JPS61143000A - Biaxial drive differential type shaft generator - Google Patents

Biaxial drive differential type shaft generator

Info

Publication number
JPS61143000A
JPS61143000A JP59262815A JP26281584A JPS61143000A JP S61143000 A JPS61143000 A JP S61143000A JP 59262815 A JP59262815 A JP 59262815A JP 26281584 A JP26281584 A JP 26281584A JP S61143000 A JPS61143000 A JP S61143000A
Authority
JP
Japan
Prior art keywords
shaft
winding
rotation speed
stator
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59262815A
Other languages
Japanese (ja)
Inventor
Minoru Osuga
大須賀 実
Koichi Niwa
丹羽 公一
Masataka Fujita
藤田 昌孝
Takayuki Takeuchi
孝行 竹内
Masayuki Hira
比良 允幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
Fuji Electric Co Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kawasaki Heavy Industries Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59262815A priority Critical patent/JPS61143000A/en
Publication of JPS61143000A publication Critical patent/JPS61143000A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/60Motors or generators having rotating armatures and rotating excitation field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To simply obtain the constant frequency output by controlling the relative speed between an armature winding and an exciting winding. CONSTITUTION:An exciting winding 14 is provided in a rotor 10, and both ends are supported to a rotor bearing 16. A rotary stator 20 is disposed on the outer periphery of the rotor 10. An armature winding 22 is provided on the stator 20, and both ends are supported by stator bearings 24. A stator driver 28 is coupled through a gear mechanism 26 with one end of the stator 20. The stator 20 is rotated in response to the variation in the rotating speed of a rotor shaft 12 to set the relative speed to constant value so as to maintain the frequency constant. Thus, the constant frequency output can be readily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回転数の変動する各種プロペラ軸や車軸等
の可変回転数軸によシ駆動される交流発電機の発生電力
を電力変換器を介して変換し、定電圧・定周波数の電力
を発生することができる軸発電装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a power converter that converts the power generated by an alternator driven by variable rotational speed shafts such as various propeller shafts and axles whose rotational speeds fluctuate. This invention relates to a shaft power generation device that can generate constant voltage and constant frequency electric power.

〔従来の技術〕[Conventional technology]

従来、この種の軸発電装置として、可変速駆動軸に一般
的な同期発電機を軸結合し、この同期発電機から得られ
る可変周波数の交流電力を整流器により直流電力に変換
し、得られた直流電力を他励式サイリスタインバータに
より変換して定電圧・定周波数の交流電力を得るよう構
成したものが知られている。この場合、交流電力系統の
定電圧化は、同期調相機の励磁電流を負荷に応じて制御
する励磁調整装置を設けて、同期調相機によp必要な無
効電力を供給し、交流電力系統に有効電力を供給するこ
とにより達成される。また、交流電力系統への有効電力
は。
Conventionally, as this type of shaft power generation device, a general synchronous generator was shaft-coupled to a variable speed drive shaft, and the variable frequency AC power obtained from this synchronous generator was converted to DC power using a rectifier. A device configured to convert DC power using a separately excited thyristor inverter to obtain constant voltage/constant frequency AC power is known. In this case, to make the AC power system constant voltage, an excitation adjustment device that controls the excitation current of the synchronous phase modifier according to the load is installed, and the necessary reactive power is supplied to the synchronous phase modifier, and the AC power system is This is achieved by supplying active power. Also, the active power to the AC power system is.

この系統から励磁装置および励磁巻線を介して供給する
同期発電機の励磁電流を制御することによシ、変化させ
ることができる。
It can be changed by controlling the excitation current of the synchronous generator supplied from this system via the excitation device and the excitation winding.

しかしながら、このように構成される軸発電装置におい
ては、次のような問題点が指摘されている。
However, the following problems have been pointed out in the shaft power generator configured in this manner.

(1)同期発電機と同期調相機とからなる一基の回転機
によりシステムが構成されるために効率が悪く、例えば
従来装置の実績においても最高約に3%程度である。
(1) Since the system is constituted by a single rotating machine consisting of a synchronous generator and a synchronous phase modifier, the efficiency is poor, and for example, the efficiency of conventional devices is about 3% at most.

(2)サイリスタインバータによる電圧・電流の波形歪
みが生じる。
(2) Waveform distortion of voltage and current occurs due to the thyristor inverter.

