JPS6116255B2 - - Google Patents

Info

Publication number
JPS6116255B2
JPS6116255B2 JP55110386A JP11038680A JPS6116255B2 JP S6116255 B2 JPS6116255 B2 JP S6116255B2 JP 55110386 A JP55110386 A JP 55110386A JP 11038680 A JP11038680 A JP 11038680A JP S6116255 B2 JPS6116255 B2 JP S6116255B2
Authority
JP
Japan
Prior art keywords
acetone
chlorine
reaction
hexachloroacetone
phosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55110386A
Other languages
Japanese (ja)
Other versions
JPS5735537A (en
Inventor
Yasuo Hibino
Akira Negishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP11038680A priority Critical patent/JPS5735537A/en
Priority to IT23468/81A priority patent/IT1138147B/en
Priority to DE3131895A priority patent/DE3131895C2/en
Priority to FR8115641A priority patent/FR2488602B1/en
Priority to GB8124769A priority patent/GB2082180B/en
Publication of JPS5735537A publication Critical patent/JPS5735537A/en
Publication of JPS6116255B2 publication Critical patent/JPS6116255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明アセトンと塩素との反応によりヘキサク
ロルアセトンを製造する際に、効率よく高純度の
ヘキサクロルアセトンを得る方法に関する。 ヘキサクロルアセトンは塩基性条件下、加水分
解されてトリクロル酢酸およびクロロホルムを与
え、また医薬、農薬等の中間体として有用であ
り、更に塩素をふつ素と置換することによりヘキ
サフルオロアセトンを製造することができ、工業
的に重要な化合物である。 アセトンの塩素化によるヘキサクロルアセトン
の合成法は比較的多く知られており、例えばP.
Fritsch,Ann.279巻、318頁(1894年)、米国特
許明細書第2199934号(1940年)、H.C.Cheng,Z.
Physik.Chem.B24巻、308頁(1934年)等にも記
載されているが、これらはいずれも反応時間が長
いか、ヘキサクロルアセトンの収率が低く、効率
のよい方法ではない。 これらの改良法としてT.Ambrus,Rev.
Chim.14巻(9)、506〜508頁(1963年)、および米
国特許第3265740号(1966年)等が比較的最近、
提出されている。前者の方法はアセトンと塩素を
1対3(モル比)で80〜90℃においてラシツヒリ
ング充填カラム内で並流接触反応させ、3塩化物
を中心とした低塩素化アセトンを得、次いで150
〜160℃において過剰量の塩素を活性炭触媒によ
り反応させヘキサクロルアセトンを得るものであ
る。後者の方法は、ピリジン添加アセトンと2当
量の塩素とを気相で反応させて低塩素化アセトン
を得、このものを液相にて触媒量のピリジン存在
下に塩素と反応させてヘキサクロルアセトンを得
ている。これらのいずれの方法も低塩素化アセト
ンを得る段階は気相で行なうため蒸気圧の高い未
反応アセトンの損失はまぬがれないし、た前者の
方法においてヘキサクロルアセトンを得る段階で
はかなり過剰の塩素が必要であつて工業的には必
ずしも好ましくないし、後者の方法ではヘキサク
ロルアセトンに変換する第2段階において触媒と
して用いるピリジンの量が少ない場合、1,1,
1−トリクロルアセトンは他の塩素化アセトンに
比較して触媒効果を受けにくく未反応で残存する
という欠点がある。 また特開昭49−24909号公報に記載された改良
法では反応を3段階で行ない、塩素化度の低い初
期過程では反応を低温で行ない、次いでピリジン
等の有機塩基またはその塩の存在下に加熱を行な
い3〜4.5塩素化物になるまで反応させ、それ以
降は上記有機塩基又はその塩の共存下、加熱およ
び光照射下に塩素と反応させるものである。この
方法によれば比較的短時間、かつ低温度で反応は
進行するが、初期過程における液相での塩化水素
とアセトンとの接触により副反応が起きる可能性
が高く、また後期過程における光照射は装置の維
持管理等が繁雑である等の難点があり、必ずしも
工業的に有利な方法とはいえない。 本発明者等はヘキサクロルアセトン製造法にお
ける上記の現状に鑑み、より効率のよい方法を提
供すべく鋭意検討を重ねた結果、低塩素化アセト
ンをホスフイン単独触媒(トリフエニルホスフイ
ンを除く)、またはホスフインと有機塩基との混
合触媒の存在下、加熱しながら塩素を導入して塩
素化することによつて、高純度のヘキサクロルア
セトンを高収率で得ることができることを見出し
本発明に到達したものである。 本明細書においてホスフインとは、モノフエニ
ルホスフイン、ジフエニルホスフイン、ジメチル
フエニルホスフイン、トリエチルホスフイン、ト
リス(4−メチルフエニル)ホスフイン、トリ−
n−ブチルホスフイン、トリ−n−オクチルホス
フイン及びトリフエニルホスフインを意味し、有
機塩基とは、ピリジン、キノリン、n−トリブチ
ルアミン、n−トリオクチルアミンを意味するも
のと定義する。これらの有機塩基は比較的沸点が
高く、熱安定の良好な化合物である。 本発明はアセトンと塩素との反応によりヘキサ
クロルアセトンを製造するにあたり、低塩素化ア
セトンを得る段階では、副生物であるメシチルオ
キシドおよびホロン等の生成を避ける目的で、ア
セトンと塩素を1対2〜1対3(モル比)の範囲
において70〜100℃の気相において並流接触反応
させ、生成した1.6〜1.8塩素化アセトンを後段の
吸収反応器中、25〜80℃において有機溶媒に吸収
させ、過剰の塩素と更に反応させることにより2
〜2.5塩素化アセトンを得る。この低塩素化アセ
トンにホスフイン(但し、トリフエニルホスフイ
ンを除く)単独、またはホスフインとアミンのよ
うな有機塩基との組合せ触媒を少量添加して、60
〜150℃において塩素をほぼ理論量吹き込み、反
応を完了させてヘキサクロルアセトンを得るもの
である。この際、低塩素化アセトンを得る初期段
階から、吸収剤として用いる有機溶媒中に触媒を
添加しておいても何ら差し支えない。 本発明において、ホスフイン(トリフエニルホ
スフインを除く)単独触媒であつても反応は進行
するが、若干の有機塩基を添加することにより、
触媒量を削減しても効率的に反応が終結すること
が判明した。すなわち、ホスフイン(トリフエニ
ルホスフインを除く)単独触媒では触媒量が少量
であるとペンタクロルアセトン残存量が多く、一
方、ピリジンのような有機塩基触媒単独である
と、1,1,1−トリクロルアセトンの残存量が
多いが、両者を組合わせることによりペンタクロ
ルアセトンおよび1,1,1−トリクロルアセト
ンを効率よく減らせることが判明した。 触媒の添加量は、ホスフイン単独であれば0.1
〜5.0モル%、好ましくは0.2〜1.0モル%用いれば
よく、ホスフインと有機塩基とを組み合わせる場
合には両者ともに0.05〜2.0モル%、好ましくは
0.1〜0.5モル%が適当である。 低塩素化アセトンを吸収する有機溶媒として
は、塩素化に影響がなく、蒸気圧が低くて生成す
るヘキサクロルアセトンと簡単に分離しうるもの
であればどんなものでもよいが、ヘキサクロルア
セトン、または低塩素化アセトンを用いれば簡単
である。このほか四塩化炭素、クロルベンゼン、
トリクロルトリフルオルエタン等も用いることが
できる。この吸収剤は生成する低塩素化アセトン
に対して10〜100モル%、好ましくは20〜50モル
%用いればよい。この吸収剤を用いることにより
吸収反応器上部に備え付ける還流凝縮器の温度を
緩和することができ、低塩素化アセトンの捕捉効
率が向上し、更に塩素の反応率が高くなる利点が
ある。 初期反応における塩素とアセトンとの気相反応
における接触時間は、後段の吸収反応器において
更に塩素化反応が進むという補償効果のためにか
なり広範囲にとることができ、5〜20秒の幅で可
能である。この段階における反応は、塩素とアセ
トンとを気−気接触させることが副反応を避ける
ために必要であり、温度範囲は70〜100℃が適当
である。吸収反応器の温度については、有機物の
