JPS61167424A - Process for separating and recovering steam mixed with water-insoluble gas - Google Patents

Process for separating and recovering steam mixed with water-insoluble gas

Info

Publication number
JPS61167424A
JPS61167424A JP60009152A JP915285A JPS61167424A JP S61167424 A JPS61167424 A JP S61167424A JP 60009152 A JP60009152 A JP 60009152A JP 915285 A JP915285 A JP 915285A JP S61167424 A JPS61167424 A JP S61167424A
Authority
JP
Japan
Prior art keywords
water
gas
steam
pressure
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009152A
Other languages
Japanese (ja)
Inventor
Hidemasa Tsuruta
鶴田 英正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60009152A priority Critical patent/JPS61167424A/en
Publication of JPS61167424A publication Critical patent/JPS61167424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To recover steam having specified pressure without using a heat exchanger nor increasing power consumption of compressor for elevating pressure by causing adiabatic autovaporization of circulating water which has been heated by contacting directly with steam-contg. gas, in an evaporative cooler under reduced pressure, and elevating the pressure thereafter. CONSTITUTION:Steam contg. inactive gas for water is introduced into a condenser heater 1 through an inlet 2 for the initial gas, and circulating water, on one hand, cooled to a specified temp. by an evaporative cooler 10 is sprayed from a liquid dispersing nozzle 4 to contact the gas with liquid on a packing material 5. The sensible heat held by the initial gas and the latent heat of condensation of the steam are transferred to the circulating water, and the gas itself is cooled and dehumidified, and the circulating water is heated. This hot water is sprayed from a nozzle 11 by transporting to the evaporative cooler 10 set to a reduced pressure by the suction of a steam compressor C. The circulating water is cooled adiabatically to a temp. corresponding to its pressure by autovaporization. Generated steam is recovered by elevating the pressure to a specified value by the steam compressor C. The cooled circulating water is transported to the nozzle 4 with a pump P2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 乙の発明は化学工業において原料系に大量のスチームを
混在させて気相反応を行ない得られた反応生成ガスに含
まれる水蒸気を分離、回収したり、化学、製紙、食品工
業等の分野で乾燥工程より発生する排ガス中に含まれる
水蒸気を分離回収する等の省エネルギ技術に関するもの
である。
[Detailed Description of the Invention] (a) Industrial Application Field The invention of B is a chemical industry in which a large amount of steam is mixed in a raw material system to perform a gas phase reaction, and the water vapor contained in the reaction product gas is separated. The present invention relates to energy-saving technology for separating and recovering water vapor contained in exhaust gas generated from drying processes in fields such as chemistry, paper manufacturing, and the food industry.

仲)従来の技術 水蒸発器に附設する熱交換器に前記のごとき反応生成ガ
ス、または乾燥排ガスを通し、含まれる水蒸気を凝縮さ
せ、伝熱面を介して相手の側の水を加熱沸騰させて水蒸
気を得るのが通常の方法である。
(Middle) Conventional technology Pass the reaction product gas or dry exhaust gas as described above through a heat exchanger attached to a water evaporator, condense the contained water vapor, and heat and boil the water on the other side via the heat transfer surface. The usual method is to obtain water vapor by

このときは蒸発側の水温を凝縮末端温度より、さらに伝
熱に必要な温度差分だけ低温ととして利用するのが通例
である。
In this case, it is customary to set the water temperature on the evaporation side to be lower than the condensation end temperature by the temperature difference necessary for heat transfer.

そのほかこれ等の反応ガスまたは乾燥排ガスを気泡塔、
充填塔等に導き循環水と直接接触させ、ガス中の水蒸気
を凝縮させ、そのさいの凝縮潜熱を主体に循環水の加熱
・昇温を行ない得られた熱水を前記例と同様に水蒸発器
に附設する液々熱交換器に送って伝熱面を介して相手側
の水を加熱沸騰させてスチームの発生を行なうと共に熱
交換器を出た循環水は再び元へ戻すことも試みられてい
る。
In addition, these reaction gases or dry exhaust gases are transferred to a bubble column,
The water vapor in the gas is condensed by direct contact with the circulating water through a packed tower, etc. At that time, the circulating water is mainly heated and heated using the latent heat of condensation, and the obtained hot water is evaporated in the same manner as in the previous example. Attempts have also been made to generate steam by sending water to a liquid-liquid heat exchanger attached to the heat exchanger and heating and boiling the water on the other side via a heat transfer surface, while also returning the circulating water that has left the heat exchanger to its original source. ing.

(ハ)発明が解決しようとする問題点 従来の技術のうち前者の例では、原ガスと蒸発水との間
に伝熱面と熱移動の温度差が必要である。原ガス中の不
凝縮成分の含有率が高くなるほど熱交伝熱面でのガス側
の伝熱係数(Ka2g/?F1″、’0.11 )が大
巾に低下するために大きな伝熱面積を必要とし設備費は
増大する。
(c) Problems to be Solved by the Invention In the former example of the conventional techniques, a temperature difference between the heat transfer surface and the heat transfer is required between the raw gas and the evaporated water. As the content of non-condensable components in the raw gas increases, the heat transfer coefficient (Ka2g/?F1'', '0.11) on the gas side at the heat exchanger heat transfer surface decreases significantly, resulting in a large heat transfer area. equipment costs will increase.