(3)構成要素が多く、据付面積が増大する。(3) There are many components, increasing the installation area.

〔発明が解決しようとする問題点〕 そこで5本発明においては、電機子巻線と励磁巻線との
相対速度によシ周波数が決定されることから、可変回転
数軸にて前記一方の巻線を駆動し、この場合の回転数の
変動を前記他方の巻線を別の駆動機にて差動的に回転制
御することによシ、前記両巻線の相対速度を一定にして
定周波数の出力を簡便に得ることができる二軸駆動差動
式軸発電装置を提供するにある。
[Problems to be Solved by the Invention] Therefore, in the present invention, since the frequency is determined by the relative speed between the armature winding and the excitation winding, one of the windings on the variable rotation speed shaft is By driving the wire and differentially controlling the rotation speed of the other winding using another drive machine, the relative speed of both windings is kept constant and the frequency is constant. The object of the present invention is to provide a two-shaft drive differential type shaft power generation device that can easily obtain the output of the following.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明においては、励磁巻線および電機子巻線
を備えた交流発電機を可変回転数軸に結合して駆動し交
流電力を発生する軸発電装置において、前記励磁巻線お
よび電機子巻線のうち一方の巻線を前記可変回転数軸に
結合して回転駆動するとともに、前記可変回転数軸とは
別に設けられた可変速の駆動機で前記他方の巻線を回転
駆動するよう構成し、前記一方の巻線の回転速度に対し
前記他方の巻線の回転速度を差動的に制御することを特
徴とする。
Therefore, in the present invention, in a shaft power generation device that generates AC power by driving an alternating current generator having an excitation winding and an armature winding coupled to a variable rotation speed shaft, the excitation winding and the armature winding are One of the windings of the wire is connected to the variable rotation speed shaft and driven to rotate, and the other winding is rotationally driven by a variable speed drive machine provided separately from the variable rotation speed shaft. However, the rotational speed of the other winding is differentially controlled with respect to the rotational speed of the one winding.

この場合、前記二軸駆動差動式軸発電装置において、可
変回転数軸によって回転駆動する交流発電機の一方の巻
線に対し、他方の巻線を駆動機によって相対速度を一定
に保持するよう制御することによシ、定周波数の交流電
力を発生することができる。
In this case, in the two-shaft drive differential shaft power generator, one winding of the alternator is rotatably driven by the variable rotation speed shaft, and the other winding is kept at a constant relative speed by the drive machine. By controlling it, constant frequency alternating current power can be generated.

さらに、交流発電機として誘導機を使用して、この誘導
機の電機子巻線とかご形線輪または巻線形線輪との相対
速度を制御するよう構成する゛ こともできる。
Furthermore, an induction machine can be used as an alternator and configured to control the relative speed between the armature winding and the squirrel cage coil or wound coil of the induction machine.

〔作用〕[Effect]

本発明によれば、交流発電機の相対する巻線間において
、一方を可変回転数軸で回転駆動する場合に他方を別の
駆動機で可逆的に回転駆動するよう構成することにより
、前記両巻線間の相対速度で決定される発電機出力の周
波数を一定に保つことができる。しかも、この場合駆動
機は相対する回転速度の調整を行うものであるから、構
成も簡易となるばかりでなく、得られる交流電力の出力
特性も安定化する。
According to the present invention, between opposing windings of an alternator, when one is rotationally driven by a variable rotation speed shaft, the other is reversibly rotationally driven by another drive machine, so that both of the windings are configured to be rotationally driven. The frequency of the generator output, which is determined by the relative speed between the windings, can be kept constant. Moreover, in this case, since the driving machine adjusts the relative rotational speeds, the configuration is not only simplified, but also the output characteristics of the obtained AC power are stabilized.

〔実施例〕〔Example〕

次に、本発明に係る二軸駆動差動式軸発電装置の実施例
につき、添付図面を参照しながら以下詳細に説明する。
Next, embodiments of the two-shaft drive differential shaft power generation device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明軸発電装置の一夾施例を示す要部断面構
造−である。すなわち、第1図において、参照符号/σ
は回転子を示し、この回転子/θの回転子軸/コの一端
部には可変回転数軸(図示せず)を結合して駆動するよ
う構成する。また、回転子lθには励磁巻線/Qを設け
ると共に両端部を回転子軸受/6 、 /6によシ支持
する。さらに1回転子軸/、2の他端部には励磁機/ざ
を設ける。
FIG. 1 is a cross-sectional structure of essential parts showing one embodiment of the shaft power generator of the present invention. That is, in FIG. 1, the reference symbol /σ
indicates a rotor, and a variable rotation speed shaft (not shown) is connected to one end of the rotor shaft of the rotor/θ, and is configured to be driven. Further, the rotor lθ is provided with an excitation winding /Q, and both ends thereof are supported by rotor bearings /6 and /6. Furthermore, an exciter/shaft is provided at the other end of the first rotor shaft and the second rotor shaft.

