JPS61172355A - High-heat conductive insulating substrate - Google Patents

High-heat conductive insulating substrate

Info

Publication number
JPS61172355A
JPS61172355A JP1292885A JP1292885A JPS61172355A JP S61172355 A JPS61172355 A JP S61172355A JP 1292885 A JP1292885 A JP 1292885A JP 1292885 A JP1292885 A JP 1292885A JP S61172355 A JPS61172355 A JP S61172355A
Authority
JP
Japan
Prior art keywords
alumina
substrate
silicon
insulating substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1292885A
Other languages
Japanese (ja)
Inventor
Noboru Hashimoto
登 橋本
Keiji Kakinote
柿手 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1292885A priority Critical patent/JPS61172355A/en
Publication of JPS61172355A publication Critical patent/JPS61172355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To enhance the thermal conductivity of the titled insulating substrate as well as to improve the high-frequency characteristics thereof by a method wherein an intermediate layer of another substrate different from silicon and alumina is provided between the silicon substrate and alumina film of the high-heat conductive insulating substrate, which is used for a high-density mounting IC and LSI and so forth. CONSTITUTION:A silicon carbide film 2 is formed on a silicon substrate 1 using silane gas or disilane gas and methane gas or ethylene gas as the vapor-phase gas, for example, according to a CVD method, and an alumina film 3 is formed on the silicon carbide film 2 using a PVD method or a CVD method. The silicon carbide film 2 exists as an intermediate layer between the silicon substrate 1 and the alumina film 3 and brings about good effect toward the improvement of adhesion of the silicon substrate 1 and the alumina film 3, and at the same time, suppresses the formation of an oxide layer at the forming time of the alumina layer 3 and works effectively for obtaining the high-heat conductivity of the high heat conductive insulating substrate. The alumina layer 3 is normally formed in an amorphous state. This alumina layer 3 has a low dielectric constant and has good high-frequency characteristics as well. By such a constitution, the insulating substrate with the sufficiently high thermal conductivity, the low dielectric constant and the superior high-frequency characteristics can be obtained at low cost.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高密度実装置CやLSI等に用いられる高
熱伝導性絶縁基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a highly thermally conductive insulating substrate used for high-density actual devices C, LSIs, and the like.

〔背景技術〕[Background technology]

半導体素子の高集積化や大電力化が進む中で、半導体素
子から発生する熱の放熱は重要な問題である。そのため
、放熱性の大きい絶縁性基板が強く要望されており、各
種の高熱伝導性絶縁基板が提案されている。これらには
、アルミニウム基板表面にアルマイト層を形成させ、そ
の上に樹脂を塗布したもの、および、鉄またはアルミニ
ウム基板上に直接樹脂を塗布したもの等多層構造を有す
るものがある。さらに、炭化ケイ素−酸化ベリリウムセ
ラミック基板、窒化アルミニウムセラミック基板、酸化
ベリリウムセラミック基板等もある、しかしながら、こ
れらは、熱伝導性が、なお不足したり価格が高い等の点
で、未だ欠点を残している。そのため、さらに優れた高
熱伝導性絶縁基板が望まれている。
2. Description of the Related Art As semiconductor devices become more highly integrated and consume more power, dissipation of heat generated from semiconductor devices becomes an important issue. Therefore, there is a strong demand for insulating substrates with high heat dissipation properties, and various types of highly thermally conductive insulating substrates have been proposed. These include those with a multilayer structure, such as those in which an alumite layer is formed on the surface of an aluminum substrate and a resin applied thereon, and those in which a resin is directly applied to an iron or aluminum substrate. Furthermore, there are silicon carbide-beryllium oxide ceramic substrates, aluminum nitride ceramic substrates, beryllium oxide ceramic substrates, etc. However, these still have drawbacks such as insufficient thermal conductivity and high cost. There is. Therefore, an insulating substrate with even higher thermal conductivity is desired.

〔発明の目的〕[Purpose of the invention]

この発明は、このような現状に鑑みて、熱伝導性の高い
絶縁基板を提供する。
In view of the current situation, the present invention provides an insulating substrate with high thermal conductivity.

〔発明の開示] この発明は、シリコン基板上に絶縁層としてアルミナ膜
が形成されている多層構造を有する絶縁基板であって、
シリコン基板とアルミナ膜の間に別物質による中間層が
設けられていることを特徴とする高熱伝導性絶縁基板を
要旨とする。以下にこれを詳しく説明する。
[Disclosure of the Invention] The present invention provides an insulating substrate having a multilayer structure in which an alumina film is formed as an insulating layer on a silicon substrate,
The gist of the present invention is a highly thermally conductive insulating substrate characterized by an intermediate layer made of another material provided between a silicon substrate and an alumina film. This will be explained in detail below.

■ シリコン基板を用意する。シリコン基板としては、
普通、単結晶シリコンおよび多結晶シリコンを用いる。
■ Prepare a silicon substrate. As a silicon substrate,
Single crystal silicon and polycrystalline silicon are commonly used.

