge pipe 35. On the other hand, the steam discharged to the upper part of the outlet side water chamber 28 is discharged into the pool water 34 of the pressure suppression pool 32 through the steam discharge pipe 35 and condensed.

この蒸気排出管35からの蒸気のプール水34への放出
は、クエンチャ38を介して微小な気泡となっているの
で、振動や!撃を生じることがない。
The steam released from the steam exhaust pipe 35 into the pool water 34 becomes minute bubbles via the quencher 38, so it causes vibrations! There will be no impact.

なお、余剰蒸気の凝縮時において、蒸気中に含有される
非凝縮性ガスは熱交換器25から排出する必要がある。
Note that when condensing excess steam, non-condensable gas contained in the steam needs to be discharged from the heat exchanger 25.

そのために、伝熱管26内で全ての蒸気を凝縮させるの
でなく、前記の如く蒸気の一部を蒸気のままの状態で出
口側水室28まで導くのである。このような伝熱管26
内における蒸気流量の制御を行なうために、蒸気排出管
35の流量制御用の弁37を調節する。すなわち、蒸気
流量制御用の弁37の開度を大きくして排出蒸気の岳を
増加させれば、出口側水室28からの蒸気排出量が増加
するので、これによって伝熱管26からの凝縮水の流出
が促進され、さらに伝熱管26内に残存する非凝縮性ガ
スの濃度も低下する。
Therefore, instead of condensing all of the steam within the heat transfer tube 26, a portion of the steam is guided to the outlet side water chamber 28 in a steam state as described above. Such a heat exchanger tube 26
In order to control the steam flow rate in the steam exhaust pipe 35, the flow rate control valve 37 of the steam exhaust pipe 35 is adjusted. In other words, if the opening degree of the steam flow rate control valve 37 is increased to increase the volume of discharged steam, the amount of steam discharged from the outlet side water chamber 28 will increase. The outflow of gas is promoted, and the concentration of non-condensable gas remaining in the heat exchanger tubes 26 is also reduced.

これにより、伝熱管26の内面とそこを通過する蒸気の
接触が良好となり、蒸気の凝縮量も増大するものである
This improves the contact between the inner surface of the heat transfer tube 26 and the steam passing therethrough, and increases the amount of steam condensed.

このような構成によれば、余熱除去用の熱交換器24に
おいて機器冷却水に比べて高圧な炉水または余剰蒸気が
伝熱管26の内側を流通するようにしたので、その伝熱
管26は内圧設計となり、その伝熱管26の肉厚が減少
できる。したがって、伝熱管26の伝熱性能が向上し、
伝熱面積の縮小を図れるとともに、熱交換器自体も小型
、軽量とすることができる。
According to such a configuration, in the heat exchanger 24 for residual heat removal, reactor water or surplus steam having a higher pressure than the equipment cooling water is made to flow inside the heat transfer tube 26, so that the heat transfer tube 26 has an internal pressure. design, and the wall thickness of the heat transfer tube 26 can be reduced. Therefore, the heat transfer performance of the heat transfer tube 26 is improved,
Not only can the heat transfer area be reduced, but the heat exchanger itself can also be made smaller and lighter.

また、伝熱管26の出口側水室28の上部から蒸気排出
管35を介して蒸気の一部を圧力抑制プール32に導く
ようにしたので、原子炉運転時における余剰蒸気凝縮時
において、蒸気に含まれる非凝縮性ガスが伝熱管26内
に貯溜することもなく、したがって伝熱管26の内面と
蒸気の接触が良好に保持される。
In addition, since a part of the steam is guided from the upper part of the water chamber 28 on the outlet side of the heat transfer tube 26 to the pressure suppression pool 32 via the steam exhaust pipe 35, when excess steam is condensed during reactor operation, the steam is The non-condensable gas contained therein does not accumulate in the heat exchanger tubes 26, and therefore good contact between the inner surface of the heat exchanger tubes 26 and the steam is maintained.

さらに、圧力抑&11ブール32のプール水34中に蒸
気の一部を排出して凝縮させるようにしたので、熱交換
器24での熱交換量はプール水34での熱交換a分だけ
減少することになる。したがって、機器冷却熱交換器3
9の構成自体も小型化することができる。
Furthermore, since a part of the steam is discharged and condensed into the pool water 34 of the pressure suppression & 11 boule 32, the amount of heat exchanged in the heat exchanger 24 is reduced by the amount of heat exchanged in the pool water 34. It turns out. Therefore, equipment cooling heat exchanger 3
The configuration of 9 itself can also be downsized.

なお、熱交換器24を横置き型とした実施例の構成によ
れば、従来の縦型の場合に比べて保守、点検作業等が容
易に行なえるものとなる。
In addition, according to the configuration of the embodiment in which the heat exchanger 24 is of a horizontal type, maintenance, inspection, etc. can be performed more easily than in the case of a conventional vertical type.

