JPS6116204B2 - - Google Patents

Info

Publication number
JPS6116204B2
JPS6116204B2 JP14919180A JP14919180A JPS6116204B2 JP S6116204 B2 JPS6116204 B2 JP S6116204B2 JP 14919180 A JP14919180 A JP 14919180A JP 14919180 A JP14919180 A JP 14919180A JP S6116204 B2 JPS6116204 B2 JP S6116204B2
Authority
JP
Japan
Prior art keywords
forming
roll
line shaft
shaft
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14919180A
Other languages
Japanese (ja)
Other versions
JPS5772727A (en
Inventor
Takashi Shinba
Hiroshi Ona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Metal Industry Co Ltd
Original Assignee
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Metal Industry Co Ltd filed Critical Nippon Metal Industry Co Ltd
Priority to JP14919180A priority Critical patent/JPS5772727A/en
Publication of JPS5772727A publication Critical patent/JPS5772727A/en
Publication of JPS6116204B2 publication Critical patent/JPS6116204B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔利用する技術分野〕 本発明は薄鋼板の広幅冷間成形でポケツト波発
生の防止に関する。ここに言う「ポケツト波」と
は、断面広幅の薄鋼板(以下、薄板と呼ぶ)。表
面に浅いたわみが波状を現出して周期的に発生す
る凹凸のシワをいう。そのうち、断面端部に長手
方向に微細に発生するシワを「縁波」と呼ぶこと
があるが、この縁波を含め、また折曲げ部付近に
長手方向に発生する細い波状の凹凸を〔腰おれ〕
と呼ぶことがあるが、この腰おれをも含める。ポ
ケツト波は、一般にいう「ふくれ凸面」と「たわ
み凹面」であつて、長手直線方向に移動させ該線
上の凹の深さと凸の高さのすべてを合計し、その
合計値の1/2をもつて表わし、記号hw(単位
mm/m)で記載する。被成形板の「幅寄せ量」は
「上下1組から成る成形ロールを通過する前後に
おける成形品の幅の差の1/2」である。この幅
の語は板幅そのものではなく、成形加工するウエ
ブの幅である。薄鋼板、すなわち薄板は、普通鋼
板、メツキ鋼板、けい素鋼板、ステンレス鋼板、
クラツド鋼板その他の薄板をいう。第3図に点散
在した部にポケツト波が発生する。 〔在来技術〕 在来の広幅冷間成形は、タンデムロールで薄板
加工を行う。例えば、10段ロールの間で平板から
漸次に折曲げ角度を大にし10段目で所要形状寸法
に成形できるため、9段目で製品のスプリングバ
ツクを考慮して成形し、10段目で、さらに正確に
精度の高い成形を加える。各段目のロール出口で
各ロールごとに、相均等な応力を加え、すなわち
均等な変形エネルギを加えて成形度を均等に維持
して所要形寸法の製品を得られるように、1段か
ら9段までで、例えば角折曲げを約80度角度を所
要とするとき、後に第4図で説明するように、平
板から5段目まで、各ロールで約10度、5段目で
45〜50度に折曲げをし、6段目から9段目までで
5〜10度の間の適当な角度でゆるやかな変形を
し、経験則に基づいて各段の折曲げ角度を決め
る。この成形に使用する10段目のロールは、一本
のラインシヤフトで単独の動力装置で駆動され、
各段ロールに伝達され、各段ロールは少し、例え
ばロール周速で、用途に応じて0.01〜1.0%変速
をし、引張り勝手に、上ロールと下ロールの間
に、被加工薄板を成形する。先ず試行し前記の原
則の下で各成形ロール出口の中間加工を検討し、
不適当なものがあれば調整し、再試行する。この
場合に、ポケツト波を生ずるときは、何段目のロ
ール成形を、どう調整するかという立案も、いは
ば手探りである。段数を増すことは容易ではない
から、既設、例えば10段成形ロールで、合理的に
当初の確認試行で、量産に直入する条件が得られ
れば、きわめて良好な効率で、作業性が向上さ
れ、正確で高精度な形状寸法のものが得られ、そ
の結果として製品コストを低くし良好な所要形状
寸法な製品を得ることができる。 〔在来技術の解決すべき課題〕 本発明は、前記の在来技術の現状にてらし、立
案した当初に、合理的な成形法を試行し、試行の
結果を検討し、早急に量産を開始し、製品コスト
が低い品質良好なものの提供を目的とする。この
目的を達成するために、普通のタンデムロールの
構造と成形方法を改良する。 近年、薄板製品は多様性が求められ、薄板の厚
さは薄くされ、幅寄せ量は増し、折曲げの角の曲
げ半径を極小にし、広幅で大形のものについて
も、連続作業で加工欠点が生じない成形をし、在
来の既設の設備の改良と有効使用ができる高効率
の製造方法と装置の提供が課題である。 〔課題を解決するための技術上の手段〕 本発明は、妥当と考えた成形過程を立案し試行
し、各段ロール出口でポケツト波の量(hw)を
計測し、幅寄せ量と板厚との関係を各ロール段目
を、均一な加工に要するネルギーを供給する駆動
をし、成形し、且つポケツト波発生段ロールの最
大値を示すロール段番号を見出す。次に、既存の
一つのラインシヤフトを、該ロール段番号の出口
で分割し、該ロール段目までを第一駆動装置(既
存のもの)および、該ロールの次のロール段から
第10段までを第一ラインシヤフト(既設分割)
で、前記分割した第二ラインシヤフトで、第一駆
動装置と独立した第二駆動装置で駆動するよう
に、第一と第二の二つの独立駆動装置とそれぞれ
の第一と第二の二つのラインシヤフトで成形す
る。また第二ラインシヤフトの回転数と第一ライ
ンシヤフトの回転数の比、N2/N1を1.15〜1.2
(倍)とする。また、成形ロールが形成する折曲
げ半径を小にし、幅寄せ角の折曲げを峻しくし平
面部を大にする。第2図A図は在来のものを、同
B図は本実施例の配置を示す説明図を示した。 実施例 1 次に、本発明を一実施例について図面に基づい
て説明する。第1図は本発明の一実施例の中間部
省略をした10段成形ロールから成るタンデムロー
ル改良の平面図を示す。第一成形部は、第一駆動
装置AAと、モータ23と、変減速装置9と、伝
達装置8と、第一ラインシヤフト装置7と、所要
段数成形ロール装置とから成る。第二成形部は、
第二駆動装置BBと、モータ33と、変減速装置
19と、伝達装置18と、第二ラインシヤフト装
置17と、所要段数成形ロール装置とから成る。
中間部に矢印で示すB部に点線で示す軸03は、
一本のラインシヤフトを分割し除去した元軸を示
す。図中の20,25,30は台板で、21と3
1は操作ハンドルで、26と36は駆動軸であ
る。前端に薄板装置6を備え、後端に成形体矯正
機16を備えた成形ロール装置は、第一成形部と
して、S1,S2,S3,S4,S5,S6およびS7から成
り、第二成形部として、S8,S9およびS10から成
る。各ロールの周速は、0.01〜1.0%の範囲内で
用途目的に応じて任意に選択した引張り勝手に駆