またこれを避けるために伝熱面を介しての温度差を大き
くとれば水の沸騰温度、ひいては蒸気圧がさらに低下し
、これより所定圧力のスチームを回収するための圧縮機
の動力は一段と増大する等の欠点がある。
In addition, if we create a large temperature difference across the heat transfer surface to avoid this, the boiling temperature of water and, as a result, the vapor pressure will further decrease, which will further increase the power of the compressor to recover steam at a given pressure. There are drawbacks such as:

後者の例では、原ガスと沸騰水の間には熱交換のための
伝熱面はなく、気泡塔、充填塔のどとき気液接触面自体
がその役目を果すだめに安価に気液接触面を設けること
ができる利点はある。たソし得られた熱水の熱量は熱交
換器を介して蒸発器側の水に伝熱する必要があり、こ\
に前者の例と同じような高価な熱交換器の問題を生じ、
これと圧縮機動力が相反関係にあることは前例と同様で
ある。
In the latter example, there is no heat transfer surface for heat exchange between the raw gas and the boiling water, and the gas-liquid contact surface itself can fulfill its role in bubble columns and packed towers. There is an advantage in being able to provide The amount of heat from the hot water that has been extracted must be transferred to the water on the evaporator side via a heat exchanger.
creates the same expensive heat exchanger problem as in the former example,
As in the previous example, this and the compressor power have a reciprocal relationship.

またこのような液々熱交換器の伝熱係数を良好ならしめ
るためには両側とも強制循環を必要とし、ポンプの設備
費、動力費も当然必要となる。
Furthermore, in order to improve the heat transfer coefficient of such a liquid-liquid heat exchanger, forced circulation is required on both sides, which naturally requires equipment costs and power costs for pumps.

この発明は従来の技術が持つ問題点、すなわち熱交換器
を用いるためにその設備費が高価につくこと、これを軽
減しようとすると伝熱面の温度差が大となり低沸点の水
蒸気を所要圧力まで加圧する圧縮機の動力費の増大をま
ねくという矛盾を解決することを目的としている。
This invention solves the problem that conventional technology has, namely that the equipment cost is high due to the use of a heat exchanger, and when trying to alleviate this, the temperature difference on the heat transfer surface becomes large, and low boiling point water vapor is transferred to the required pressure. The purpose of this project is to resolve the contradiction that increases the power cost of a compressor that pressurizes the air.

に)問題点を解決するだめの手段と作用この発明を図面
にもとすいて説明する。第1図において水に不溶性のガ
スを含む水蒸気は原ガス人口2より凝縮加熱器胴体1の
下部に送入される。一方蒸発冷却器で所定温度まで冷却
された循環水はポンプP2により1の上部に設けられた
液分散ノズル4へ送られ、充填部5の上面に均一に1水
される。5は充填物とこれを支える支持枠よりなり、原
ガスは5を下より上に、循環水は上より下に通過する。
B) Means and operation for solving the problems This invention will be explained with reference to the drawings. In FIG. 1, water vapor containing gas insoluble in water is sent from a raw gas source 2 to the lower part of a condensing heater body 1. On the other hand, the circulating water cooled to a predetermined temperature by the evaporative cooler is sent by the pump P2 to the liquid dispersion nozzle 4 provided at the upper part of the filling part 5, and is uniformly distributed on the upper surface of the filling part 5. 5 consists of a filling and a support frame that supports it, raw gas passes through 5 from the bottom to the top, and circulating water passes from the top to the bottom.

充填物としては一般に吸収塔、蒸留塔において使用され
るもの\うち単位容積あたりに充填される充填物の表面
積が大きく、かつ原ガスの通過により生ずる圧損失の少
ないものが望ましい。たとえばボールリング、インタロ
ツクス、テラレット等の市販品はこの目的に適っている
The packing material is generally one used in an absorption column or a distillation column.It is desirable that the packing material filled per unit volume has a large surface area and that the pressure loss caused by passage of the raw gas is small. Commercially available products such as Ball Rings, Interlocks, Terrarets etc. are suitable for this purpose.

また原ガスの温度や含有成分によっては耐熱、耐蝕性の
材質を選択する必要がある。
Furthermore, depending on the temperature and components of the raw gas, it is necessary to select a heat-resistant and corrosion-resistant material.

充填物の表面は降下する水によってなるべく均一に濡れ
るよう公知の工夫が行なわれ、そこを温度の高い水蒸気
を多量に含むガスが通過するので、ガスの持つ顕熱はガ
ス温度と表面の水濃度との温度差を駆動力として水へ移
動する。
Known techniques are used to wet the surface of the filling as uniformly as possible with the falling water, and gas containing a large amount of high-temperature water vapor passes through it, so the sensible heat of the gas is proportional to the gas temperature and the water concentration on the surface. It moves to the water using the temperature difference between it and the water as a driving force.

さらにガス中の水蒸気分圧が水温の呈する水蒸気圧より
高い条件にある間には、この差圧を駆動力として水蒸気
は水の表面へ移動して凝縮する。すなわち原ガスの保有
する潜熱が水側に移動する。このように充填物によつそ
構成された大きな気液接触表面上で、原ガスの保有する
顕熱、潜熱の所定量は降下する循環水に移動する。かく
てガス自体は冷却減湿する六共に循環水は加熱され5の
底部に設けられた液溜め6に集められる。
Further, while the water vapor partial pressure in the gas is higher than the water vapor pressure exhibited by the water temperature, the water vapor moves to the surface of the water and condenses using this differential pressure as a driving force. In other words, the latent heat possessed by the raw gas moves to the water side. On the large gas-liquid contact surface constructed around the packing in this way, a predetermined amount of sensible heat and latent heat possessed by the raw gas is transferred to the descending circulating water. In this way, the gas itself is cooled and dehumidified, and the circulating water is heated and collected in a liquid reservoir 6 provided at the bottom of the tank 5.