損失を抑え、更に塩素の反応率を高めるために25
〜80℃が好ましい。 このようにして得られた低塩素化アセトンをヘ
キサクロルアセトンとする後期段階では、反応温
度を60℃以上とし、150℃まで温度を順次上昇さ
せることにより反応は終結するが、触媒量によつ
ては140℃まで上げれば充分である。触媒の添加
方法としては、トリス(4−メチルフエニル)ホ
スフイン等固形物を用いる場合には低塩素化アセ
トンに溶解して、トリ−n−ブチル−ホスフイン
等液体はそのまま、投入することができる。有機
塩基類と組合わせる場合には最初から両者共に添
加するか、適宜、別々に添加しても差し支えはな
い。 反応系中の水はホスフインに対して被毒効果を
示し、反応装置の腐食等に対しても好ましくない
ので極力避けるべきであるが、水がアセトンに対
して0.25重量%以下であれば反応の進行に支障は
ない。塩素の導入量は、初期には反応がほぼ定量
的に進行し、後期においても塩素の導入速度を調
整することにより塩素の損失を抑えて反応を完結
することができるのでほぼ理論量で十分である。 本反応は回分式にも連続式にも行なうことがで
きる。 実施例 1 水平に保つたガラス製反応管(直径21mm、長さ
270mm)に気化器を通して、アセトン0.3モル/
時、塩素0.9モル/時(モル比1:2.5)を同時に
送入し、電気ヒーターで加熱して反応器内の温度
を70〜80℃に保ち、並流接触反応させる。反応器
の出口は、ヘキサクロルアセトン150g(0.57モ
ル)を入れ上部に−5〜0℃の還流冷却器を備え
た500ml四ツ口フラスコに接続し、ヘキサクロル
アセトンの温度を50〜70℃に保ち、反応を2時間
47分行なつた(アセトンの導入量1.0モル)。ここ
で生成した低塩素化アセトンの塩素化度は、副生
した塩化水素およびガスクロマトグラフイーによ
る定量の結果2.5であつた。 ヘキサクロルアセトンに捕集したこの反応液に
トリ−n−ブチルホスフインを0.4g(仕込みア
セトンに対し0.2モル%)添加し、反応温度を60
℃から徐々に上昇させ、146℃まで加熱して温素
を1.0モル/時の流量で送つて3.7時間反応を行な
い、淡黄色の粗ヘキサクロルアセトンを得た。生
成した粗ヘキサクロルアセトンの純度はガスクロ
マトグラフイーによる定量の結果95.4%で、その
他の生成物は1.1,1−トリクロルアセトン0.2
%、ペンタクロルアセトンが4.4%であつた。全
収率は溶媒として用いたヘキサクロルアセトンお
よび触媒を除いて91.2%であつた。 比較例 1,2 吸収剤としてヘキサクロルアセトン100g
(0.38モル)を用いた以外は実施例1と同様にし
て反応を行ない、塩素化度2.5の低塩素化アセト
ンを得、触媒としてトリ−n−ブチルホスフイン
の代りにキノリンおよびピリジンを各々単独に用
いた反応の結果を第1表に示す。
The present invention relates to a method for efficiently obtaining high-purity hexachloroacetone when producing hexachloroacetone by reacting acetone with chlorine. Hexachloroacetone is hydrolyzed under basic conditions to give trichloroacetic acid and chloroform, and is useful as an intermediate for medicines, agricultural chemicals, etc. Hexafluoroacetone can also be produced by replacing chlorine with fluorine. It is an industrially important compound. Relatively many methods for synthesizing hexachloroacetone by chlorination of acetone are known; for example, P.
Fritsch, Ann. 279, 318 (1894), U.S. Patent No. 2199934 (1940), HCCheng, Z.
Although it is described in Physik.Chem.B volume 24, page 308 (1934), these are not efficient methods because the reaction time is long or the yield of hexachloroacetone is low. As an improved method of these, T. Ambrus, Rev.
Chim. vol. 14(9), pp. 506-508 (1963), and U.S. Patent No. 3265740 (1966), etc. are relatively recent.
It has been submitted. The former method involves co-current contact reaction of acetone and chlorine in a 1:3 (molar ratio) at 80 to 90°C in a packed Raschchilling column to obtain low chlorinated acetone mainly consisting of trichloride.
Hexachloroacetone is obtained by reacting excess chlorine with an activated carbon catalyst at ~160°C. The latter method involves reacting pyridine-doped acetone with 2 equivalents of chlorine in the gas phase to obtain less chlorinated acetone, which is then reacted with chlorine in the liquid phase in the presence of a catalytic amount of pyridine to produce hexachloroacetone. I am getting . In both of these methods, the step of obtaining low chlorinated acetone is carried out in the gas phase, so loss of unreacted acetone with high vapor pressure is inevitable, and in the former method, a considerable excess of chlorine is required in the step of obtaining hexachloroacetone. In the latter method, when the amount of pyridine used as a catalyst in the second step of converting to hexachloroacetone is small, 1,1,
Compared to other chlorinated acetones, 1-trichloroacetone has the disadvantage that it is less susceptible to catalytic effects and remains unreacted. In the improved method described in JP-A No. 49-24909, the reaction is carried out in three stages, in which the reaction is carried out at a low temperature in the initial stage where the degree of chlorination is low, and then the reaction is carried out in the presence of an organic base such as pyridine or its salt. The reaction is carried out by heating until a 3 to 4.5 chloride is obtained, and thereafter the reaction is carried out with chlorine in the coexistence of the above-mentioned organic base or its salt under heating and light irradiation. According to this