動される構成である。本図に示す実施例は、第一
成形装置は7段ロールで、第二成形装置は3段ロ
ールである。原薄板は、装入装置6からロールス
タンドS1のロール1と2の間に進めて成形され、
順次進行されS7ロールスタンドのロール1と2の
間で、第一成形を終了する。次に、第二成形装置
のロールスタンドS8のロール11と12の間に進
行し、最終スタンドS10の上下ロール11と12
の間で仕上げ成形をする。 一連の試験の結果は、スタンドS7での第一ライ
ンシヤフト7の回転数N1と、スタンドS8での第
二ラインシヤフト17の回転数の比、すなわち、
N2/N1が1.15〜1.2倍の場合に好適な成形がなさ
れた。 第2図は、第二成形装置の一部拡大ロールスタ
ンドS10の側面図である。他のスタンド、例えば
S1も、すべて同様な構造である。 実施例 2 前記実施例1の装置で成形する。10段タンデム
冷間ロール成形装置では、軸7の直径を30mm、ロ
ールスタンド幅250mm、変減速モーター15HP、下
軸駆動で上軸従動ロールから成る。供試材は、
JIS―SPCC―SDで、薄板の厚さは0.5mm、ウエブ
幅Ww/板厚tの比は、第1表に示す「96,
144,192,240」の4種である。第6A図などに
製品板幅Wとウエブ幅Wwを、第6B図に折曲げ
部の凸部の一部拡大形状と折曲げ半径Rを示し
た。10段ロール中間成形過程の正面図を第5A図
と第5B図に示した。 ポケツト波発生の原因を明瞭にするために、最
大幅寄せ量、ウエブ幅と板厚の比、成形ロール駆
動方法、ロール段数、作業上の無理な変形量およ
び発生したポケツト波の解消などを変化させて成
形させた場合を、次に説明する。他の実施例で説
明するがWw/tが96以下ではポケツト波は発生
しない。192以上では発生する。好ましくは96以
下である。
[Technical Field of Application] The present invention relates to prevention of pocket waves in wide-width cold forming of thin steel sheets. The "pocket wave" referred to here is a thin steel plate with a wide cross section (hereinafter referred to as a thin plate). It refers to irregular wrinkles that occur periodically on the surface due to shallow flexures that appear wavy. Among these, minute wrinkles that occur in the longitudinal direction at the end of the cross section are sometimes called "edge waves." In addition to these edge waves, fine wavy irregularities that occur in the longitudinal direction near the bends are also referred to as "edge waves." I〕
Although it is sometimes called this, it also includes this waist. Pocket waves are generally referred to as ``bulging convex surfaces'' and ``deflection concave surfaces.'' They are moved in a longitudinal straight line, and the depth of the concave and the height of the convexity on the line are totaled, and 1/2 of the total value is It is also represented by the symbol hw (unit
Described in mm/m). The "width shifting amount" of the plate to be formed is "1/2 of the difference in width of the molded product before and after passing through a pair of upper and lower forming rolls." The term width refers to the width of the web being formed, not the board width itself. Thin steel plates, that is, thin plates, include ordinary steel plates, plated steel plates, silicon steel plates, stainless steel plates,
Refers to clad steel plates and other thin plates. Pocket waves are generated in scattered areas in FIG. [Conventional technology] Conventional wide-width cold forming processes thin sheets using tandem rolls. For example, the bending angle can be gradually increased from a flat plate between 10 rolls, and the required shape and dimensions can be formed in the 10th roll.In the 9th roll, the product is formed taking into account the spring back, and in the 10th roll, Adding even more precise and precise molding. At the roll exit of each stage, equal stress is applied to each roll, that is, equal deformation energy is applied to maintain the degree of forming uniformly and to obtain a product with the desired size. For example, when an angle of about 80 degrees is required for corner bending, from the flat plate to the 5th step, each roll should be bent at an angle of about 10 degrees, and at the 5th step, as will be explained later in Figure 4.
Bend it at 45 to 50 degrees, then gently deform it at an appropriate angle of 5 to 10 degrees from the 6th to 9th tier, and decide the bending angle of each tier based on empirical rules. The 10th roll used for this forming is driven by a single line shaft and a single power device.