かくて原ガスは所定温度に達し飽和水蒸気と水に不溶解
性のガスの全量を含んだま\原ガス出口3より排出する
。次に6に集められた熱水はポンプP1により蒸発冷却
器胴体1゜の上部に設けられだ液分散ノズル11により
充填部12に潅水される。この充填部は前記5と同じく
、空間内に大きな濡れ面積を提供するもので循環水はこ
の表面を濡らしながら10の下部の液溜め16に落下す
る。10の内圧は蒸気圧縮機Cで吸引されて1の内圧よ
り低く設定されており、循環水はその圧力に見合う水温
まで自己蒸発を行ない断熱冷却される。Cの吐出圧力は
回収されるスチームの所要圧力で定められるが、圧縮機
の所要動力は圧縮比(吐出圧力/吸引圧力)の増加につ
れて上昇する。かくて冷却された循環水は16よりポン
プP2によって汲み出され再び前記4に送られる。
The raw gas thus reaches a predetermined temperature and is discharged from the raw gas outlet 3 while still containing saturated steam and the entire amount of water-insoluble gas. Next, the hot water collected in the tank 6 is irrigated into the filling part 12 by a pump P1 and a liquid dispersion nozzle 11 provided at the upper part of the evaporative cooler body 1°. Like 5 above, this filling part provides a large wetted area within the space, and the circulating water falls into the liquid reservoir 16 at the bottom of 10 while wetting this surface. The internal pressure of No. 10 is suctioned by vapor compressor C and set lower than the internal pressure of No. 1, and the circulating water is adiabatically cooled by self-evaporation to a water temperature corresponding to the pressure. The discharge pressure of C is determined by the required pressure of recovered steam, but the required power of the compressor increases as the compression ratio (discharge pressure/suction pressure) increases. The thus cooled circulating water is pumped out from 16 by pump P2 and sent to 4 again.

このように原ガス2に含まれた水蒸気の所定量は循環水
を媒介としてこれに対する凝縮と蒸発が行なわれること
により最終的にはCの吐出側にスチームとして回収され
る。そのさいの水バランスは運転条件で異なり、あると
きは全系への水の補給を要し、他のときには系よりの水
の除去を必要とする。
In this way, a predetermined amount of water vapor contained in the raw gas 2 is condensed and evaporated using the circulating water, and is finally recovered as steam on the discharge side of C. The water balance varies depending on the operating conditions, sometimes requiring the addition of water to the entire system and other times requiring removal of water from the system.

また炭化水素系低沸点液のごとく水に不溶性で水の凝縮
する条件下で、共に凝縮するような成分組成を原ガスが
含む場合においても本発明は効力をもつ。
The present invention is also effective when the raw gas contains a component composition such as a hydrocarbon-based low-boiling liquid that is insoluble in water and will condense together under conditions where water condenses.

その場合には1の底部6に集められた液体は別に設けら
れたデカンタ−(図に示されない)に導き、水相と油相
に分液し、水相のみをPlによって11に送液すればよ
い。分液された油相分は適宜側の処理に廻すものとする
0 実施例1はエチルベンゼンよりスチレンを製造する工程
に本発明を適用した例である。
In that case, the liquid collected at the bottom 6 of 1 is led to a separately provided decanter (not shown), separated into an aqueous phase and an oil phase, and only the aqueous phase is sent to 11 using Pl. Bye. The separated oil phase shall be sent to an appropriate treatment. Example 1 is an example in which the present invention was applied to a process for producing styrene from ethylbenzene.

このときは原ガスを冷却を開始すると当初は水蒸気のみ
が続いて水蒸気と油分が共に凝縮する。したがってスチ
ームの回収率を上げるとそのようになるが、この例では
運転条件として水蒸気のみが凝縮する範囲に止めである
In this case, when the raw gas starts to be cooled, initially only water vapor continues, and then both water vapor and oil condense. Therefore, this can be achieved by increasing the steam recovery rate, but in this example, the operating conditions are limited to a range where only water vapor condenses.

次にこの発明を第1図において原ガス人口2と出口3の
間の温度差がかなPGMれている場合にも経済的に適用
できる方法について述べる。
Next, a method will be described in which this invention can be economically applied even when the temperature difference between the raw gas population 2 and the outlet 3 is small PGM in FIG.

実施例1にも示すように入口、出口ガス温度に相対する
循環水の温度は通常2°C前後でよく、ときには1 ’
O以下でも十分なエンタルピーの移動ができる。
As shown in Example 1, the temperature of the circulating water relative to the inlet and outlet gas temperatures is usually around 2°C, and sometimes 1'
Sufficient enthalpy can be transferred even below O.

一方圧縮機の動力は前述のごとく通過する蒸気の圧縮比
に支配されるので、原ガスよりのエンタルピーの回収率
を上げるために原ガス出口ガス温度を入口にくらべて大
きく下げると、それに見合って循環水の凝縮器への供給
温度、すなわち冷却器内の沸点が下がり圧縮機の吸込圧
の減少、動力の増大を招き経済性が失なわれるという矛
盾を生ずる。
On the other hand, as mentioned above, the power of the compressor is controlled by the compression ratio of the vapor passing through it, so if the raw gas outlet gas temperature is lowered significantly compared to the inlet gas temperature in order to increase the enthalpy recovery rate from the raw gas, it will be commensurate with that. This results in a contradiction in that the temperature of the circulating water supplied to the condenser, that is, the boiling point in the cooler, decreases, resulting in a decrease in the suction pressure of the compressor, an increase in power, and a loss of economic efficiency.