一方、前記回転子/θの外周には回転形固定子−〇が囲
繞配置される。この回転形固定子−〇には前記回転子/
θの励磁巻線/qと対向して電機子巻線22′を設ける
と共に固定子−〇の両端部は回転子/、0に摺接させて
その外周を固定子軸受、2!、、2&、によ)回転自在
に支持する。さら、に、前記回転形固定子−〇の一端部
にはギヤ機構26を設けて固定子駆動機2どの駆動機軸
3θに結合して回転駆動するよう構成する。なお、この
回転形固定子コθの他端部に拡電機子巻線、22に生じ
る電機子電流を集電するスリップリング32を設けて外
部へ導出するよう構成する。従って、参照符号3yは端
子箱および励磁調整装置として構成される部分である。
On the other hand, a rotary stator -0 is arranged around the outer periphery of the rotor /θ. This rotary stator -〇 has the rotor/
An armature winding 22' is provided opposite the excitation winding /q of θ, and both ends of the stator -0 are brought into sliding contact with the rotor /, 0, and the outer periphery thereof is a stator bearing, 2! , , 2 & , ) Rotatably supported. Furthermore, a gear mechanism 26 is provided at one end of the rotary stator -0, and is configured to be coupled to any drive shaft 3θ of the stator drive machine 2 for rotational driving. A slip ring 32 is provided at the other end of the rotary stator θ to collect the armature current generated in the expanded armature winding 22, and the slip ring 32 is configured to lead to the outside. Therefore, reference numeral 3y is a part configured as a terminal box and an excitation adjustment device.

次に、前記構成からなる本発明軸発電装置の動作につき
説明する。
Next, the operation of the shaft power generator of the present invention having the above configuration will be explained.

(1)  定周波数電力の発生について発電機発生電力
の周波数は、極数および電機子巻線、2−と励磁巻線/
4を間の相対速度によシ決定する。本実施例においては
、励磁巻線/グの回転数は可変回転数軸により任意に決
定されるため、周波数を一定にするには可変回転数軸す
なわち回転子軸7.2の回転数変動に応じて固定子駆動
機2tによシ回転形固定子−〇を回転させて回転子/θ
と固定子−〇との相対速度が一定となるよう調整するこ
とにより達成される。
(1) Regarding generation of constant frequency power The frequency of generator generated power is determined by the number of poles, armature winding, 2- and excitation winding/
4 is determined by the relative speed between them. In this embodiment, the rotation speed of the excitation winding/g is arbitrarily determined by the variable rotation speed axis, so in order to keep the frequency constant, it is necessary to adjust the rotation speed of the variable rotation speed axis, that is, the rotor shaft 7.2. Accordingly, the rotary stator 〇 is rotated by the stator driver 2t, and the rotor/θ is
This is achieved by adjusting the relative speed between the stator and the stator to be constant.

そこで、この動作原理につき第一図および第3図を参照
して詳細に説明する。第一図および第3図は回転子/θ
の励磁巻線/ダと回転形固定子コθの電機子巻線、22
との回転方向および回転数の関係を示すものである。今
、励磁巻線/ゲが時計方向に回転数NBで回転し、これ
に対し電機子巻線、2.2が時計方向(−)または反時
計方向(+)に回転数±ΔNで回転するものとすれば、
両巻線間の相対速度Nsは次式で求められる。
Therefore, this principle of operation will be explained in detail with reference to FIGS. 1 and 3. Figures 1 and 3 are rotor/θ
Excitation winding/da and armature winding of rotating stator θ, 22
This shows the relationship between rotation direction and rotation speed. Now, the excitation winding/ge rotates clockwise at a rotation speed NB, whereas the armature winding 2.2 rotates clockwise (-) or counterclockwise (+) at a rotation speed ±ΔN. If that is the case,
The relative speed Ns between both windings is determined by the following equation.