The information is transmitted to each corrugated roll, and each corrugated roll changes the speed slightly, for example, by 0.01 to 1.0% depending on the application, at the roll circumferential speed, and forms the thin plate to be processed between the upper roll and the lower roll. . First, based on the above principles, we examined the intermediate processing at the exit of each forming roll.
If anything is incorrect, adjust it and try again. In this case, when pocket waves occur, it is difficult to plan how many stages of roll forming should be done and how to adjust them. It is not easy to increase the number of stages, so if conditions for direct mass production can be obtained with an existing, say 10 stage forming roll, in a reasonable initial confirmation trial, workability will be improved with extremely good efficiency. Products with accurate and highly accurate shapes and dimensions can be obtained, and as a result, product costs can be reduced and products with good desired shapes and dimensions can be obtained. [Problems to be solved by conventional technology] In light of the current state of the conventional technology, the present invention attempts a rational molding method at the beginning of its planning, examines the results of the trial, and promptly begins mass production. The aim is to provide products with low cost and good quality. To achieve this purpose, the structure and forming method of common tandem rolls are improved. In recent years, thin sheet products have been required to be more diverse, and the thickness of the sheet has been reduced, the width of the sheet has been increased, and the bending radius of the bending corner has been minimized. The challenge is to provide a highly efficient manufacturing method and device that can perform molding that does not occur and that can improve and effectively use existing conventional equipment. [Technical means for solving the problem] The present invention plans and trials a forming process that is considered appropriate, measures the amount of pocket waves (hw) at the exit of each corrugated roll, and calculates the amount of width closing and plate thickness. Each roll stage is driven to supply the energy required for uniform processing, forming, and the roll stage number indicating the maximum value of the pocket wave generating corrugated roll is found. Next, one existing line shaft is divided at the exit of the roll stage number, and the first drive device (existing one) is used for up to the roll stage, and from the roll stage next to the roll stage to the 10th roll stage. First line shaft (existing division)
In the divided second line shaft, the first and second two independent drive devices and the first and second two drive devices are respectively driven by a second drive device that is independent of the first drive device. Form with a line shaft. Also, the ratio of the number of rotations of the second line shaft to the number of rotations of the first line shaft, N2/N1, is 1.15 to 1.2.