第2図はこのような場合に適応するフローシートである
。凝縮器1の内部には充填部8゜5が上下2段に設けら
れ、その中間には上段液溜め7と下段液分散ノズル4が
配設されている。原ガスは第1図と同じく2より1の底
部に入り5を通過する間に4よりの循環水と接触してエ
ンタルピー交換を行なう。続いて7の開口部より8を通
過し、こ\で下段と同様に9よりの循環水とエンタルピ
ー交換を行なったのち3より糸外に出る。
FIG. 2 is a flow sheet suitable for such a case. Inside the condenser 1, filling parts 8.5 are provided in two stages, upper and lower, and an upper stage liquid reservoir 7 and a lower stage liquid dispersion nozzle 4 are arranged in the middle. As in FIG. 1, the raw gas enters the bottom of 1 through 2 and, while passing through 5, comes into contact with the circulating water from 4 to perform enthalpy exchange. Subsequently, it passes through 8 through the opening of 7, where it exchanges enthalpy with the circulating water from 9 as in the lower stage, and then exits the strand 3.

一方加熱された循環水は下段と上段とで別の処理が行な
われる。まず下段の6より排出される熱水は第1図と同
様に11.12を経て自己蒸発して所定温度まで冷却し
たのち、13を経て大気脚受器14に至りPlにより4
に戻る 一方蒸気圧縮機C1は13の温度に見合った圧力の発生
水蒸気全吸引し所定圧力のスチームを回収する。
On the other hand, the heated circulating water undergoes different treatments in the lower and upper stages. First, the hot water discharged from the lower stage 6 passes through 11.12, self-evaporates and cools down to a predetermined temperature, as shown in Figure 1, and then passes through 13 to the atmospheric leg receiver 14, where it reaches 4 by Pl.
On the other hand, the vapor compressor C1 sucks in all the steam generated at a pressure corresponding to the temperature of step 13 and recovers steam at a predetermined pressure.

同様に上段の7に集められた熱水は10とは別に設けら
れた蒸発冷却器17に送られ16.17を経て所定温度
まで冷やされたのち18.19、P2を経て9に戻る。
Similarly, the hot water collected in the upper stage 7 is sent to an evaporative cooler 17 provided separately from 10, and is cooled to a predetermined temperature through 16.17, and then returns to 9 through 18.19 and P2.

このとき蒸気圧縮機C2は18に集められた循環水の温
度に見合った蒸気圧力の下で水蒸気の吸引を行ない、所
定圧のスチームを得ることはC1と同様である。第2図
のフローシートは1をほぼ大気圧下で、したがって10
、15を減圧下で運転することを想定し、10.7より
の熱水をそれぞれ11.16へ送液するために圧力条件
に合わせて機器群の相対高さを設置することによりζ送
液ポンプは不要となる。したがって循環水用ポンプは各
々の充填部に対して一基づつの設置でよい。なおこのフ
ローシートには第1図と同じく循環水の増減に応じた水
の供給または排出のラインが図示されていないが、これ
は運転条件により適宜性なうものとする。また第2図に
おいては凝縮器1の内部に充填部を5.8と2箇所設け
てガスの流れはその間を直列とし、循環水の流れは各々
独立にしたが、この塔自体を2本に分けて各基を接続す
ることも可能である。また逆に冷却器10.15を1本
にまとめ、内部に仕切りを設けて内圧を別箇にコントロ
ールするような設計も可能である。
At this time, the vapor compressor C2 sucks water vapor under a vapor pressure commensurate with the temperature of the circulating water collected at 18, and obtains steam at a predetermined pressure, similar to C1. The flow sheet in Figure 2 shows 1 at approximately atmospheric pressure, so 10
, 15 are operated under reduced pressure, and in order to send the hot water from 10.7 to 11.16, the relative height of the equipment group is set according to the pressure conditions. No need for a pump. Therefore, one circulating water pump may be installed for each filling section. Note that this flow sheet does not show lines for supplying or discharging water according to the increase or decrease of circulating water, as in FIG. 1, but this may be determined as appropriate depending on the operating conditions. In addition, in Fig. 2, two filling sections (5.8 and 5.8) were provided inside the condenser 1, and the gas flow was made in series between them, and the circulating water flow was made independent of each other, but the tower itself was divided into two. It is also possible to connect each group separately. Conversely, it is also possible to design a system in which the coolers 10.15 are combined into one and a partition is provided inside to separately control the internal pressure.

このように凝縮器と冷却器のセットを2組設けることに
より圧縮機C1、C2の吸引圧力はそれぞれの充填部に
戻る循環水の温度で支配されることになる。したがって
clへの吸引圧力はC2に対する圧力より高くなり、そ
れだけC1の動力消費は軽減される。原ガスの入口、出
口温贋差を多くとるほどこのようなセットを2組設ける
ことの経済性が発揮され、必要によってはガスの流れに
対してさらに多くの凝縮系を直列につなぐことが望まし
い。実施例2はこのような原ガスの保有するエンタルピ
ーの回収率を上げるために本発明を適用した例である。
By providing two sets of condensers and coolers in this manner, the suction pressures of the compressors C1 and C2 are controlled by the temperature of the circulating water returned to the respective filling sections. Therefore, the suction pressure to cl is higher than the pressure to C2, and the power consumption of C1 is reduced accordingly. The greater the temperature difference between the inlet and outlet of the raw gas, the more economical it becomes to install two such sets, and if necessary, it is desirable to connect more condensing systems in series with the gas flow. . Example 2 is an example in which the present invention is applied to increase the recovery rate of the enthalpy possessed by such raw gas.