NR:Na±ΔN   ・・・・・・・・・・・・・・
・ (1)ここで、周波数を一定に保つだめの励磁巻線
/4tと電機子巻線ノコの回転数を次のように定義する
NR:Na±ΔN・・・・・・・・・・・・・・・
・(1) Here, the excitation winding/4t that keeps the frequency constant and the rotation speed of the armature winding saw are defined as follows.

Ntc max : 周波数を一定に保つ最大の励磁巻
線/4tの回転数 Nルmin :周波数を一定く保つ最小の励磁巻線/l
の回転数 Na mean : (Na min + NRmax
 ) / 、2ΔN max :電機子巻線22の最大
回転数以上の定義に基づいて励磁巻線/lと電機子巻線
22との回転数の関係は次のようになる。
Ntc max: Maximum excitation winding that keeps the frequency constant/4t rotation speed Nlmin: Minimum excitation winding that keeps the frequency constant/l
rotation speed Na mean: (Na min + NRmax
) / , 2ΔN max : The relationship between the rotation speed of the excitation winding /l and the armature winding 22 is as follows based on the definition of the maximum rotation speed of the armature winding 22 or more.

a、励磁巻線/4tの回転数がNRmeanよ夕小さい
場合: この場合、電機子巻線、2コは反時計方向(+)に回転
し、その大きさは、l NR−1−NRmeam lに
比例して増減する。
a. When the rotation speed of the excitation winding/4t is smaller than NRmean: In this case, the two armature windings rotate counterclockwise (+), and the magnitude is l NR-1-NRmeam l increases or decreases in proportion to

b、励磁巻線/グの回転数がNRmeanよシ大きい場
合: この場合、′rlL機子巻線2.2は時計方向(−)に
回転し、その大きさはINR−N几mean 1に比例
して増減する。
b. When the rotational speed of the excitation winding/g is larger than NRmean: In this case, the 'rlL machine winding 2.2 rotates clockwise (-), and its magnitude is INR-Nmean 1. increase or decrease proportionately.

次に、電機子巻線コ2の回転方向と回転数を制御する固
定子駆動機−tの動作につき説明する。
Next, the operation of the stator drive machine t that controls the rotation direction and rotation speed of the armature winding 2 will be explained.

この場合、電機子巻線2.2と励磁巻線79間のトルク
(T rating )は、作用反作用の法則によシ同
一と考えられるから、発電機出力(P rating 
)は次式によシ与えられる。
In this case, since the torque (T rating ) between the armature winding 2.2 and the excitation winding 79 is considered to be the same according to the law of action and reaction, the generator output (P rating )
) is given by the following equation.

P rating =T rating (Namin
+ΔNmax)= T raLingeNRmin−)
−TratingoΔNmax・・・・・・・・・・・
・ (2) 従って、Trating*ΔNmaxが駆動機2gの負
担出力上なる。
P rating = T rating (Namin
+ΔNmax)=TraLingeNRmin-)
-TratingoΔNmax・・・・・・・・・・・・
- (2) Therefore, Trating*ΔNmax becomes the burden output of the driving machine 2g.

この場合、発電機出力(P rating )は次式に
よシ与えられる。
In this case, the generator output (P rating ) is given by the following equation.

P  raiing =T  rating  (NR
max−ΔNmax)= T  rating  @ 
Nu max  −T  ratムnq°・ ΔNma
x・・・・・・・・・・・・ (3) 従ッテ、−Trating*ΔNmaxが駆動機、2f
の負担出力となる。この時、符号が負になるのは駆動機
、2ざがブレーキとして働くことを意味する。
Praiing = T rating (NR
max−ΔNmax)= T rating @
Nu max −T ratmu nq°・ΔNma
x・・・・・・・・・・・・ (3) Tracing, -Trating*ΔNmax is the driving machine, 2f
This will be the burden output. At this time, the negative sign means that the drive unit and the two act as brakes.

なお、前述した実施例においては、励磁巻線に対し電機
子巻線の回転方向を正逆に切換えるシステムにつき説明
したが、このようなシステムに限定されることなく、例
えば励磁巻線の回転数を常に同期速度以下に選定して電
機子巻線の回転を常に反時計方向に保つようにしたり、
または励磁巻線の回転数を常に同期速度以上に選定して
電機子巻線の回転を常に時計方向に保つようにしたシす
ることも可能である。
In the above-mentioned embodiment, a system was described in which the direction of rotation of the armature winding is switched between forward and reverse with respect to the excitation winding. is always selected to be below the synchronous speed so that the rotation of the armature winding is always kept in the counterclockwise direction,
Alternatively, it is also possible to always select the rotation speed of the excitation winding to be higher than the synchronous speed so that the rotation of the armature winding is always maintained in the clockwise direction.