しかし、シリコンの種類は、特にこれらに限らない。However, the type of silicon is not particularly limited to these.

■ シリコン基板上に炭化ケイ素膜を形成する。形成法
としては、たとえば、気相ガスとしてシランまたはジシ
ラン、および、メタンまたはエチレンを用いて生成温度
800〜1000℃で行うCVD法による。
■ Form a silicon carbide film on a silicon substrate. The formation method is, for example, a CVD method using silane or disilane and methane or ethylene as gaseous gases at a formation temperature of 800 to 1000°C.

■ 炭化ケイ素膜上にアルミナ膜を形成する。■ Form an alumina film on the silicon carbide film.

形成法としては、PVD法またはCVD法を用いる。As a forming method, a PVD method or a CVD method is used.

PVD法としては、たとえば、Ar(80%)02(2
0%)雰囲気中で密着性向上のために基板温度を200
℃程度に保ち、アルミナをターゲットとしてマグネトロ
ンスパッタリング法を用いる。また、CVD法としては
、気相ガスとして炭酸ガスおよび水素ガスと三塩化アル
ミニウムを用いて生成温度800〜1000℃で形成さ
せる。形成された基板の断面形状を第1図に示す。
As the PVD method, for example, Ar(80%)02(2
0%) In order to improve adhesion in the atmosphere, the substrate temperature was increased to 200%.
The temperature is maintained at about ℃, and magnetron sputtering is used using alumina as a target. Further, in the CVD method, carbon dioxide gas, hydrogen gas, and aluminum trichloride are used as gas phase gases, and the formation temperature is 800 to 1000°C. The cross-sectional shape of the formed substrate is shown in FIG.

炭化ケイ素膜2はシリコン基板1とアルミナ膜3の中間
層として存在し密着性の向上に効果があるとともに、ア
ルミナ膜3の生成時に、酸化層の生成を抑え高熱伝導性
を得るために有効に働くものである。
The silicon carbide film 2 exists as an intermediate layer between the silicon substrate 1 and the alumina film 3 and is effective in improving adhesion, and is also effective in suppressing the formation of an oxide layer and obtaining high thermal conductivity when the alumina film 3 is formed. It is something that works.

また、ここで形成されるアルミナ膜3は、通常、アモル
ファス状態で形成される。これは、低誘電率を有し、良
好な高周波特性をも有する。
Further, the alumina film 3 formed here is usually formed in an amorphous state. It has a low dielectric constant and also has good high frequency properties.

以下に実施例を詳しく説明する。Examples will be described in detail below.

(実施例1) 厚み1fiの単結晶シリコン基板上に、CVD法により
厚み1wの炭化ケイ素膜を形成させる。炭化ケイ素膜の
上にPVD法により厚み10IImのアルミナ膜を形成
させる。この基板に3 tm X 3 tmのシリコン
チップを実装して熱抵抗値を測定した(実施例2) アルミナ膜の厚みを5μmにした以外は実施例1と同様
にして熱抵抗値を測定した。
(Example 1) A silicon carbide film with a thickness of 1 w is formed on a single crystal silicon substrate with a thickness of 1 fi by a CVD method. An alumina film having a thickness of 10 IIm is formed on the silicon carbide film by the PVD method. A 3 tm x 3 tm silicon chip was mounted on this substrate and the thermal resistance value was measured (Example 2) The thermal resistance value was measured in the same manner as in Example 1 except that the thickness of the alumina film was 5 μm.

(実施例3) 厚み1fiの多結晶シリコン基板上に、実施例1と同様
にして炭化ケイ素膜を0.6μm、アルミナ膜を8μm
形成して熱抵抗値を測定した。
(Example 3) A 0.6 μm thick silicon carbide film and an 8 μm alumina film were formed on a polycrystalline silicon substrate with a thickness of 1 fi in the same manner as in Example 1.
The thermal resistance value was measured.

(実施例4) 厚み0.8■の多結晶シリコン基板上に、実施例1と同
様にして炭化ケイ素膜を0.6μm、アルミナ膜を10
μm形成して熱抵抗値を測定した。
(Example 4) In the same manner as in Example 1, a silicon carbide film of 0.6 μm and an alumina film of 10 μm were deposited on a polycrystalline silicon substrate with a thickness of 0.8 μm.
The thermal resistance value was measured by forming a micrometer.

(実施例5) 厚み0.7鶴の多結晶シリコン基板上に実施例1と同様
にして炭化ケイ素膜を0.5μm、アルミナ膜を10μ
m形成して熱抵抗値を測定した。
(Example 5) A silicon carbide film of 0.5 μm and an alumina film of 10 μm were formed in the same manner as in Example 1 on a polycrystalline silicon substrate with a thickness of 0.7 μm.
m was formed and the thermal resistance value was measured.

これらの結果を比較例と併せて第1表に示す。These results are shown in Table 1 together with comparative examples.