method, the reaction proceeds in a relatively short time and at low temperature, but there is a high possibility that side reactions will occur due to contact between hydrogen chloride and acetone in the liquid phase in the early process, and light irradiation in the late process. This method has disadvantages such as complicated maintenance and management of the equipment, and is not necessarily an industrially advantageous method. In view of the above-mentioned current state of the hexachloroacetone production method, the present inventors have made extensive studies to provide a more efficient method, and as a result, we have determined that low chlorinated acetone can be used as a single phosphine catalyst (excluding triphenylphosphine). Alternatively, it was discovered that high-purity hexachloroacetone can be obtained in high yield by introducing chlorine while heating in the presence of a mixed catalyst of phosphine and an organic base, thereby achieving the present invention. This is what I did. In this specification, phosphine refers to monophenylphosphine, diphenylphosphine, dimethylphenylphosphine, triethylphosphine, tris(4-methylphenyl)phosphine, tri-
We define n-butylphosphine, tri-n-octylphosphine and triphenylphosphine, and organic base to mean pyridine, quinoline, n-tributylamine, n-trioctylamine. These organic bases have relatively high boiling points and are thermally stable compounds. In the present invention, when producing hexachloroacetone by the reaction of acetone and chlorine, in the step of obtaining low chlorinated acetone, one pair of acetone and chlorine is combined in order to avoid the production of by-products such as mesityl oxide and holone. A cocurrent catalytic reaction is carried out in the gas phase at 70 to 100°C in the range of 2 to 1 to 3 (molar ratio), and the generated 1.6 to 1.8 chlorinated acetone is converted to an organic solvent at 25 to 80°C in a subsequent absorption reactor. 2 by absorption and further reaction with excess chlorine.
~2.5 chlorinated acetone is obtained. A small amount of phosphine (excluding triphenylphosphine) alone or a combination catalyst of phosphine and an organic base such as an amine is added to this low chlorinated acetone for 60 minutes.
Almost stoichiometric amount of chlorine is blown in at ~150°C to complete the reaction and obtain hexachloroacetone. At this time, there is no problem in adding a catalyst to the organic solvent used as an absorbent from the initial stage of obtaining low chlorinated acetone. In the present invention, the reaction proceeds even with phosphine (excluding triphenylphosphine) as a single catalyst, but by adding some organic base,
It was found that the reaction could be efficiently terminated even if the amount of catalyst was reduced. In other words, when using a phosphine (excluding triphenylphosphine) catalyst alone, a small amount of catalyst results in a large amount of pentachloroacetone remaining, whereas when using an organic base catalyst such as pyridine alone, 1,1,1-trichloro Although there was a large amount of acetone remaining, it was found that pentachloroacetone and 1,1,1-trichloroacetone could be efficiently reduced by combining the two. The amount of catalyst added is 0.1 if phosphine is used alone.
~5.0 mol%, preferably 0.2-1.0 mol%, and when phosphine and an organic base are combined, both are 0.05-2.0 mol%, preferably
0.1-0.5 mol% is suitable. Any organic solvent that absorbs low chlorinated acetone may be used as long as it does not affect chlorination, has a low vapor pressure, and can be easily separated from the hexachloroacetone produced. It is easy to use low chlorinated acetone. In addition, carbon tetrachloride, chlorobenzene,
