JPS61129454A - Air fuel ratio controller for internal-combustion engine - Google Patents

Air fuel ratio controller for internal-combustion engine

Info

Publication number
JPS61129454A
JPS61129454A JP24881784A JP24881784A JPS61129454A JP S61129454 A JPS61129454 A JP S61129454A JP 24881784 A JP24881784 A JP 24881784A JP 24881784 A JP24881784 A JP 24881784A JP S61129454 A JPS61129454 A JP S61129454A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
purge
pipe
air fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24881784A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shikame
鹿目 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24881784A priority Critical patent/JPS61129454A/en
Publication of JPS61129454A publication Critical patent/JPS61129454A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Abstract

PURPOSE:To suppress the variation of air fuel ratio during operation by controlling the opening degree of a purge control valve, according to the signals supplied from an air fuel ratio sensor, in a canister installed at the edge of a purge passage opened into a suction pipe. CONSTITUTION:One side of a canister 40 filled with the absorbent 40a such as active carbon is opened to the atmosphere through an atmosphere introducing pipe 42, and the other side is connected to the upper space of a fuel tank 46 through an evaporated fuel pipe 44, and connected to a surge tank 26 in a suction system through a purge pipe 48. In this case, a purge control valve 50 having a butterfly-type valve piece 52 is installed into the purge pipe 48, and is drive-controlled by a revolution drive type actuator 56. Said actuator 56 is controlled according to the output of an air fuel ratio sensor 70 installed onto an exhaust manifold 32 by a control circuit 60, and always proper purge control is performed, and the variation of air fuel ratio is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、キャニスタを投げた内燃機関における・ソ
ー・ソ流量の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control device for a so-so flow rate in an internal combustion engine with a canister thrown.

従来の技術 自動車用の内燃機関では燃料タンクや気化器のフロート
室からの燃料蒸気を捕集するためキャニスタが設けられ
ている。キャニスメ内には活性炭などの吸着材層が形成
され、機関からの蒸発燃料は吸着材層に一旦吸着される
。吸着された燃料は吸気管の負圧により惹起されるパー
ジ空気流によって離脱され、機関内に再導入される。
BACKGROUND OF THE INVENTION In internal combustion engines for automobiles, a canister is provided to collect fuel vapor from a fuel tank or a float chamber of a carburetor. An adsorbent layer such as activated carbon is formed inside the canister, and evaporated fuel from the engine is temporarily adsorbed on the adsorbent layer. The adsorbed fuel is removed by a purge air flow caused by the negative pressure in the intake pipe and reintroduced into the engine.

発明が解決しようとする問題点 キャニスタに吸着された燃料の離脱のためのパージ空気
流は吸気管負圧と大気圧との圧力差により生ずる。吸気
管負圧はスロットル弁の開度の小さい程強い。そのため
アイドル時や減速時に大量の燃料の離脱が生じ、このア
イドル時や減速時の空燃比が過濃になったり変動する問
題がある。そこで、アイドル時や減速時のノ々−・ゾを
制限したり停止する技術が提案されている。しかしなが
ら、この対策では空燃比の変動対策としては十分でな(
)。
Problems to be Solved by the Invention The purge air flow for removing the fuel adsorbed in the canister is generated by the pressure difference between the intake pipe negative pressure and the atmospheric pressure. The smaller the throttle valve opening, the stronger the negative pressure in the intake pipe. As a result, a large amount of fuel is removed during idling or deceleration, resulting in the problem that the air-fuel ratio becomes excessively rich or fluctuates during idling or deceleration. Therefore, techniques have been proposed to limit or stop the noise during idling or deceleration. However, this measure is not sufficient as a countermeasure against fluctuations in air-fuel ratio (
).