(ホ)発明の効果 この発明は以上説明したように水に不溶性のガスと混合
する水蒸気〜すなわち通常は廃棄するか、温水を作る程
度しか利用する道のなかった水蒸気を高価な熱交換器を
使用することなくその大部分を回収して所定圧力のスチ
ームとして利用する道を開いたものである。
(e) Effects of the Invention As explained above, this invention uses an expensive heat exchanger to convert water vapor that mixes with gases that are insoluble in water, that is, water vapor that normally could only be discarded or used only to produce hot water. This opens the door to recovering most of the steam without using it and using it as steam at a predetermined pressure.

また熱回収のために原ガスと循環水の充填部での直接接
触方式を採用するために循環水の温度レベルを熱交使用
方式にくらべて高くとることができ、蒸気圧縮機の吸引
側圧力を高くとることができ、これが圧縮比の低下、ひ
いては動力の削減につながる。
In addition, since a direct contact method is adopted between the raw gas and the circulating water in the filling section for heat recovery, the temperature level of the circulating water can be kept higher than in the heat exchange method, and the pressure on the suction side of the vapor compressor is increased. can be made higher, which leads to a reduction in the compression ratio and, in turn, to a reduction in power.

またとくに原ガスのエンタルピーを極力利用しスチーム
の回収率を高めるためには、凝縮加熱器、蒸発冷却器の
セットを複数列設けることにより、動力消費をさらにお
さえることが可能となる。
In particular, in order to utilize the enthalpy of the raw gas as much as possible and increase the steam recovery rate, it is possible to further reduce power consumption by providing a plurality of sets of condensing heaters and evaporative coolers.

実施例1 エチルベンゼンを気相触媒反応により脱水素してスチレ
ンモノマーを合成する際には原糸に大量の水蒸気を混じ
て反応収率の向上をはかり、副生物による装置の閉塞を
防ぐのが通例である。
Example 1 When synthesizing styrene monomer by dehydrogenating ethylbenzene by gas-phase catalytic reaction, it is customary to mix a large amount of water vapor with the raw fiber to improve the reaction yield and prevent clogging of the equipment by by-products. It is.

この反応生成ガスは高温であり通常、廃熱ボイラーに導
いて160°C程度まで冷し、その間の顕熱をスチーム
として回収することは行なわれているが、その後は空冷
または水冷の熱交換器に導いて冷却を行ないガス中に含
まれる水蒸気や反応物の大半を凝縮し水素等の不溶性ガ
スと分離し、得られた凝縮液を次工程に送っている。
This reaction product gas is at a high temperature and is normally led to a waste heat boiler to cool it down to about 160°C, and the sensible heat during that time is recovered as steam, but after that it is passed through an air-cooled or water-cooled heat exchanger. Most of the water vapor and reactants contained in the gas are condensed and separated from insoluble gases such as hydrogen, and the resulting condensate is sent to the next process.

このさいに美大な熱量が熱交換されるが、これをスチー
ムとして回収して原ガスの希釈用に利用することは工業
的には行なわれていない。
Although a large amount of heat is exchanged during this process, it is not industrially possible to recover this as steam and use it to dilute the raw gas.

このように廃熱ボイラーを出た反応生成ガス(原ガス)
に対して第1表に示すような条件で本発明を適用する。
The reaction product gas (raw gas) leaving the waste heat boiler in this way
The present invention is applied to the following conditions under the conditions shown in Table 1.

第1表 原ガス組成と運転条件 ガス組成;水分  ・・・・・・・・・・・・・・・ 
 s 7 、 q 2 % mol水素  ・・・・・
・・・・・・・・・・  4.61ベンゼン・・・・川
・・・・・  0.12トルエン・・・・・・・・・・
・・  0.08エチルベンゼン・・・   2.61 スチレン・・・・・・・・・・・・  4.61その他
 ・・・・・・・・・・・  0.05合  計  ・
・曲・・・・・・  100.00ガス圧力;凝縮加熱
器入口 常圧 ガス温度;原ガス     160 °C凝縮加熱器入
口  96.6’0 凝縮加熱器出口  92.0°0 循環水温度;凝縮器入口温度  90,0°0凝縮凝縮
口出度  95.0°C 圧縮機圧力;吸入側    0.71 Kf/7  a
4i吐出側   2.02Kp/−α6ノ 原ガスは第1表のごとく大量の水蒸気と水素、芳香族炭
化水素を含む常圧で160°Cの混合気体である。まず
これに水を断熱的に接触させ等エンタルピー変化を起さ
せるとガスは湿球温度96.6°Cで飽和に達する。次
にこのガスを外部より除熱すればガス温度は下がり、そ
れに応じた水分の凝縮が起る。ガス温度を89゜9°C
以下に下げると芳香族成分が凝縮をはじめる。このとき
の凝縮液体は水とは互いに難溶性であり、油分として凝
縮水とは2相に分れる。
Table 1 Raw gas composition and operating conditions Gas composition; Moisture ・・・・・・・・・・・・・・・
s7, q2% mol hydrogen...
・・・・・・・・・・・・ 4.61 Benzene・・・・・・・・・ 0.12 Toluene・・・・・・・・・
・・ 0.08 Ethylbenzene ・ 2.61 Styrene ・・・・・ 4.61 Others ・・ 0.05 Total ・
・Song... 100.00 Gas pressure; Condensing heater inlet Normal pressure gas temperature; Raw gas 160 °C Condensing heater inlet 96.6'0 Condensing heater outlet 92.0°0 Circulating water temperature; Condenser inlet temperature 90.0°0 Condensation Condensation outlet degree 95.0°C Compressor pressure; Suction side 0.71 Kf/7 a
4i discharge side 2.02Kp/-α6 raw gas is a mixed gas containing a large amount of water vapor, hydrogen, and aromatic hydrocarbons at normal pressure and 160°C as shown in Table 1. First, when water is brought into adiabatic contact with the gas to cause an isenthalpic change, the gas reaches saturation at a wet bulb temperature of 96.6°C. Next, if heat is removed from this gas from the outside, the gas temperature will drop, and moisture will condense accordingly. Gas temperature 89°9°C
When the temperature is lowered below, aromatic components begin to condense. The condensed liquid at this time is poorly soluble in water and separates into two phases from the condensed water as an oil component.