Trichlorotrifluoroethane and the like can also be used. This absorbent may be used in an amount of 10 to 100 mol %, preferably 20 to 50 mol %, based on the generated low chlorinated acetone. By using this absorbent, it is possible to moderate the temperature of the reflux condenser installed at the upper part of the absorption reactor, which has the advantage of improving the capture efficiency of low chlorinated acetone and further increasing the chlorine reaction rate. The contact time in the gas phase reaction between chlorine and acetone in the initial reaction can be set over a fairly wide range due to the compensating effect of further chlorination reaction in the subsequent absorption reactor, and can range from 5 to 20 seconds. It is. In the reaction at this stage, it is necessary to bring chlorine and acetone into gas-gas contact in order to avoid side reactions, and the temperature range is preferably 70 to 100°C. The temperature of the absorption reactor was set at 25°C to suppress the loss of organic matter and further increase the chlorine reaction rate.
~80°C is preferred. In the latter stage of converting the low chlorinated acetone thus obtained into hexachloroacetone, the reaction temperature is set at 60°C or higher, and the reaction is terminated by increasing the temperature sequentially to 150°C, but depending on the amount of catalyst. It is sufficient to raise the temperature to 140℃. As for the method of adding the catalyst, when a solid substance such as tris(4-methylphenyl)phosphine is used, it can be dissolved in low chlorinated acetone, and a liquid such as tri-n-butyl-phosphine can be added as it is. When combined with organic bases, both may be added from the beginning or may be added separately as appropriate. Water in the reaction system has a poisoning effect on phosphine and is also undesirable for corrosion of the reaction equipment, so it should be avoided as much as possible, but if water is less than 0.25% by weight based on acetone, the reaction will not proceed. There is no problem with progress. Regarding the amount of chlorine introduced, the reaction proceeds almost quantitatively in the initial stage, and by adjusting the rate of chlorine introduction in the latter stage, the reaction can be completed by suppressing the loss of chlorine, so the approximately theoretical amount is sufficient. be. This reaction can be carried out either batchwise or continuously. Example 1 A glass reaction tube (diameter 21 mm, length
270 mm) through a vaporizer, add 0.3 mol of acetone/
At the same time, 0.9 mol/hour of chlorine (molar ratio 1:2.5) was introduced, and the temperature inside the reactor was maintained at 70-80°C by heating with an electric heater to carry out a cocurrent catalytic reaction. The outlet of the reactor is connected to a 500 ml four-neck flask containing 150 g (0.57 mol) of hexachloroacetone and equipped with a -5 to 0°C reflux condenser at the top, and the temperature of the hexachloroacetone is brought to 50 to 70°C. hold and react for 2 hours
It took 47 minutes (amount of acetone introduced was 1.0 mol). The degree of chlorination of the hypochlorinated acetone produced here was 2.5 as a result of hydrogen chloride produced as a by-product and quantitative determination by gas chromatography. 0.4 g of tri-n-butylphosphine (0.2 mol% based on the acetone charged) was added to this reaction solution collected in hexachloroacetone, and the reaction temperature was adjusted to 60°C.
The temperature was gradually increased from 0.degree. C. to 146.degree. C., and hot hydrogen was fed at a flow rate of 1.0 mol/hour to carry out the reaction for 3.7 hours to obtain pale yellow crude hexachloroacetone. The purity of the crude hexachloroacetone produced was 95.4% as determined by gas chromatography, and the other products were 0.2% of 1.1,1-trichloroacetone.
%, and pentachloroacetone was 4.4%. The overall yield was 91.2% excluding the hexachloroacetone used as a solvent and the catalyst. Comparative Examples 1 and 2 100g of hexachloroacetone as an absorbent
The reaction was carried out in the same manner as in Example 1 except that 0.38 mol of quinoline and pyridine were used as catalysts instead of tri-n-butylphosphine. Table 1 shows the results of the reactions used.