(times). In addition, the bending radius formed by the forming rolls is made smaller, the width closing angle is made steeper, and the flat portion is made larger. FIG. 2A shows a conventional arrangement, and FIG. 2B shows an explanatory diagram showing the arrangement of this embodiment. Example 1 Next, one example of the present invention will be described based on the drawings. FIG. 1 shows a plan view of an improved tandem roll consisting of 10 stages of forming rolls with the middle section omitted, according to an embodiment of the present invention. The first forming section includes a first drive device AA, a motor 23, a variable speed reduction device 9, a transmission device 8, a first line shaft device 7, and a required number of stages forming roll device. The second molding part is
It consists of a second drive device BB, a motor 33, a variable speed reduction device 19, a transmission device 18, a second line shaft device 17, and a required number of stages forming roll device.
Axis 03 indicated by a dotted line in part B indicated by an arrow in the middle part is
The original axis is shown after dividing and removing one line shaft. 20, 25, 30 in the figure are base plates, 21 and 3
1 is an operating handle, and 26 and 36 are drive shafts. The forming roll device equipped with the thin plate device 6 at the front end and the formed body straightening machine 16 at the rear end has first forming sections S 1 , S 2 , S 3 , S 4 , S 5 , S 6 and S 7 . The second molded part consists of S 8 , S 9 and S 10 . The circumferential speed of each roll is arbitrarily selected depending on the purpose of use within the range of 0.01 to 1.0%, and is driven in a tensile manner. In the embodiment shown in this figure, the first forming device has seven-stage rolls, and the second forming device has three-stage rolls. The original thin plate is advanced from the charging device 6 between the rolls 1 and 2 of the roll stand S 1 and is formed.
The first forming is completed between rolls 1 and 2 of the S7 roll stand. Next, it advances between the rolls 11 and 12 of the roll stand S 8 of the second forming device, and the upper and lower rolls 11 and 12 of the final stand S 10 .
Perform finishing molding between. The results of the series of tests were as follows:
Suitable molding was achieved when N2/N1 was 1.15 to 1.2 times. FIG. 2 is a partially enlarged side view of the roll stand S10 of the second forming device. Other stands, e.g.
S 1 also has a similar structure. Example 2 Molding is carried out using the apparatus of Example 1. The 10-stage tandem cold roll forming device consists of a shaft 7 with a diameter of 30 mm, a roll stand width of 250 mm, a variable speed reduction motor of 15 HP, and a lower shaft driven and an upper shaft driven roll. The sample material is
According to JIS-SPCC-SD, the thickness of the thin plate is 0.5 mm, and the ratio of web width Ww/plate thickness t is 96,
There are four types: 144, 192, and 240. Fig. 6A shows the product board width W and web width Ww, and Fig. 6B shows the partially enlarged shape of the convex portion of the bent portion and the bending radius R. Front views of the 10-roll intermediate forming process are shown in Figures 5A and 5B. In order to clarify the cause of pocket waves, we changed the maximum width approach, the ratio of web width to sheet thickness, the forming roll drive method, the number of rolls, the amount of unreasonable deformation during work, and the elimination of pocket waves that occurred. Next, the case where the molding is performed will be explained. As will be explained in other embodiments, pocket waves are not generated when Ww/t is 96 or less. Occurs at 192 or higher. Preferably it is 96 or less.