また、前記実施例においては、同期発電機を使用し、回
転子側を励磁巻線とすると共に固定子側を電機子巻線と
した場合を示したが、その他見電機として誘導機を使用
したシ、励磁巻線またはかご形巻線を外側にして内側に
電機子巻線を配置した夛、電機子巻線側を可変回転数軸
に結合して励磁巻線側を駆動機に結合する等積々の設計
変更をなし得ることは勿論である。
In addition, in the above embodiment, a synchronous generator is used, and the excitation winding is used on the rotor side, and the armature winding is used on the stator side. A method in which the excitation winding or squirrel cage winding is placed on the outside and the armature winding is placed on the inside; the armature winding side is connected to a variable rotation speed shaft and the excitation winding side is connected to a drive machine, etc. Of course, many design changes can be made.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
可変回転数軸によって励磁巻線または電機子巻線を駆動
し、可変回転数軸で駆動されない前記一方の巻線を別の
駆動機で回転させるよう構成し、前記両巻線の相対速度
を一定にして定周波数の発電機出力を得るよう構成した
ことによシ、以下に述べるように多くの優れた利点が得
られる。
As is clear from the embodiments described above, according to the present invention,
The excitation winding or the armature winding is driven by a variable rotation speed shaft, and the one winding that is not driven by the variable rotation speed shaft is rotated by another driver, and the relative speed of both windings is kept constant. By configuring the generator to obtain a constant frequency generator output, many advantages can be obtained as described below.

I)回転機が7台で構成され、周波数補正用の駆動機の
出力は極めて小さく設計できるので、効率が著しく増大
し、例えば最大りθチ、最小でもにtチとなる。
I) Since the rotating machine consists of seven units and the output of the drive machine for frequency correction can be designed to be extremely small, the efficiency increases significantly, for example, the maximum is θ and the minimum is t.

■)発電機の極数変換により、入力軸(可変回転数軸)
の周波数一定を保証する範囲が大幅に増加できる。
■) By changing the number of poles of the generator, the input shaft (variable rotation speed shaft)
The range in which a constant frequency can be guaranteed can be greatly increased.

例えば、発電機をざ極、60Hzとした場合、入力回転
数が700〜70%の間にて定周波保証するとすれば、
回転数は次のようになる。
For example, if the generator is set to 60Hz and the input rotation speed is guaranteed to be constant between 700 and 70%, then
The number of rotations is as follows.

Na  maX ffP =りθθ×/θθ/IS=/
θSざ、lf r、p、m。
Na maX ffP =riθθ×/θθ/IS=/
θSza, lf r, p, m.

NRmin ざp=りθθx70/ざj = 7tl/
、/7 r、p、m。
NRmin zap=riθθx70/zaj=7tl/
, /7 r, p, m.

ΔNmax=(/θjざ、ざ−74t/、/7)/コ=
istt、p、m。
ΔNmax=(/θjza,za-74t/,/7)/co=
istt, p, m.

そこで、電機子巻線側の駆動機は十/jに・r、p、m
、の回転補正が可能なものを準備する。
Therefore, the driver on the armature winding side is 10/j・r, p, m
, prepare one that can perform rotation correction.

この発電機に、/6極の極数変換を併用すルト、NRm
in /Ap = !jθ−15に=λり、lr、p、
m。
This generator is equipped with a /6-pole pole number changer, NRm
in/Ap=! jθ−15=λ, lr, p,
m.

の回転まで定周波数を発生することができ、この値はN
a maxざPに対してコタ、2//θ、1fIr、ざ
=θ、、274となシ、従って/θθ〜27.6チの広
範囲の入力回転数に亘9周波数を一定に保つことが可能
となる。
A constant frequency can be generated up to the rotation of N
2//θ, 1fIr, θ=θ, , 274 for a max ZP, therefore, it is possible to keep the 9 frequencies constant over a wide range of input rotational speeds from /θθ to 27.6ch. It becomes possible.

ll)周波数補正用の駆動機の回転数制御に工夫を加え
ることによシ、可変回転数軸の運転中に電力方向を制御
して電動機運転とすることができる。
ll) By adding a device to the rotational speed control of the frequency correction drive machine, it is possible to control the direction of electric power and operate the electric motor while the variable rotational speed shaft is in operation.