【表】 表中、TCAはトリクロルアセトンを、PCAは
ペンタクロルアセトンを、HCAはヘキサクロル
アセトンを示している。 実施例 2 実施例1と同様にして塩素化度2.3の塩素化ア
セトン1モルを得、これにジフエニルホスフイン
1.12g(0.6モル%)添加し、70〜169℃において
塩素4.4モルを5時間45分導入反応させた。純度
96.1%の無色透明なヘキサクロルアセトンを90.2
%の収率で得た。 実施例 3,4,5,6,7,8 吸収剤としてヘキサクロルアセトン100gを用
いた以外は実施例1と同様にして塩素化度2.5の
低塩素化アセトンを得、触媒としてトリフエニル
ホスフインとキノリンもしくはピリジンの複合
系、トリ−n−ブチルホスフインとキノリンもし
くはピリジンの複合系、トリ−n−ブチルホスフ
インとトリ−n−ブチルアミンの複合系、および
ジフエニルホスフインとキノリンの複合系を用い
た。結果を第2表に示す。
[Table] In the table, TCA indicates trichloroacetone, PCA indicates pentachloroacetone, and HCA indicates hexachloroacetone. Example 2 1 mole of chlorinated acetone with a degree of chlorination of 2.3 was obtained in the same manner as in Example 1, and diphenylphosphine was added to this.
1.12g (0.6 mol%) was added, and 4.4 mol of chlorine was introduced and reacted at 70 to 169°C for 5 hours and 45 minutes. purity
96.1% colorless transparent hexachloroacetone 90.2
% yield. Examples 3, 4, 5, 6, 7, 8 Low chlorinated acetone with a degree of chlorination of 2.5 was obtained in the same manner as in Example 1 except that 100 g of hexachloroacetone was used as an absorbent, and triphenylphosphine was used as a catalyst. and quinoline or pyridine, tri-n-butylphosphine and quinoline or pyridine, tri-n-butylphosphine and tri-n-butylamine, and diphenylphosphine and quinoline. was used. The results are shown in Table 2.