そこで空燃比センサを設け、同センサからの空燃比信号
によってパージ制御をするようにしたものが提案されて
いる。例えば、特公昭57−129247号参照。この
従来技術では、排気管に設置される酸素濃淡電池型の空
燃比センサ、例えば0□七ンサからの信号によっ℃、・
マージ通路に設けたパージ制御弁を開閉し、これにより
空燃比が所定値になるよ5に制御するものである。とこ
ろが02センサはON −OFF的制御しかできないた
め空燃比変動を解消する決め手にはならない。
Therefore, it has been proposed that an air-fuel ratio sensor is provided and purge control is performed based on the air-fuel ratio signal from the sensor. For example, see Japanese Patent Publication No. 57-129247. This conventional technology uses signals from an oxygen concentration battery-type air-fuel ratio sensor installed in the exhaust pipe, such as a
The purge control valve provided in the merge passage is opened and closed, thereby controlling the air-fuel ratio to a predetermined value of 5. However, since the 02 sensor can only perform ON-OFF control, it is not a decisive factor in eliminating air-fuel ratio fluctuations.

問題点を解決するための手段 この発明の内燃機関においては、第1図に示す通り、内
燃機関Eの吸気管工に開口するパージ通路Pの端部にキ
ャニスタCが設置される。空燃比制御装置はパージ通路
P上に設置される流量が連続可変のパージ制御弁Vと、
・ぐ−ジ制御弁の駆動アクチュエータAと、連続的に変
化す5空燃比を検知する空燃比検知手段1と、空燃比検
知手段1からの空燃比信号に応じてパージ流量を演算す
るi4−ジ流量演真手段2と、その演算されたノ4−ジ
流量が得られるように前記アクチュエータAを駆動する
制御手段3とより成る。
Means for Solving the Problems In the internal combustion engine of the present invention, as shown in FIG. 1, a canister C is installed at the end of a purge passage P that opens into the intake pipe of the internal combustion engine E. The air-fuel ratio control device includes a purge control valve V with a continuously variable flow rate installed on the purge passage P;
・A drive actuator A for the purge control valve, an air-fuel ratio detection means 1 that detects the continuously changing air-fuel ratio, and an i4- that calculates the purge flow rate according to the air-fuel ratio signal from the air-fuel ratio detection means 1. The control means 3 comprises a flow rate calculation means 2 and a control means 3 for driving the actuator A so as to obtain the calculated flow rate.

作用 )4−ノ量演算手段2は空燃比検知手段1によって検知
される連続的に変化する空燃比に応じてパージ流量を計
算する。制御手段3はこの計算されたパージ流量が得ら
れるようにアクチュエータAを制御し、ノ々−ノ制御弁
Vは・マージ通路Pを流れるパージ量を空燃比が所定値
になるように制御する。
Operation) The 4-quantity calculation means 2 calculates the purge flow rate according to the continuously changing air-fuel ratio detected by the air-fuel ratio detection means 1. The control means 3 controls the actuator A so as to obtain the calculated purge flow rate, and the control valve V controls the purge amount flowing through the merge passage P so that the air-fuel ratio becomes a predetermined value.

実施例 第2図において、10はシリンダブロック、12はピス
トン、14はシリンダヘッド、16は燃焼室、18は吸
気弁、19は吸気ポート、20は排気弁、22は排気ポ
ートである。吸気ポート19は、燃料噴射弁23、吸気
管24、サージタンク26、スロットル弁28、エアフ
ローメータ30、エアクリーナ32に順次連結される。
Embodiment In FIG. 2, 10 is a cylinder block, 12 is a piston, 14 is a cylinder head, 16 is a combustion chamber, 18 is an intake valve, 19 is an intake port, 20 is an exhaust valve, and 22 is an exhaust port. The intake port 19 is sequentially connected to a fuel injection valve 23, an intake pipe 24, a surge tank 26, a throttle valve 28, an air flow meter 30, and an air cleaner 32.

一方、排気ポート22は排気マニホルド32、排気管3
4、触媒コンノ々−タ36iC順次連結される。
On the other hand, the exhaust port 22 is connected to the exhaust manifold 32 and the exhaust pipe 3.
4. Catalyst converters 36iC are sequentially connected.

38はディストリビュータである。38 is a distributor.