なお、前記実施例では、凝縮水排出管33および蒸気排
出管35を直接圧力抑1111プール32に導いたが、
本発明はそのようなものに限らず、例えば第3図に示す
ように、凝縮水排出管33の途中に水位制御用のタンク
43を設けることもできる。
In addition, in the above embodiment, the condensed water discharge pipe 33 and the steam discharge pipe 35 were directly led to the pressure suppression 1111 pool 32.
The present invention is not limited to such a configuration; for example, as shown in FIG. 3, a tank 43 for water level control may be provided in the middle of the condensed water discharge pipe 33.

このような構成にすれば、凝縮水排出管33の弁37を
調整することにより、タンク43と連通ずる出口側水室
28の内部の水位を制御することにより、伝熱管26の
一部を凝縮水に水没状態として、蒸気の凝縮量を種々の
値に制御することができる。したがって、蒸気凝縮量の
制御が正確かつ容易に行なえるようになる。
With this configuration, by adjusting the valve 37 of the condensed water discharge pipe 33 and controlling the water level inside the outlet side water chamber 28 communicating with the tank 43, a part of the heat transfer tube 26 can be condensed. By submerging in water, the amount of steam condensation can be controlled to various values. Therefore, the amount of steam condensation can be accurately and easily controlled.

なお、第3図ではタンク43を凝縮水排出管33および
蒸気排出管35の両方に連通ずる構造にしたが、このタ
ンク43は凝縮水排出管33にのみ連通させた構造とし
てもよいのは勿論である。
In addition, in FIG. 3, the tank 43 has a structure in which it communicates with both the condensed water discharge pipe 33 and the steam discharge pipe 35, but it goes without saying that the tank 43 may have a structure in which it communicates only with the condensed water discharge pipe 33. It is.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る沸騰水型原子炉の余熱除去装
置によれば、余熱除去用の熱交換器の伝熱管を炉水およ
び余剰蒸気の流通路とし、高圧な炉水または余剰蒸気が
伝熱管の内部を流通するようにしたので、伝熱管の肉厚
を減少することが可能となり、それにより伝熱性能を向
上し、熱交換器自体の小型化、軽量化が図れるものとな
る。
As described above, according to the residual heat removal device for a boiling water reactor according to the present invention, the heat exchanger tube of the heat exchanger for residual heat removal is used as a flow path for reactor water and surplus steam, and high-pressure reactor water or surplus steam is Since the heat exchanger is made to flow through the inside of the heat exchanger tube, it is possible to reduce the wall thickness of the heat exchanger tube, thereby improving heat transfer performance and making it possible to make the heat exchanger itself smaller and lighter.

また、伝熱管の出口側水室を圧力抑制プールに凝縮水排
出管および蒸気排出管を介して接続し、蒸気の一部を圧
力抑制プールの水中で凝縮させるようにしたので、それ
だけ熱交換器における交換熱量を減少することができ、
熱交換器構造の小型化が可能となる。
In addition, the water chamber on the outlet side of the heat exchanger tube is connected to the pressure suppression pool via a condensed water discharge pipe and a steam discharge pipe, so that a portion of the steam is condensed in the water of the pressure suppression pool, so that the heat exchanger can reduce the amount of heat exchanged in
It becomes possible to downsize the heat exchanger structure.

そして、蒸気排出管を介して、蒸気に含まれる非凝縮性
ガスの排出も確実に行なえるので、伝熱管の内面と′蒸
気との接触が阻害されることもなく、常に良好な熱交換
を行なえるようになる。
In addition, since the non-condensable gas contained in the steam can be reliably discharged through the steam exhaust pipe, contact between the inner surface of the heat transfer tube and the steam is not inhibited, and good heat exchange is always possible. Be able to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る沸騰水型原子炉の余熱除去装置の
一実施例を示す概略構成図、第2図は第1図の主要部分
を拡大して示す断面図、第3図は本発明の他の実施例を
示す概略断面図、第4図は従来例を示す概略構成図であ
る。 21・・・原子炉圧力容器、22・・・配管、24・・
・熱交換器、25・・・円胴、26・・・伝熱管、27
・・・入口側水室、28・・・出口側水室、30・・・
圧力調節弁、31・・・余剰蒸気導入管、31a・・・
主蒸気管、32・・・圧力抑制プール、33・・・凝縮
水排出管、34・・・プール水、35・・・蒸気排出管
Fig. 1 is a schematic configuration diagram showing an embodiment of the residual heat removal device for a boiling water reactor according to the present invention, Fig. 2 is a sectional view showing an enlarged main part of Fig. FIG. 4 is a schematic sectional view showing another embodiment of the invention, and FIG. 4 is a schematic configuration diagram showing a conventional example. 21... Reactor pressure vessel, 22... Piping, 24...
・Heat exchanger, 25...Cylinder, 26...Heat transfer tube, 27
...Inlet side water chamber, 28...Outlet side water chamber, 30...
Pressure control valve, 31...excess steam introduction pipe, 31a...
Main steam pipe, 32... Pressure suppression pool, 33... Condensed water discharge pipe, 34... Pool water, 35... Steam discharge pipe.