【表】 表中、TBPはトリ−n−ブチルホスフイン
を、TBAはトリ−n−ブチルアミンを、DPPは
ジフエニルホスフインを表わす。
[Table] In the table, TBP represents tri-n-butylphosphine, TBA represents tri-n-butylamine, and DPP represents diphenylphosphine.

Claims (1)

【特許請求の範囲】 1 平均2〜2.5塩素化アセトンを、ホスフイン
(トリフエニルホスフインを除く)単独またはホ
スフインと有機塩基との混合物からなる触媒の存
在下に、加熱しながら塩素と反応させることを特
徴とするヘキサクロルアセトンの製造方法。 2 アセトンと塩素を70〜100℃の気相において
接触反応させ、生成した平均1.6〜1.8塩素化アセ
トンを有機溶媒中に吸収させ、過剰の塩素とさら
に反応させて平均2〜2.5塩素化アセトンとし、
このものをホスフイン単独またはホスフインと有
機塩基との混合物からなる触媒の存在下に、加熱
しながら塩素と反応させることを特徴とするヘキ
サクロルアセトンの製造方法。
[Claims] 1. Reacting an average of 2 to 2.5 chlorinated acetones with chlorine while heating in the presence of a catalyst consisting of phosphine (excluding triphenylphosphine) alone or a mixture of phosphine and an organic base. A method for producing hexachloroacetone, characterized by: 2 Acetone and chlorine are brought into contact reaction in the gas phase at 70 to 100°C, and the generated average 1.6 to 1.8 chlorinated acetone is absorbed into an organic solvent, and further reacted with excess chlorine to form an average of 2 to 2.5 chlorinated acetone. ,
A method for producing hexachloroacetone, which comprises reacting this product with chlorine while heating in the presence of a catalyst consisting of phosphine alone or a mixture of phosphine and an organic base.
JP11038680A 1980-08-13 1980-08-13 Preparation of hexachloroacetone Granted JPS5735537A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11038680A JPS5735537A (en) 1980-08-13 1980-08-13 Preparation of hexachloroacetone
IT23468/81A IT1138147B (en) 1980-08-13 1981-08-11 PROCEDURE FOR THE PREPARATION OF HEXACLOROACETONE USING A PHOSPHINE CATALYST TO COMPLETE THE CHLORURATION
DE3131895A DE3131895C2 (en) 1980-08-13 1981-08-12 Process for the production of hexachloroacetone
FR8115641A FR2488602B1 (en) 1980-08-13 1981-08-12 PROCESS FOR THE PREPARATION OF HEXACHLOROACETONE
GB8124769A GB2082180B (en) 1980-08-13 1981-08-13 Process of preparing hexachloroacetone using phosphine catalyst to complete chlorination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11038680A JPS5735537A (en) 1980-08-13 1980-08-13 Preparation of hexachloroacetone