〔作用〕[Effect]

第一成形装置を第一駆動装置で第一成形をし、
第二成形装置で第二駆動装置で第二成形をし、第
二ラインシヤフトの回転数を第一ラインシヤフト
の回転数の1.1〜1.3倍、好ましくは1.15〜1.2倍の
範囲で成形をする薄板の広幅冷間圧延をする場合
であつて、突出したポケツト波発生値をもたらし
たロールを含めて第一成形装置を設け、独立した
第二駆動装置を備えた第二成形装置を設けたもの
は、最大幅寄せ量が1.2mm以下であつて、被成形
ウエブ幅/板厚の比が144mm/mより小、好まし
くは96mm/mより小な場合、ポケツト波の発生を
最少にする。もち論、変形量を合理化し、無理な
成形をしないことが前提である。分割する成形ロ
ールは突出したポケツト波を発生させるロールを
発見してきめることができる。 〔効果〕 すでに説明した本発明の方法および装置は、ポ
ケツト波発生を最小にし、全くなくなるようにす
ることができ、高品質の成形が得られ、作業性も
向上し、コストを低くする。
A first forming device is used for first forming with a first driving device,
A thin plate that is subjected to second forming in a second forming device using a second drive device, with the rotation speed of the second line shaft being in the range of 1.1 to 1.3 times, preferably 1.15 to 1.2 times, the rotation speed of the first line shaft. In the case of wide-width cold rolling of , the generation of pocket waves is minimized when the maximum width shift is 1.2 mm or less and the ratio of web width to plate thickness to be formed is smaller than 144 mm/m, preferably smaller than 96 mm/m. The premise is to rationalize the amount of deformation and avoid excessive forming. The forming roll to be divided can be determined by finding a roll that generates a prominent pocket wave. [Effects] The method and apparatus of the present invention as described above can minimize or completely eliminate pocket wave generation, resulting in high quality molding, improved workability, and lower costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の一実施例の平面図、第1B
図は成形ロールスタンドの側面図(在来のものと
同じ)。第2A図は、A図が在来法の配置説明図
で、B図が本発明の配置説明図、第3図AとB図
はポケツト波発生の態様説明図、第4図は10段ロ
ール毎の変形角度と折曲げ形状を示す。第5A図
と第5B図は成形の中間過程を示す一部拡大正面
断面図、第6A図と第6B図は最終成形物の説明
図、第7A図は在来法による各段目での変形での
ポケツト波発生量、第7B図は本発明の方法およ
び装置による測定値を最小二乗法で表示した説明
図、第8A図と第8B図はラインシヤフトの回転
数とポケツト波減少の関係図。 1,11…成形ロール、2,12…ロール支持
体、S1,S10…ロールスタンド、7,17…ライ
ンシヤフト、8,18…駆動輪、6…装入装置、
16…矯正装置、26,36…駆動軸、C―C,
D―D…ロール中心、W1,W2,W3,W4…ウエ
ブ、W…板の最大幅、Ww…加工ウエブの幅、
WR1,WR2,WR3,WR4…折曲げ部の曲げ半
径、N1,N2…回転数、01…最小二乗法で求め
た関係曲線。
FIG. 1A is a plan view of an embodiment of the present invention, and FIG. 1B is a plan view of an embodiment of the present invention.
The figure is a side view of the forming roll stand (same as the conventional one). In Figure 2A, Figure A is an explanatory diagram of the layout of the conventional method, Figure B is an explanatory diagram of the layout of the present invention, Figures 3A and B are illustrations of the mode of pocket wave generation, and Figure 4 is a 10-tier roll. The deformation angle and bending shape for each are shown. Figures 5A and 5B are partially enlarged front sectional views showing the intermediate process of molding, Figures 6A and 6B are explanatory diagrams of the final molded product, and Figure 7A is deformation at each stage according to the conventional method. Fig. 7B is an explanatory diagram showing the measured values by the method and device of the present invention using the least squares method, and Figs. 8A and 8B are relationship diagrams between line shaft rotational speed and pocket wave reduction. . DESCRIPTION OF SYMBOLS 1, 11... Forming roll, 2, 12... Roll support body, S1 , S10 ... Roll stand, 7, 17... Line shaft, 8, 18... Drive wheel, 6... Charging device,
16... Correction device, 26, 36... Drive shaft, C-C,
D-D...roll center, W1 , W2 , W3 , W4 ...web, W...maximum width of plate, Ww...width of processed web,
WR 1 , WR 2 , WR 3 , WR 4 ... Bending radius of the bent part, N 1 , N 2 ... Rotation speed, 01 ... Relationship curve obtained by least squares method.