第2表はこのようなガス冷却を続けるさいに、各々の温
度に対してそれまでに除去すべき熱量(あるいは回収可
能な熱量)を示したものである。
Table 2 shows the amount of heat that must be removed (or the amount of heat that can be recovered) for each temperature while continuing such gas cooling.

この表から判るように最初は湿球温度96.6°0より
の温度降下が比較的僅かでも凝縮量は大きく熱回収率は
大きいが次第に熱回収率を上げて行くと、それ以上の率
で大きな温度降下を必要とする。
As can be seen from this table, initially, even if the temperature drop from the wet bulb temperature of 96.6°0 is relatively small, the amount of condensation is large and the heat recovery rate is high, but as the heat recovery rate is gradually increased, Requires large temperature drop.

第1図により第1表の運転条件の下で実施するときの結
果を第3表に示す。
Table 3 shows the results obtained under the operating conditions shown in Table 1 according to FIG.

このように本発明の方式によれば反応器出口のエンタル
ピーの55チ、含有水蒸気量の67.9%を2〜/c1
i1.120 ’Oの飽和水蒸気で回収し反応器の入口
に戻すことができ、外部より供給するスチームは約弛に
減らすことができる。
As described above, according to the method of the present invention, the enthalpy at the reactor outlet is 55 cm, and the amount of water vapor contained is 67.9%, at 2~/c1.
Saturated steam of i1.120'O can be recovered and returned to the inlet of the reactor, and the amount of steam supplied from the outside can be reduced to about 100%.

第2表 スチレン反応生成ガスの回収可能熱景原ガス中
のスチレンI Kmo13あたり第3表 スチーム回収
の運転条件と結果原ガス中のスチレンI Kmo−4?
あたり水蒸発温度/圧カニ90°a10.y1Ky/a
ir  air回収回収スチーム温度方圧カニ10 ’
O/2.02 K9/肩aJi蒸発水量: 2t1.B
Kp 圧縮機動カニ理論11,7KwH 軸動力19.5 BKWH(圧縮機効率60%)実動力
20.5 KWH(モー1−効率95%)発生スチーム
量:  255.4Ky 同エンタルピー=1.427 X 105KJ発生スチ
ームエンタルピー/原ガスの全エンタルピー:ss、o
%使用動力/発生ス−y−−ム: 87.8 KWH/
TON実施例 2 製紙工場における紙の乾燥機において発生する蒸発水分
に本発明を適用し回収し、得られたスチームを再び加熱
用シリンダーに送り乾燥用に利翔する。
Table 2 Recoverable heat of styrene reaction product gas Styrene I in the raw gas per Kmo13 Table 3 Operating conditions and results for steam recovery Styrene I in the raw gas Kmo-4?
water evaporation temperature/pressure crab 90°a10. y1Ky/a
ir air recovery recovery steam temperature normal pressure crab 10'
O/2.02 K9/Shoulder aJi Evaporation water amount: 2t1. B
Kp Compressor moving crab theory 11.7KwH Shaft power 19.5 BKWH (compressor efficiency 60%) Actual power 20.5 KWH (Mo 1 - efficiency 95%) Amount of steam generated: 255.4Ky Same enthalpy = 1.427 X 105KJ Generated steam enthalpy/total enthalpy of raw gas: ss, o
%Used power/generated sum: 87.8 KWH/
TON Example 2 The present invention is applied to the evaporated moisture generated in a paper dryer in a paper mill and recovered, and the resulting steam is sent to the heating cylinder again and used for drying.

乾燥機の内部には通常数十本の回転するシリンダーがあ
り、それぞれの内部には3〜1.5KP/−程度のスチ
ームを導入し、円筒の表面を適宜加熱する。湿分を含ん
だ紙はそのシリンダー表面に接触しながら通過し加熱さ
れ乾燥する。
There are usually several dozen rotating cylinders inside the dryer, and steam of about 3 to 1.5 KP/- is introduced into each of them to appropriately heat the surface of the cylinders. The paper containing moisture passes through the cylinder while being in contact with the surface of the cylinder, where it is heated and dried.

紙の品質や省エネ的な配慮より各シリンダーの表面温度
は一定でなく、幾つかの異なるグループに分れる。
Due to paper quality and energy saving considerations, the surface temperature of each cylinder is not constant and is divided into several different groups.