実施例はいずれも比較例に比べ熱抵抗値が低くなってお
り、この発明にかかる絶縁基板が非常に熱伝導性の良い
ことを示している。
All of the examples have lower thermal resistance values than the comparative examples, indicating that the insulating substrate according to the present invention has very good thermal conductivity.

なお、比較例1は1fiの厚みの96%アルミナ基板、
比較例2は1fiの厚みの窒化アルミニウム基板、比較
例3は1fiの厚みのアルミニウム基板上に樹脂10μ
mを塗布したもので、そのおのおのについて実施例と同
様の測定を行ったものである。
In addition, Comparative Example 1 is a 96% alumina substrate with a thickness of 1fi,
Comparative Example 2 is a 1fi thick aluminum nitride substrate, and Comparative Example 3 is a 1fi thick aluminum substrate with 10μ of resin.
The samples were coated with M, and the same measurements as in the examples were carried out on each of them.

(以 下 余 白) 〔発明の効果〕 この発明は、熱伝導性の十分に高い、低誘電率で高周波
特性の優れた絶縁基板を低コストで得ることが出来る。
(Margin below) [Effects of the Invention] The present invention makes it possible to obtain an insulating substrate with sufficiently high thermal conductivity, low dielectric constant, and excellent high frequency characteristics at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる高熱伝導基板の断面図であ
る。 1・・・シリコン基板 2・・・炭化ケイ素膜 3・・
・アルミナ膜 代理人 弁理士  松 本 武 彦 第1図
FIG. 1 is a sectional view of a highly thermally conductive substrate according to the present invention. 1... Silicon substrate 2... Silicon carbide film 3...
・Alumina membrane agent Patent attorney Takehiko Matsumoto Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上に絶縁層としてアルミナ膜が形成
されている、多層構造を有する絶縁基板であつて、シリ
コン基板とアルミナ膜の間に、密着性を向上させるため
の別物質による中間層が設けられていることを特徴とす
る高熱伝導性絶縁基板。
(1) An insulating substrate with a multilayer structure in which an alumina film is formed as an insulating layer on a silicon substrate, with an intermediate layer made of another material between the silicon substrate and the alumina film to improve adhesion. A highly thermally conductive insulating substrate comprising:
(2)中間層が炭化ケイ素である特許請求の範囲第1項
記載の高熱伝導性絶縁基板。
(2) The highly thermally conductive insulating substrate according to claim 1, wherein the intermediate layer is silicon carbide.
JP1292885A 1985-01-25 1985-01-25 High-heat conductive insulating substrate Pending JPS61172355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292885A JPS61172355A (en) 1985-01-25 1985-01-25 High-heat conductive insulating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292885A JPS61172355A (en) 1985-01-25 1985-01-25 High-heat conductive insulating substrate

Publications (1)

Publication Number Publication Date
JPS61172355A true JPS61172355A (en) 1986-08-04

Family

ID=11818978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292885A Pending JPS61172355A (en) 1985-01-25 1985-01-25 High-heat conductive insulating substrate

Country Status (1)

Country Link
JP (1) JPS61172355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169489A (en) * 1986-01-22 1987-07-25 鐘淵化学工業株式会社 Heat conductive insulating substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169489A (en) * 1986-01-22 1987-07-25 鐘淵化学工業株式会社 Heat conductive insulating substrate
JPH035074B2 (en) * 1986-01-22 1991-01-24 Kanegafuchi Chemical Ind

Similar Documents

Publication Publication Date Title
JPS5815241A (en) Substrate for semiconductor device
JPS61172355A (en) High-heat conductive insulating substrate
JPH0513616A (en) High thermal conductive insulating substrate and its manufacture
JPS61171155A (en) High thermal conductive insulated substrate
JPS60128625A (en) Base board for mounting of semiconductor element
JP3368624B2 (en) Substrate for semiconductor device
JPS63124555A (en) Substrate for semiconductor device
JPS6323342A (en) High heat conductive substrate
JPS58103156A (en) Substrate for semiconductor device
JPH0323513B2 (en)
JPS638284A (en) High heat conductivity substance
JPH0323515B2 (en)
JPS6256385A (en) High heat conductive substrate
JPS61240629A (en) Manufacture of substrate
JPH043120B2 (en)
JPH03203285A (en) Manufacture of printed wiring board
JPS60128262A (en) Manufacture of composite substrate having high heat conductivity
JPH07201779A (en) Electrode wiring and its formation
JPH013097A (en) High thermal conductivity substrate
JPS62169489A (en) Heat conductive insulating substrate
JP3862864B2 (en) Ceramic heater
JPS62219693A (en) Thin film multilayer ceramic circuit board
JPH07138086A (en) Aluminum nitride substrate having surface conductivity and its production
JPS62154650A (en) Insulating substrate having high thermal conductivity and manufacture thereof
JPH05326767A (en) Heat dissipating board