Claims (1)

【特許請求の範囲】 1 タンデムロール装置の各成形ロール間を進行
させてする成形で、薄鋼板をラインシヤフト駆動
ロールで成形する過程での計測値が(イ)該各段ロー
ルでの薄鋼板の被成形ウエブ幅/板厚の比が144
mm/mより小、好ましくは96mm/m以下で、(ロ)最
大幅寄せ量が1.2mm以下であつて、該ポケツト波
計測値が他のロールの値に比し突出するロールの
後部で、前記ラインシヤフトを前部用と後部用の
ものに切離し分割させ二つの独立したラインシヤ
フトとし、前記前部用第一ラインシヤフトで前記
突出値を示したロールまでを駆動する第1成形過
程とし、前記後部用ラインシヤフトで前記突出値
ロールの後のロールを駆動する第2成形過程と
し、被加工薄鋼板を第1成形過程で粗成形をし、
第2成形過程で仕上成形をし、被成形加工体に張
力を付加し成形したことを特徴とした薄鋼板の広
幅冷間成形の方法。 2 タンデムロール機装置で各上下ロール間を進
行させてする成形で、1組をなす上下対向した成
形ロールを嵌装する中心軸の支持ロールスタンド
と、前記中心軸を駆動するラインシヤフト駆動装
置と、これらを結合して成る成形ロール装置の前
記一つのラインシヤフトを分割独立し二つの第一
と第二のラインシヤフトのそれぞれで形成した独
立駆動第一成形装置と第二成形装置を分離分割し
て設け、第一成形装置第一ラインシヤフトの軸回
転数N1と第二成形装置の第二ラインシヤフトの
軸回転数N2の比N2/N1を1.15〜1.2倍として備え
たことを特徴とした薄鋼板の広幅冷間成形の装
置。
[Scope of Claims] 1. In forming by advancing between each forming roll of a tandem roll device, the measurement value during the process of forming a thin steel plate with line shaft drive rolls is (a) The ratio of web width to plate thickness is 144
mm/m or less, preferably 96 mm/m or less, and (b) the maximum width shift amount is 1.2 mm or less, and the pocket wave measurement value is at the rear of the roll that is protruding compared to the values of other rolls, A first forming process in which the line shaft is separated and divided into one for the front part and one for the rear part to form two independent line shafts, and the first line shaft for the front part drives up to the roll showing the protrusion value, a second forming process in which the rear line shaft drives a roll after the protrusion value roll, and the thin steel plate to be processed is roughly formed in the first forming process;
A method for wide-width cold forming of a thin steel sheet, characterized in that finishing forming is performed in the second forming process, and tension is applied to the object to be formed. 2 Forming is performed by advancing between upper and lower rolls in a tandem roll machine device, and includes a support roll stand for a central shaft into which a pair of vertically opposed forming rolls is fitted, and a line shaft drive device for driving the central shaft. , the one line shaft of the forming roll device formed by combining these is divided into two independent drive first forming device and second forming device each formed by two independent first and second line shafts; The thin film is characterized in that the ratio N2/N1 of the shaft rotational speed N1 of the first line shaft of the first forming device to the shaft rotational speed N2 of the second line shaft of the second forming device is 1.15 to 1.2 times. Equipment for wide cold forming of steel plates.