40はキャニスタであり、ケース内に活性炭40a等の
吸着材を収納して成る。キャニスタは−mでは大気導入
パイf42によって大気開放され、他側に蒸発燃料パイ
プ44の一端が接続され、その他端は燃料タンク46の
燃料液面より上方の空間に連通している。蒸発燃料パイ
プ44の設置されるキャニスタ40の側にツク−・シバ
イブ48の一端が接続され、他端はスロットル弁28の
下流の吸気管の部分1例えばサージタンク26に連通さ
れる。ノぐ−ジノ臂イf4B上に一’−ジ制御弁50が
配置され、パージ流量の連続可変制御を行な5ことがで
きるようになっている。第3.4図に示すよ5K、A’
−ジ制御弁50は筒状ケース51内にバタフライ型の弁
体52を弁軸53によって回転自在に配置して構成され
る。弁軸53の一端に回転駆動型のアクチュエータ56
が連結される。
40 is a canister, which houses an adsorbent such as activated carbon 40a in a case. At -m, the canister is opened to the atmosphere by an air introduction pipe f42, and one end of an evaporative fuel pipe 44 is connected to the other side, and the other end communicates with the space above the fuel level of the fuel tank 46. One end of the pump 48 is connected to the side of the canister 40 where the evaporated fuel pipe 44 is installed, and the other end is communicated with the portion 1 of the intake pipe downstream of the throttle valve 28, such as the surge tank 26. A one-way control valve 50 is disposed above the nozzle arm f4B, and is capable of continuously variable control of the purge flow rate. As shown in Figure 3.4, 5K, A'
- The control valve 50 is constructed by disposing a butterfly-type valve body 52 in a cylindrical case 51 so as to be rotatable by a valve shaft 53. A rotationally driven actuator 56 is attached to one end of the valve shaft 53.
are concatenated.

アクチュエータとしてはサーボモータのような連続回転
型のモータを採用することができるし、又はアクチュエ
ータとしてステップ型のモータでも良い。いづれにして
も、アクチュエータに後述の制御回路より印加される駆
動信号によって弁体52の開度は連続制御され、パージ
流量の連続可変制御が行われる。
A continuous rotation type motor such as a servo motor may be used as the actuator, or a step type motor may be used as the actuator. In any case, the opening degree of the valve body 52 is continuously controlled by a drive signal applied to the actuator from a control circuit to be described later, and the purge flow rate is continuously variable controlled.

第2図で制御回路60は運転条件に応じた空燃比が得ら
れるように燃料噴射弁23及びパージ制御弁50のアク
チュエータ56の駆動信号を形成するためのものであり
、実施例ではマイクロコンピュータシステムとして構成
される。制御回路60は、マイクログロセシングユニッ
) (MPU )61と、メモリ62と、入力ポートロ
3、出力ポートロ4と、これらを相互に接続し、命令及
びデータの遺り取、りをするパス65とより成る。MP
U61はメモリ62に格納されたプログラムにしたがっ
て種々のセンナからの信号をもとに演算を行い、燃料噴
射弁23及びパージ制御弁50の駆動信号の形成を行な
う。そのため、入力4−)63には種々のセンサからの
信号が入力している。エアフローメータ30からは吸入
空気fQに応じた信号が入力している。ディスl−IJ
ピユータ38の分配軸38′上の磁石片38“に対面す
るホール素子であるクランク角センサ68は機関のクラ
ンク軸の所定回転毎のパルス信号を生じており、機関N
eを知ることができる。更に、排気マニホルド32には
空燃比センサ70が設置され、空燃比信号Oxを生じて
いる。
In FIG. 2, the control circuit 60 is for forming a drive signal for the actuator 56 of the fuel injection valve 23 and the purge control valve 50 so that an air-fuel ratio according to the operating conditions can be obtained, and in the embodiment, the control circuit 60 is a microcomputer system. Constructed as. The control circuit 60 includes a microgrossing unit (MPU) 61, a memory 62, an input port 3, an output port 4, and a path 65 that interconnects these and transfers instructions and data. It consists of M.P.
U61 performs calculations based on signals from various sensors according to a program stored in memory 62, and forms drive signals for fuel injection valve 23 and purge control valve 50. Therefore, signals from various sensors are input to the input 4-) 63. A signal corresponding to the intake air fQ is input from the air flow meter 30. Disl-IJ
A crank angle sensor 68, which is a Hall element facing the magnet piece 38'' on the distribution shaft 38' of the computer 38, generates a pulse signal every predetermined rotation of the engine crankshaft, and the engine N
You can know e. Furthermore, an air-fuel ratio sensor 70 is installed in the exhaust manifold 32 and generates an air-fuel ratio signal Ox.