IV)主電力回路にサイリスタ素子を使用しないため、
サイリスタによる波形歪みを防止できる。
IV) Since no thyristor element is used in the main power circuit,
Waveform distortion caused by thyristors can be prevented.

■)構成要素が少なくなり据付面積を削減できる。■) There are fewer components and the installation area can be reduced.

vl)可変回転数軸を停止させた際、周波数補正用の駆
動機で電動機運転が可能となり、機能の拡充が図れる。
vl) When the variable rotation speed shaft is stopped, the motor can be operated using the drive machine for frequency correction, and the functionality can be expanded.

vll)可変回転数軸と周波数補正用の駆動機軸との相
対速度により発生周波数が決定することから、この相対
速度を前記駆動機軸により変化することによシ、可変周
波数電源としても使用することができる。
vll) Since the generated frequency is determined by the relative speed between the variable rotation speed shaft and the drive shaft for frequency correction, by changing this relative speed by the drive shaft, it can also be used as a variable frequency power source. can.

以上、本発明の好適な実施例について説明したが、本発
明の精神を逸脱しない範囲内において徨々の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it is of course possible to make various design changes without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る二軸駆動差動式軸発電装置の一実
施例を示す要部断面側面図、第2図は第1図に示す軸発
電装置の二軸の回転方向の関係を示す説明図、第3図は
第一図に示す二軸の回転方向と回転数との関係を示す特
性線図である。 10・・・回転子      /、2・・・回転子軸/
グ・・・励磁巻線    /6・・・回転子軸受/に・
・・励磁機     コθ・・・回転形固定子、2コ・
・・電機子巻線   j&・・・固定子軸受−6・・・
ギヤ機構    X・・・固定子駆動機3θ・・・駆動
機軸    3.!・・・スリップリング3グ・・・端
子箱 (励磁調整装置) 特許出願人 川崎重工業株式会社 同  富士電機株式会社 札〜、−ノ
Fig. 1 is a cross-sectional side view of essential parts showing an embodiment of the two-shaft drive differential type shaft power generator according to the present invention, and Fig. 2 shows the relationship between the rotational directions of the two shafts of the shaft power generator shown in Fig. 1. The explanatory diagram shown in FIG. 3 is a characteristic diagram showing the relationship between the rotational direction and the rotation speed of the two axes shown in FIG. 1. 10...Rotor /, 2...Rotor shaft/
G...Excitation winding /6...Rotor bearing/Ni...
・Exciter θ・・・Rotating stator, 2 pieces・
... Armature winding j & ... Stator bearing -6...
Gear mechanism X...Stator drive machine 3θ...Drive machine shaft 3. ! ... Slip ring 3g ... Terminal box (excitation adjustment device) Patent applicant: Kawasaki Heavy Industries, Ltd. Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)励磁巻線および電機子巻線を備えた交流発電機を
可変回転数軸に結合して駆動し交流電力を発生する軸発
電装置において、前記励磁巻線および電機子巻線のうち
一方の巻線を前記可変回転数軸に結合して回転駆動する
とともに、前記可変回転数軸とは別に設けられた可変速
の駆動機で前記他方の巻線を回転駆動するよう構成し、
前記一方の巻線の回転速度に対し前記他方の巻線の回転
速度を差動的に制御することを特徴とする二軸駆動差動
式軸発電装置。
(1) In a shaft power generation device that generates alternating current power by driving an alternator having an excitation winding and an armature winding coupled to a variable rotation speed shaft, one of the excitation winding and the armature winding The winding is coupled to the variable rotation speed shaft to be rotationally driven, and the other winding is configured to be rotationally driven by a variable speed drive machine provided separately from the variable rotation speed shaft,
A two-shaft drive differential type shaft power generator, characterized in that the rotational speed of the other winding is differentially controlled with respect to the rotational speed of the one winding.
(2)特許請求の範囲第1項記載の二軸駆動差動式軸発
電装置において、可変回転数軸によつて回転駆動する交
流発電機の一方の巻線に対し、他方の巻線を駆動機によ
つて相対速度を一定に保持するよう制御してなる二軸駆
動差動式軸発電装置。
(2) In the two-shaft drive differential shaft power generation device according to claim 1, one winding of the alternator that is rotationally driven by the variable rotation speed shaft drives the other winding. A two-shaft drive differential shaft generator that is controlled to maintain a constant relative speed depending on the machine.
(3)特許請求の範囲第1項記載の二軸駆動差動式軸発
電装置において、交流発電機として誘導機を使用し、こ
の誘導機の電機子巻線とかご形線輪または巻線形線輪と
の相対速度を制御するよう構成してなる二軸駆動差動式
軸発電装置。
(3) In the two-shaft drive differential shaft power generation device according to claim 1, an induction machine is used as the alternating current generator, and the armature winding of the induction machine and the squirrel cage wire or the winding wire A two-shaft drive differential shaft generator configured to control the relative speed with the wheels.
JP59262815A 1984-12-14 1984-12-14 Biaxial drive differential type shaft generator Pending JPS61143000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262815A JPS61143000A (en) 1984-12-14 1984-12-14 Biaxial drive differential type shaft generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262815A JPS61143000A (en) 1984-12-14 1984-12-14 Biaxial drive differential type shaft generator