JP14919180A 1980-10-24 1980-10-24 Method and apparatus for wide cold forming of thin metallic plate Granted JPS5772727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14919180A JPS5772727A (en) 1980-10-24 1980-10-24 Method and apparatus for wide cold forming of thin metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14919180A JPS5772727A (en) 1980-10-24 1980-10-24 Method and apparatus for wide cold forming of thin metallic plate

Publications (2)

Publication Number Publication Date
JPS5772727A JPS5772727A (en) 1982-05-07
JPS6116204B2 true JPS6116204B2 (en) 1986-04-28

Family

ID=15469788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14919180A Granted JPS5772727A (en) 1980-10-24 1980-10-24 Method and apparatus for wide cold forming of thin metallic plate

Country Status (1)

Country Link
JP (1) JPS5772727A (en)

Also Published As

Publication number Publication date
JPS5772727A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
EP0424526B1 (en) Reinforced composite corrugated body
JPS6032532B2 (en) Cold roll forming method
US3535902A (en) Method and apparatus for straightening sheet materials
JPS6116204B2 (en)
EP0339094B1 (en) Method of guiding material to fin-pass roll and its guide roll stand
JPH0390202A (en) Manufacture of deformed cross section strip sheet
CN110479761B (en) Device and method for rolling metal plate in multiple passes
JP3358757B2 (en) Method and apparatus for manufacturing irregular shaped strip
GB694039A (en) Improvements in or relating to plate elements for plate- type heat exchangers
JPS6147607B2 (en)
JPS6150064B2 (en)
JP2002035835A (en) Tension leveler correcting sheet strip
JPH09108707A (en) Manufacturing device of t-steel
JPH02169105A (en) Method and device for rolling irregular shaped section bar
JPH08174050A (en) Production of cut t-steel and apparatus thereof
JPH01138021A (en) Bending equipment for band steel
JP2000140947A (en) Tube forming method by bending roll and the tube
JPH04237521A (en) Method for forming fin
JP3358654B2 (en) Pipe forming method with bending roll
JPH06277761A (en) Curved surface forming machine
JPS6215694B2 (en)
JPH0547293B2 (en)
JPH05333A (en) Manufacture of metallic sheet curved in widthwise and longitudinal direction and device therefor
JPH01271008A (en) Manufacture of heat exchanger tube
JPS60133903A (en) Manufacture of sectorial metallic sheet