空燃比センサ70は通常の02センナと称するタイプで
はなく酸素拡散原理に基づく所謂リーンセンサまたはそ
の改良型であり、ON −OFF的な空燃比測定でなく
連続的な空燃比が測定できるタイプのものである。その
原理的な構成を第5図に示しており、ハウジング71内
に酸素拡散層72を一側で排気ガス室73を他側で大気
室74を形成するように設置し、拡散層720対向面に
一対の電極76&、bを形成し、直流電源74に大気室
74側で正となるよ5に結線して成る。以上の基本的な
リーンセンサの構成に加え、も5゛一対の電極77a、
bを形成し、02ポンプセルと称する直流電源78に接
続した改良型のものとするのがこの発明の場合は好適で
ある。酸素拡散層72には排気ガス中の酸素濃度、即ち
空燃比に応じた量の酸素イオンの拡散が生ずる。そのた
め、起電力検出器79には酸素濃度に応じた電流が生ず
る0空燃比のリッチ領域ではこの原理では空燃比は測定
できないが、0□ポングセルア8によって逆方向ニ発生
せしめられるイオン流によってリッチ領域であっ【も酸
素拡散層のところでは相対的にリーンに修正され、リッ
チ域でも起電力が生じ、全体的な特性は第6図の510
通りとなって、リッチからリーンにわたる広範囲の空燃
比の連続測定が実現される。この改良型のセンサについ
ては例えば特願昭58−135525号に記載されてい
る。
The air-fuel ratio sensor 70 is not the usual type called 02 Senna, but is a so-called lean sensor based on the principle of oxygen diffusion, or an improved version thereof, and is a type that can measure the air-fuel ratio continuously instead of ON-OFF air-fuel ratio measurement. It is. The basic configuration is shown in FIG. 5, in which an oxygen diffusion layer 72 is installed in a housing 71 so as to form an exhaust gas chamber 73 on one side and an atmospheric chamber 74 on the other side, and a diffusion layer 720 is placed on the opposite side. A pair of electrodes 76 &, b are formed on the electrodes 76 &b, and connected to the DC power source 74 so that the positive side becomes positive on the atmospheric chamber 74 side. In addition to the above basic lean sensor configuration, a pair of electrodes 77a,
In the case of the present invention, it is preferable to use an improved type in which the pump cell 78 is connected to a DC power source 78, which is called an 02 pump cell. Oxygen ions diffuse into the oxygen diffusion layer 72 in an amount corresponding to the oxygen concentration in the exhaust gas, that is, the air-fuel ratio. Therefore, the air-fuel ratio cannot be measured using this principle in the rich region of the 0 air-fuel ratio where a current according to the oxygen concentration is generated in the electromotive force detector 79, but the ion flow generated in the opposite direction by the 0□ pump cell 8 causes the air-fuel ratio to be measured in the rich region. However, the oxygen diffusion layer is modified to be relatively lean, and an electromotive force is generated even in the rich region, and the overall characteristics are as shown in 510 in Figure 6.
This enables continuous measurement of air-fuel ratios over a wide range from rich to lean. This improved sensor is described, for example, in Japanese Patent Application No. 135525/1982.