Publications (1)

Publication Number Publication Date
JPS61143000A true JPS61143000A (en) 1986-06-30

Family

ID=17380993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262815A Pending JPS61143000A (en) 1984-12-14 1984-12-14 Biaxial drive differential type shaft generator

Country Status (1)

Country Link
JP (1) JPS61143000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512205A2 (en) * 1991-05-02 1992-11-11 WERA WERK HERMANN WERNER GmbH & CO. Machine for working rotating workpieces
EP2195918A4 (en) * 2007-08-31 2016-03-09 Concept Fiset Inc Mechanical regulation of electrical frequency in an electrical generation system
CN111262394A (en) * 2020-03-05 2020-06-09 东南大学 Brushless double-fed motor based on high-frequency rotary transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646720A (en) * 1979-09-26 1981-04-28 Hayashi Terenpu Kk Manufacture of composite interior material for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646720A (en) * 1979-09-26 1981-04-28 Hayashi Terenpu Kk Manufacture of composite interior material for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512205A2 (en) * 1991-05-02 1992-11-11 WERA WERK HERMANN WERNER GmbH & CO. Machine for working rotating workpieces
EP0512205A3 (en) * 1991-05-02 1994-08-17 Werner Hermann Wera Werke Machine for working rotating workpieces
EP2195918A4 (en) * 2007-08-31 2016-03-09 Concept Fiset Inc Mechanical regulation of electrical frequency in an electrical generation system
CN111262394A (en) * 2020-03-05 2020-06-09 东南大学 Brushless double-fed motor based on high-frequency rotary transformer
CN111262394B (en) * 2020-03-05 2021-06-25 东南大学 Brushless double-fed motor based on high-frequency rotary transformer

Similar Documents

Publication Publication Date Title
JPS59129558A (en) Variable speed rotary electric machine
JPS5918933B2 (en) Rotating electric machine system for asynchronous linkage
US4755700A (en) Variable speed AC motor
KR101854723B1 (en) Doubly Fed Magnetic Geared Motor
US4445081A (en) Leading power factor induction motor device
US5994811A (en) Electric motor
JP3253980B2 (en) Multi-structure motor
JPS61143000A (en) Biaxial drive differential type shaft generator
US1553407A (en) Speed-regulator system
JPH0662597A (en) Ac variable-speed driver
US1828943A (en) Adjustable speed drive
US3205421A (en) Electric servo motors
US2585392A (en) Monopolyphase frequency converter group
US2725490A (en) Electric power system
US3339131A (en) Multi-speed, self-excited ac motor system
US2573494A (en) Adjustable frequency commutator generator
JPS62268390A (en) Variable speed induction motor
US2761074A (en) Variable speed power system
CA1054216A (en) Plural electric motors driving common load and having interconnections for load control
US770091A (en) Alternating-current machinery.
US1098345A (en) Generation of polyphase alternating electric currents of varying frequencies.
JPH01295605A (en) Emergency travel power source for trolley bus
JPH05344694A (en) Reluctance type rotating machine
US621924A (en) X m means for speed reduction of asynchronous alternating motors
US1637393A (en) Double-range variable-speed induction-motor set