乾燥帯域は一応フードをめぐらして半密閉の構造として
あり、発生する蒸気は排気ファンにより、外部より侵入
する空気と共にフード外に運び去られる。したがってこ
の排気には大量の空気が混じており、温度も80゛C前
後まで下る例が多くこれよりのスチームの回収は困難で
、未だ実現された例をきかない〇 本発明をこの系に実施するにはまず乾燥帯域の密閉化を
進め、紙の出入口に最小限の開口部を設けるに止めると
共に発生する蒸気を帯域外にプロワ−で吸引するさいに
も外部よりのフード内部への空気のもれを最低限に止め
るために帯域の圧力を大気圧より僅かに減圧に保つよう
に圧力の調整を行なう必要がある。この上うに配慮すれ
ばフードより離れる発生蒸気中に含まれる空気は10〜
15チ容積、その露点温度は97〜95’08Kに止め
ることができる。このような水に不溶性のガスを含む蒸
気をまず第2図のごとき系に送って前記の説明のごとき
操作を行なう。運転条件とその予想される結果はそれぞ
れ第4表、第5表に示す。なお以下におけるカッコの数
字は第2図に示される数字と同一であり各点を示す。ま
た各部の熱損失は無視しである。
The drying zone has a semi-sealed structure with a hood surrounding it, and the generated steam is carried out of the hood along with air entering from the outside by an exhaust fan. Therefore, this exhaust gas contains a large amount of air, and in many cases the temperature drops to around 80°C, making it difficult to recover steam from this point, and there is no example that has been realized yet.The present invention is implemented in this system. In order to do this, the drying zone must first be sealed, and the minimum opening should be provided at the entrance and exit of the paper, and when the generated steam is sucked out of the zone with a blower, air from the outside can be drawn into the hood. To minimize leakage, it is necessary to adjust the pressure in the zone to maintain it slightly below atmospheric pressure. If you take this into account, the air contained in the generated steam away from the hood will be 10~
15 inch volume, its dew point temperature can be stopped at 97~95'08K. Steam containing such a water-insoluble gas is first sent to a system as shown in FIG. 2, and the operation as described above is carried out. The operating conditions and their expected results are shown in Tables 4 and 5, respectively. Note that the numbers in parentheses below are the same as the numbers shown in FIG. 2 and indicate each point. Also, heat loss in each part is ignored.

第4表 製紙乾燥機におけるスチーム回収の運転条件 原ガス中の空気混入率:15.5% ガス温度 :原ガス +21  96.0 ’0両光填
部の中間点92.O゛C! 発ガス (3)   an、 o ゛c循環水温度:(
6)、αυの点  94.o″C峙、α勾、(4)の点
90.5’0 (7)、(m(0点90.0’0 鰻、伏■、(9)の点78.5°C 圧縮機圧カニC1吸引側0.73 Kf/cd a4i
吐出側 3.00 K9/7  aA、lC2吸引側 
0.45 Kf/lyd  a4i吐出側 1−80 
Kp/7  aA、a第5表 予想される運転結果 以下は原ガスI Kmo#あたり、すなわちこれに混入
する水蒸気15.sKpあたりの値を示す。
Table 4 Operating conditions for steam recovery in a paper dryer Air mixing rate in raw gas: 15.5% Gas temperature: Raw gas +21 96.0 '0 Midpoint between both light filling parts 92. O゛C! Gas generation (3) an, o ゛c circulating water temperature: (
6), αυ point 94. o''C diagonal, α slope, (4) point 90.5'0 (7), (m (0 point 90.0'0 eel, down ■, (9) point 78.5°C Compressor pressure Crab C1 suction side 0.73 Kf/cd a4i
Discharge side 3.00 K9/7 aA, lC2 suction side
0.45 Kf/lyd a4i discharge side 1-80
Kp/7 aA, aTable 5 Expected operating results The following are raw gas I Kmo#, that is, water vapor mixed into it 15. The value per sKp is shown.

各蒸発冷却缶よりの蒸発量: α1より s、5Ky0
9より s、1Ky 合  計 13.6にノ 圧縮機C1の動カニ理論 0.67KWH軸動力1.1
1KWH(圧縮機効率60%)実動力1 、17 KW
H(%−ター効率95%)圧縮機C2の動カニ理論 0
.38KWH軸動力 0.69KWH(圧縮機効率55
%)実動力 0.72 KWH(モール−効率95%)
圧縮機C1とC2の合計実動カニ  1.89KWH圧
縮機吐出側の蒸気量: C110,3KpC26,2K
P 計16.5KP 吐出側の蒸気量は原ガス中の水蒸気量の1.06倍とな
る。
Amount of evaporation from each evaporative cooling can: From α1 s, 5Ky0
From 9 s, 1Ky total 13.6 Dynamic crab theory of compressor C1 0.67KWH shaft power 1.1
1KWH (compressor efficiency 60%) Actual power 1, 17 KW
Dynamic crab theory of H (%-ter efficiency 95%) compressor C2 0
.. 38KWH shaft power 0.69KWH (compressor efficiency 55
%) Actual power 0.72 KWH (Mall - efficiency 95%)
Total actual operating capacity of compressors C1 and C2: 1.89KWH Steam amount on compressor discharge side: C110,3KpC26,2K
P total 16.5 KP The amount of steam on the discharge side is 1.06 times the amount of water vapor in the raw gas.

使用動力/発生スチーム:  114.5 KWH/T
ONこのように回収されるスチームはその約604が5
 、 Q KP/lyl tL8Aの圧力で40%は1
.8 Kg/6d a4iのものである。各々は乾燥機
の相等圧力のシリンダーに戻り再使用される。
Power used/steam generated: 114.5 KWH/T
ONThe steam recovered in this way is about 604
, Q KP/lyl 40% at the pressure of tL8A is 1
.. 8 Kg/6d A4i. Each is returned to the equal pressure cylinders of the dryer for reuse.