この発明は通常のリーンセンサでありてもよく、この場
合の特性はり、のようになる。
The present invention may be a normal lean sensor, and the characteristics in this case are as follows.

第2図において制御回路60のメモリ62にはこの発明
による空燃比制御のためのプログラムが格納されている
。以下そのプログラムの内容についてフローチャートに
よって説明する。第7図は空燃比補正ルーチンを示し、
このルーチンは所定時間毎に実行される時間割り込みル
ーチンである。
In FIG. 2, a memory 62 of a control circuit 60 stores a program for air-fuel ratio control according to the present invention. The contents of the program will be explained below using a flowchart. FIG. 7 shows the air-fuel ratio correction routine,
This routine is a time interrupt routine that is executed at predetermined time intervals.

100のステップでは運転条件に応じた空燃比の設定値
A/Fの演算が実行される。すなわち、メ−eす62に
は機関回転数と吸入空気量との組合せに対する設定空燃
比のマッグ(第10図)がある。
In step 100, calculation of the air-fuel ratio setting value A/F according to the operating conditions is executed. That is, the main 62 has a set air-fuel ratio set (FIG. 10) for each combination of engine speed and intake air amount.

MPU61はクランク角センサ68からのN・信号及び
エア70−メータ30からのQ信号によってその運転時
の設定空燃比A / Fを補間演算する(第10図p)
The MPU 61 uses the N signal from the crank angle sensor 68 and the Q signal from the air meter 30 to interpolate the set air-fuel ratio A/F at the time of operation (Fig. 10 p).
.

102のステ、fでは空燃比センサ70からのOx信号
によって得た実測の空燃比A/FRをロードする。10
4ではこの実測空燃比を100での設定空燃比A/Fと
比較し、設定値が例えば5%より大きい方向にずれてい
るときは、リーン方向に修正すべきと判定し、106に
進み、後述のパイプ補正−7iIPFAFをδp7i?
:けデクリメントし、次いで10Bでは燃料噴射量のフ
ィードバック補正量FAFをδfだけデクリメントする
。104で設定値が一5チより小さい方向にずれている
ときはリッチ方向への修正が必要と判定し、110に進
みノ臂−ジ量の補正PFAFをδpインクリメントし、
112では燃料噴射量の補正FAFをδfインクリメン
トする。104で設定空燃比A/Fに対して実測空燃比
のずれが一5%から+5チの間のときは補正の必要がな
いと判断し、114.116でパージ補正PPAF、燃
料噴射量補正FAFをそのtまとする。
In step 102, f, the actually measured air-fuel ratio A/FR obtained from the Ox signal from the air-fuel ratio sensor 70 is loaded. 10
In step 4, this measured air-fuel ratio is compared with the set air-fuel ratio A/F at 100, and if the set value deviates in a direction larger than 5%, it is determined that correction should be made in the lean direction, and the process proceeds to step 106. Pipe correction-7iIPFAF described later is δp7i?
Then, in 10B, the feedback correction amount FAF of the fuel injection amount is decremented by δf. If the set value deviates in the direction smaller than 15 inches at 104, it is determined that correction in the rich direction is necessary, and the process proceeds to 110, where the correction PFAF for the armpit amount is incremented by δp.
At step 112, the fuel injection amount correction FAF is incremented by δf. At step 104, when the deviation of the measured air-fuel ratio from the set air-fuel ratio A/F is between 15% and +5, it is determined that there is no need for correction, and at step 114.116, purge correction PPAF and fuel injection amount correction FAF are performed. Let's put together that t.

第8図は燃料噴射ルーチンを示し、このルーチンは燃料
噴射タイミング例えば所定クランク角度で実行に入る割
り込みルーチンである。200では運転条件に応じた基
本燃料噴射量Tpの演算が実行される。即ち第10図の
空燃比設定マツプより運転条件に応じた空燃比を得る燃
料噴射量Tpが回転数信号Ne及び吸入空気量信号Qよ
り演算される。202では周知の各種の燃料噴射量の補
正(例えば加速補正や温度補正)α、βが計算される。
FIG. 8 shows a fuel injection routine, which is an interrupt routine that enters execution at a fuel injection timing, for example, at a predetermined crank angle. At 200, calculation of the basic fuel injection amount Tp according to the operating conditions is executed. That is, from the air-fuel ratio setting map shown in FIG. 10, a fuel injection amount Tp for obtaining an air-fuel ratio corresponding to the operating conditions is calculated from the rotational speed signal Ne and the intake air amount signal Q. At 202, various well-known fuel injection amount corrections (for example, acceleration correction and temperature correction) α and β are calculated.

204では基本燃料噴射量Tp、フィードバック補正F
AF (第7図)、その他の補正α、βを取り入れた燃
料噴射量Tの演算が実行される。206ではこの値Tが
出力ポートロ4にセットされる。
204, basic fuel injection amount Tp, feedback correction F
AF (FIG. 7) and calculation of the fuel injection amount T incorporating other corrections α and β are executed. At 206, this value T is set in the output port 4.

従って、燃料噴射弁23はこの計算された量の燃料が噴
射されるように燃料噴射を実行する。
Therefore, the fuel injection valve 23 performs fuel injection so that this calculated amount of fuel is injected.

第9図はパージ制御弁50の駆動ルーチンであり、所定
時間間隔毎に実行に入る時間割り込みルーチンである。
FIG. 9 shows a driving routine for the purge control valve 50, which is a time interrupt routine that is executed at predetermined time intervals.

300では運転条件に応じたパージ制御弁500設定開
度(基本開度)PUoの演算が実行される。すなわち、
機関回転数と吸入空気量との組合せに対してパージ制御
弁の設定開度は第11図のようになる。低負荷低回転で
は一々−ゾ景が少なく高負荷高回転になるに従って・ぐ
−ジ量が多くなるような設定になっている。MPU 6
1は回転数センサ6Bからの回転数N@傷信号eおよび
エアフローメータ30からの吸入空気量信号Qによって
その運転時のパージ制御弁の設定開度PU0の計算を補
間法によって実行する(第11図のr)。
At 300, calculation of the purge control valve 500 set opening degree (basic opening degree) PUo according to the operating conditions is executed. That is,
The set opening degree of the purge control valve for the combination of engine speed and intake air amount is as shown in FIG. 11. The settings are such that at low loads and low rotations, there is little turbulence, and as the load and rotation increases, the amount of squeezing increases. MPU 6
1 calculates the set opening PU0 of the purge control valve at the time of operation using the rotation speed N@flaw signal e from the rotation speed sensor 6B and the intake air amount signal Q from the air flow meter 30 by an interpolation method (No. 11 r in the figure).

302ではこの演算された基本開度PUoIc第7図の
ルーチンの実行によって得られた(ステノブ106.1
10,114)ノ臂−ジ量補正PFAFを加算したもの
をパージ制御弁の開度PUとする。
At 302, this calculated basic opening degree PUoIc was obtained by executing the routine shown in FIG.
10, 114) The sum of the armature amount correction PFAF is set as the opening degree PU of the purge control valve.

304ではこのPUi出力、It’−)64にセットす
る。従って、アクチュエータ56はノ4−・ゾ制御弁5
6の弁体52がその計算された開度のところにくるまで
回転し、その結果設定空燃比が得られるようなパージ量
となる。
In step 304, this PUi output is set to It'-)64. Therefore, the actuator 56
The valve body 52 of No. 6 rotates until it reaches the calculated opening, and as a result, the purge amount is such that the set air-fuel ratio is obtained.

発明の効果 この発明によれば連続的に変化する空燃比を検知する空
燃比センサからの信号に応じてパージ流量を制御するこ
とによってより的確なt!−ノ制御が実現され、運転中
の空燃比変動が抑制され、排気ガス中の有害成分量を抑
えることができる。
Effects of the Invention According to the present invention, more accurate t! - control is realized, air-fuel ratio fluctuations during operation are suppressed, and the amount of harmful components in exhaust gas can be suppressed.

特にアイドル時や減速時は空燃比変動を防止することが
らノヤージは従来は抑えざるを得なかったが、との発明
によって空燃沈金一定に維持することができることから
このアイドルや減速時に十分な量の1?−ノを行なうこ
とができるようになる。
In the past, it was necessary to suppress the air-fuel ratio fluctuations, especially during idling and deceleration, so the noise had to be suppressed, but with the invention of , it is possible to maintain a constant air-fuel ratio, so it is possible to maintain a constant amount of air-fuel ratio during idling and deceleration. 1? - Be able to do the following.

また実施例の効果として、第11図に示すように機関の
運転条件即ち回転数及び負荷に応じた量のパージを行な
うことができる。即ち、キャニスタの吸入脱離を効率的
に行わせるには高負荷時程パージを増大するように制御
することが必要であるが、この発明のようにマツプを設
け、マツプで設定されたノ9−ジ量が得られるようにフ
ィードバック制御することで負荷比例型のツクージ特性
を容易に実現することができる。
Further, as an effect of the embodiment, as shown in FIG. 11, the amount of purge can be performed in accordance with the operating conditions of the engine, that is, the rotation speed and load. That is, in order to efficiently perform the suction and desorption of the canister, it is necessary to control the purge so that it increases as the load increases. - Load proportional type Tsukuji characteristics can be easily realized by performing feedback control so that the amount of Tsukuji is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す図。 第2図はこの発明の実施例を示す図。 第3図はパージ制御弁の軸方向断面図。 第4図はノや−・ゾ制御弁の横断面図。 第5図は連続的に変化する空燃比を検知する改良型セン
サの原理を示す図。 第6図は第5図のセンサの空燃比検知特性を示すグラフ
。 第7図から第9図はこの発明のソフトウェア構成を示す
フローチャート図。 第10図は回転数及び吸入空気量に対する空燃比設定値
を示す図。 第11図は回転数及び吸入空気量に対するノ9−ノ制御
弁の開度の設定値を示す図。 30・・・エア70−メータ、40・・・キャニスタ、
48・・・パージ通路、50・・・パージ制御弁、60
・・・制御回路、70・・・空燃比センサ。 第1図 C・・ キャニスタ P・・バーン通路 ■ パージ制御弁 A・アクチュエータ ト・吸気管 E・・・エンジン 第3図 第4図 50 バージ制御弁 第5図 第6図 A/F         −“′−′ 第7図 第8図 第9図
FIG. 1 is a diagram showing the configuration of the present invention. FIG. 2 is a diagram showing an embodiment of the invention. FIG. 3 is an axial sectional view of the purge control valve. FIG. 4 is a cross-sectional view of the NOYA-ZO control valve. FIG. 5 is a diagram showing the principle of an improved sensor that detects a continuously changing air-fuel ratio. FIG. 6 is a graph showing the air-fuel ratio detection characteristics of the sensor shown in FIG. 5. 7 to 9 are flowcharts showing the software configuration of the present invention. FIG. 10 is a diagram showing air-fuel ratio setting values with respect to rotational speed and intake air amount. FIG. 11 is a diagram showing the set value of the opening degree of the control valve No.9-No with respect to the rotational speed and intake air amount. 30... Air 70-meter, 40... Canister,
48... Purge passage, 50... Purge control valve, 60
...Control circuit, 70...Air-fuel ratio sensor. Fig. 1 C... Canister P... Burn passage ■ Purge control valve A, actuator, intake pipe E... Engine Fig. 3 Fig. 4 Fig. 50 Verge control valve Fig. 5 Fig. 6 A/F - "'-' Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 吸気管に開口するパージ通路の端部にキャニスタを設け
た内燃機関において、パージ通路上に設置される流量が
連続可変のパージ制御弁と、パージ制御弁の駆動アクチ
ュエータと、連続的に変化する空燃比を検知する空燃比
検知手段と、空燃比検知手段からの空燃比信号に応じて
パージ流量を演算するパージ流量演算手段と、その演算
されたパージ流量が得られるように前記アクチュエータ
を駆動する制御手段とより成る空燃比制御装置。
In an internal combustion engine in which a canister is installed at the end of a purge passage that opens into the intake pipe, a purge control valve with a continuously variable flow rate installed on the purge passage, a drive actuator for the purge control valve, and a continuously variable air air-fuel ratio detection means for detecting a fuel ratio; purge flow rate calculation means for calculating a purge flow rate according to an air-fuel ratio signal from the air-fuel ratio detection means; and control for driving the actuator so as to obtain the calculated purge flow rate. An air-fuel ratio control device comprising means.
JP24881784A 1984-11-27 1984-11-27 Air fuel ratio controller for internal-combustion engine Pending JPS61129454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24881784A JPS61129454A (en) 1984-11-27 1984-11-27 Air fuel ratio controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24881784A JPS61129454A (en) 1984-11-27 1984-11-27 Air fuel ratio controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61129454A true JPS61129454A (en) 1986-06-17

Family

ID=17183848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24881784A Pending JPS61129454A (en) 1984-11-27 1984-11-27 Air fuel ratio controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61129454A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241958A (en) * 1985-08-20 1987-02-23 Honda Motor Co Ltd Purging control system
JPS63239355A (en) * 1987-03-26 1988-10-05 Mazda Motor Corp Evaporated fuel treating equipment for engine
FR2618855A1 (en) * 1987-07-30 1989-02-03 Peugeot DEVICE FOR RECOVERING FUEL VAPORS
US5216998A (en) * 1990-12-28 1993-06-08 Honda Giken Kogyo K.K. Evaporative fuel-purging control system for internal combustion engines
US5507269A (en) * 1994-08-04 1996-04-16 Nippondenso Co., Ltd. Air fuel ratio control apparatus for internal combustion engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241958A (en) * 1985-08-20 1987-02-23 Honda Motor Co Ltd Purging control system
JPH0569987B2 (en) * 1985-08-20 1993-10-04 Honda Motor Co Ltd
JPS63239355A (en) * 1987-03-26 1988-10-05 Mazda Motor Corp Evaporated fuel treating equipment for engine
FR2618855A1 (en) * 1987-07-30 1989-02-03 Peugeot DEVICE FOR RECOVERING FUEL VAPORS
US5216998A (en) * 1990-12-28 1993-06-08 Honda Giken Kogyo K.K. Evaporative fuel-purging control system for internal combustion engines
US5507269A (en) * 1994-08-04 1996-04-16 Nippondenso Co., Ltd. Air fuel ratio control apparatus for internal combustion engines

Similar Documents

Publication Publication Date Title
JP3365197B2 (en) EGR control device for internal combustion engine
JP2000018105A (en) Internal combustion engine control
JP2000314342A (en) Air-fuel ratio control device for internal combustion engine
JP2658460B2 (en) Exhaust gas recirculation system for internal combustion engine
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP2595346Y2 (en) Evaporative fuel control system for internal combustion engine
JPS61129454A (en) Air fuel ratio controller for internal-combustion engine
JPH057548B2 (en)
JP2503474B2 (en) Air-fuel ratio control device
JPS63248951A (en) Air-fuel ratio control device for internal combustion engine
JP2002364427A (en) Air-fuel ratio controller for engine
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0512538B2 (en)
JPH057546B2 (en)
JPH0694828B2 (en) Abnormality detection method for exhaust gas concentration detection system of internal combustion engine
JPH07259630A (en) Intake air quantity calculating device by intake pipe pressure
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP3599378B2 (en) Throttle valve control device for internal combustion engine
JP2581046B2 (en) Fuel injection method for internal combustion engine
JPH0368221B2 (en)
JPH0330601Y2 (en)
JP2633652B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0475382B2 (en)
JPH059621B2 (en)
JP2591318B2 (en) Diesel engine exhaust recirculation system