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器から導出した炉水循環用の配管に伝
熱管式の熱交換器を接続するとともに主蒸気管に圧力調
節弁を介して前記熱交換器を接続し、これにより原子炉
停止時の炉水余熱除去運転と原子炉運転時の余剰蒸気凝
縮運転とを選択的に行なえるようにした沸騰水型原子炉
の余熱除去装置において、前記熱交換器の伝熱管の入口
側水室に炉水循環用の配管および主蒸気管からの余剰蒸
気導入管を接続して、その伝熱管内を炉水および余剰蒸
気の流通路とするとともに、その伝熱管の出口側水室を
圧力抑制プールに凝縮水排出管および蒸気排出管を介し
て連通接続したことを特徴とする沸騰水型原子炉の余熱
除去装置。 2、熱交換器は横置き型で、凝縮水排出管は伝熱管の出
口側水室内の水位制御用のタンクをその途中に有してい
る特許請求の範囲第1項記載の沸騰水型原子炉の余熱除
去装置。
[Claims] 1. A heat exchanger type heat exchanger is connected to a pipe for circulating reactor water led out from a reactor pressure vessel, and the heat exchanger is connected to a main steam pipe via a pressure control valve, In the residual heat removal device for a boiling water reactor that can selectively perform a reactor water residual heat removal operation during reactor shutdown and an excess steam condensation operation during reactor operation, the heat transfer tube of the heat exchanger Pipes for reactor water circulation and excess steam introduction pipes from the main steam pipe are connected to the water chamber on the inlet side of the heat exchanger tube, and the inside of the heat exchanger tube is used as a flow path for reactor water and surplus steam. A residual heat removal device for a boiling water reactor, characterized in that a chamber is connected to a pressure suppression pool through a condensed water discharge pipe and a steam discharge pipe. 2. The boiling water type atom according to claim 1, wherein the heat exchanger is of a horizontal type, and the condensed water discharge pipe has a tank for controlling the water level in the water chamber on the outlet side of the heat transfer tube in the middle thereof. Furnace residual heat removal device.
JP60013417A 1985-01-29 1985-01-29 Remaining heat removing device for boiling water type reactor Pending JPS61173196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013417A JPS61173196A (en) 1985-01-29 1985-01-29 Remaining heat removing device for boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013417A JPS61173196A (en) 1985-01-29 1985-01-29 Remaining heat removing device for boiling water type reactor

Publications (1)

Publication Number Publication Date
JPS61173196A true JPS61173196A (en) 1986-08-04

Family

ID=11832557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013417A Pending JPS61173196A (en) 1985-01-29 1985-01-29 Remaining heat removing device for boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS61173196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system
JP2014085227A (en) * 2012-10-24 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Static decay heat removal system and nuclear power plant facilities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system
JP2014085227A (en) * 2012-10-24 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Static decay heat removal system and nuclear power plant facilities
US9312034B2 (en) 2012-10-24 2016-04-12 Hitachi-Ge Nuclear Energy, Ltd. Passive residual heat removal system and nuclear power plant equipment

Similar Documents

Publication Publication Date Title
US5059385A (en) Isolation condenser passive cooling of a nuclear reactor containment
JPS61173196A (en) Remaining heat removing device for boiling water type reactor
JPS59145484A (en) Condenser
JP4398640B2 (en) Reactor containment cooling equipment
JP2003240888A (en) Nuclear reactor containment vessel cooling facility
US5896431A (en) Systems and methods for preventing steam leakage between a drywell and a wetwell in a nuclear reactor
JPH04157396A (en) Natural cooling type container
JP3524116B2 (en) Reactor containment cooling system
JPH0252991A (en) Flow passage control mechanism for heat exchanger
JPS63113394A (en) Emergency cooling device for fast neutron reactor
JPS6375594A (en) Natural radiation type container
JP3028842B2 (en) Reactor containment vessel
JP2918353B2 (en) Reactor containment vessel
JPH06222182A (en) Static containment cooling system
JPS5915890A (en) Auxiliary cooling device for atomic power plant
JPS6196489A (en) Reactor-vessel protective device
JPS60120288A (en) Natural circulation type nuclear reactor
JP2863610B2 (en) Steam turbine condenser
JPS6394191A (en) Cold trap
JPH02234097A (en) Tank type fast breeder reactor
JPH03105293A (en) Emergency core cooling system
JPH05157877A (en) Cooling equipment in nuclear power plant
JPS60235092A (en) Emergency core cooling device for nuclear reactor
JPS587589A (en) Local temperature-rising protection device of suppression pool
JPS6095389A (en) Heat exchange device for removing core collapse heat