4、 図面の説明 第1図は本発明を実施するさいの一例を示すフローシー
トである。第2図は第1図において原ガスの入口と出口
の温度差が多いときに動力消費を比較的低く抑えること
が可能な一例を示すフローシートである。
4. Description of the Drawings FIG. 1 is a flow sheet showing an example of implementing the present invention. FIG. 2 is a flow sheet showing an example in which power consumption can be kept relatively low when there is a large temperature difference between the inlet and outlet of raw gas in FIG.

Claims (1)

【特許請求の範囲】 1、水に不溶性のガスと水蒸気の混合ガスを循環水と凝
縮加熱器において直接接触させて水蒸気の凝縮潜熱を主
体に循環水の加熱昇温を行ない、これをより低い圧力下
にある蒸発冷却器に導いて断熱的に自己蒸発を行なつて
水温を下げ再び凝縮加熱器に戻すと共に、蒸発した水蒸
気を圧縮機により所定圧力まで昇圧することを特徴とす
る水に不溶性のガスと混合する水蒸気を分離回収する方
法。 2、循環水の凝縮加熱器と蒸発冷却器のセットを複数列
設けた特許請求範囲第1項記載の水蒸気を水に不溶性ガ
スより分離回収する方法。
[Claims] 1. A mixed gas of a water-insoluble gas and water vapor is brought into direct contact with the circulating water in a condensing heater to heat the circulating water mainly using the latent heat of condensation of the water vapor, thereby lowering the temperature to a lower level. Water-insoluble water vapor that is introduced into an evaporative cooler under pressure, performs self-evaporation adiabatically to lower the water temperature, and is returned to the condensing heater again, and the evaporated water vapor is raised to a predetermined pressure by a compressor. A method of separating and recovering water vapor that mixes with gas. 2. A method for separating and recovering water vapor from a water-insoluble gas as set forth in claim 1, wherein a plurality of sets of circulating water condensing heaters and evaporative coolers are provided.
JP60009152A 1985-01-20 1985-01-20 Process for separating and recovering steam mixed with water-insoluble gas Pending JPS61167424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009152A JPS61167424A (en) 1985-01-20 1985-01-20 Process for separating and recovering steam mixed with water-insoluble gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009152A JPS61167424A (en) 1985-01-20 1985-01-20 Process for separating and recovering steam mixed with water-insoluble gas

Publications (1)

Publication Number Publication Date
JPS61167424A true JPS61167424A (en) 1986-07-29

Family

ID=11712640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009152A Pending JPS61167424A (en) 1985-01-20 1985-01-20 Process for separating and recovering steam mixed with water-insoluble gas

Country Status (1)

Country Link
JP (1) JPS61167424A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192305A (en) * 1985-02-19 1986-08-26 Kanegafuchi Chem Ind Co Ltd Gas-liquid mixing method
JPS63104633A (en) * 1986-10-16 1988-05-10 アンスティテュ・フランセ・デュ・ペトロール Synthetic treatment aiming removal of water in methane-containing wet gas
JP2002544322A (en) * 1999-05-05 2002-12-24 スヴェダラ・インダストリーズ・インコーポレーテッド Coagulation and regeneration of oil from pyrolysis gas
CN103657353A (en) * 2012-09-04 2014-03-26 天华化工机械及自动化研究设计院有限公司 Tail gas separation tower

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192305A (en) * 1985-02-19 1986-08-26 Kanegafuchi Chem Ind Co Ltd Gas-liquid mixing method
JPS63104633A (en) * 1986-10-16 1988-05-10 アンスティテュ・フランセ・デュ・ペトロール Synthetic treatment aiming removal of water in methane-containing wet gas
JP2002544322A (en) * 1999-05-05 2002-12-24 スヴェダラ・インダストリーズ・インコーポレーテッド Coagulation and regeneration of oil from pyrolysis gas
CN103657353A (en) * 2012-09-04 2014-03-26 天华化工机械及自动化研究设计院有限公司 Tail gas separation tower
CN103657353B (en) * 2012-09-04 2015-07-15 天华化工机械及自动化研究设计院有限公司 Tail gas separation tower

Similar Documents

Publication Publication Date Title
US4332643A (en) Method of removing water from glycol solutions
US3294650A (en) Process for concentrating sulfuric acid in a quartz rectifying column
KR101811561B1 (en) System for energy regeneration using mvr in combined chemical process
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant
CN102936198B (en) Produce the method for vinyl acetate
JP4105262B2 (en) Distillation plant and method of using the same
JP2008524271A (en) Methanol recovery method
CN105819531B (en) A kind of energy saving heat pump medium temperature spray evaporation system
CN107042022A (en) Multi-stage evaporation system is reinforceed to sub-gravity field
IL40951A (en) Evaporative method
CN107405535A (en) Utilize the Distallation systm of used heat
CN107596706A (en) A kind of steam condensation evaporation technology and device
RU2762755C2 (en) Method for increasing concentration of sulfuric acid and equipment for use in this method
CN109020031A (en) Evaporation concentration system based on thermal compression
US4181506A (en) Method for recovering concentrated sulphur dioxide from waste gases containing sulphur dioxide
JPS61167424A (en) Process for separating and recovering steam mixed with water-insoluble gas
US3985529A (en) Method for the production of liquid sulphur dioxide
US6217711B1 (en) Method of treating condensates
CN206081667U (en) MVR distillation plant
WO2023103283A1 (en) System and method for improving water quality of dehydrating tower of purified terephthalic acid apparatus
CN221358577U (en) Ethylene glycol reaction product separation and purification equipment
US3950150A (en) Method and device for removing water vapor
JPH04313302A (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
JPS6239541A (en) Apparatus for production of formic acid
JPH04330903A (en) Method for evaporating and concentrating water solution containing water soluble organic compound