Publications (2)

Publication Number Publication Date
JPS5735537A JPS5735537A (en) 1982-02-26
JPS6116255B2 true JPS6116255B2 (en) 1986-04-28

Family

ID=14534484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11038680A Granted JPS5735537A (en) 1980-08-13 1980-08-13 Preparation of hexachloroacetone

Country Status (5)

Country Link
JP (1) JPS5735537A (en)
DE (1) DE3131895C2 (en)
FR (1) FR2488602B1 (en)
GB (1) GB2082180B (en)
IT (1) IT1138147B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072502A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2009072501A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2011062104A1 (en) 2009-11-17 2011-05-26 旭硝子株式会社 Method for producing polycarbonate
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate
WO2014088029A1 (en) 2012-12-06 2014-06-12 旭硝子株式会社 Method for producing carbonate compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899482B (en) * 2014-01-08 2019-01-22 旭硝子株式会社 The manufacturing method of hexachloroacetone

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635117A (en) * 1949-05-12 1953-04-14 Allied Chem & Dye Corp Preparation of polychloroacetones
US3265740A (en) * 1962-07-11 1966-08-09 Du Pont Process for chlorinating acetone and acetylacetone
US3988369A (en) * 1974-09-26 1976-10-26 Pearson Donald E Process and reactant for halogenating organic compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072502A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2009072501A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2011062104A1 (en) 2009-11-17 2011-05-26 旭硝子株式会社 Method for producing polycarbonate
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate
WO2014088029A1 (en) 2012-12-06 2014-06-12 旭硝子株式会社 Method for producing carbonate compound

Also Published As

Publication number Publication date
DE3131895A1 (en) 1982-03-25
JPS5735537A (en) 1982-02-26
IT1138147B (en) 1986-09-17
FR2488602B1 (en) 1985-07-05
IT8123468A0 (en) 1981-08-11
DE3131895C2 (en) 1984-10-31
GB2082180A (en) 1982-03-03
FR2488602A1 (en) 1982-02-19
GB2082180B (en) 1984-07-11

Similar Documents

Publication Publication Date Title
JPS60237030A (en) Manufacture of 1,2,3-trichloro-2-methyl-prone
JPS6116255B2 (en)
EP0004636B1 (en) Process for preparing benzotrifluoride and its derivatives
JP2006518734A (en) Method for producing oxydiphthalic anhydride using bicarbonate as catalyst
JPH0237342B2 (en)
CA1037051A (en) Continuous process for producing glycide
CN113735680A (en) Synthetic method of 2, 4-dichlorobenzyl chloride
JPH0237343B2 (en)
US4388251A (en) Method for preparing 2-chlorobenzoyl chloride
JPS5852267A (en) Preparation of unsaturated sulfone
JPH0660130B2 (en) Method for producing 1-bromoethylhydrocarbonyl carbonate
JPS608236A (en) Manufacture of isobutylylfluoride
JPH09278704A (en) Production of monochloropinacolone
GB2051067A (en) Process for the Preparation of 3,3-dimethyl-allyl Alcohol
JPS6137748A (en) Manufacture of pure hydrate of furol and hexafuroloacetone from hemiacetal
JPS6052134B2 (en) Manufacturing method of hexafluoroisobutene
JPH0359907B2 (en)
JPH0461862B2 (en)
JPH0469362A (en) Preparation of acetoacetic acid l-menthyl ester
JP3188519B2 (en) Method for producing tert-butyl chloride
JP2539876B2 (en) Method for producing 2,2,6,6-tetramethyl-4-oxopiperidine
JPS6312862B2 (en)
KR830000207B1 (en) Method of manufacturing KETAZINE
JPH0366294B2 (en)
JP3757478B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid