JPS6112903B2 - - Google Patents

Info

Publication number
JPS6112903B2
JPS6112903B2 JP51095264A JP9526476A JPS6112903B2 JP S6112903 B2 JPS6112903 B2 JP S6112903B2 JP 51095264 A JP51095264 A JP 51095264A JP 9526476 A JP9526476 A JP 9526476A JP S6112903 B2 JPS6112903 B2 JP S6112903B2
Authority
JP
Japan
Prior art keywords
compound
dihydrocarbostyryl
general formula
reaction
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51095264A
Other languages
Japanese (ja)
Other versions
JPS5321175A (en
Inventor
Takao Nishi
Takashi Ueda
Kazuyuki Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP9526476A priority Critical patent/JPS5321175A/en
Publication of JPS5321175A publication Critical patent/JPS5321175A/en
Publication of JPS6112903B2 publication Critical patent/JPS6112903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Quinoline Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏なカルボスチリル誘導䜓に関す
る。 本発明の化合物は新芏化合物であり、䞀般匏 〔匏䞭は䜎玚アルキル基を、はむオり原子又
はスルホニル基を、は〜の敎数を、・
䜍の点線は飜和若しくは二重結合を倫々瀺す。〕
で衚わされるカルボスチリル誘導䜓である。該化
合物は血小板凝集抑制䜜甚及び消炎䜜甚を有し、
血栓予防薬及び消炎剀ずしお有甚である。 䞀般匏で衚わされる化合物においお、
で瀺される䜎玚アルキル基ずしおは炭玠数〜
の盎鎖もしくは分枝状のアルキル基を挙げるこず
ができ、具䜓的にはメチル基、゚チル基、−プ
ロピル基、む゜プロピル基、−ブチル基、tert
−ブチル基、sec−ブチル基等を䟋瀺できる。 本発明の代衚的な化合物を以䞋に掲げる。 −−゚トキシカルボニルプロピルチオ−
・−ゞヒドロカルボスチリル、−−゚
トキシカルボニルプロピルチオ−カルボスチリ
ル、−−ブトキシカルボニル゚チルチオ−
・−ゞヒドロカルボスチリル、−む゜プロ
ポキシカルボニルメチルチオ−カルボスチリル、
−−゚トキシカルボニルプロピルスルホニ
ル−・−ゞヒドロカルボスチリル、−
−゚トキシカルボニルプロピルスルホニル−カ
ルボスチリル、−−tert−ブトキシカルボ
ニルプロピルスルホニル−・−ゞヒドロカ
ルボスチリル、−プロポキシカルボニルメチル
スルホニル−・−ゞヒドロカルボスチリル、
−−tert−ブトキシカルボニルプロピルチ
オ−・−ゞヒドロカルボスチリル、−
−む゜プロポキシカルボニルプロピルチオ−カ
ルボスチリル、−−む゜プロポキシカルボ
ニルプロピルスルホニル−カルボスチリル、
−−゚トキシカルボニルブチルチオ−・
−ゞヒドロカルボスチリル 本発明の化合物は皮々の方法により補造される
が、その奜たしい䟋を挙げれば䞋匏に瀺す劂く
公知の䞀般匏で衚わされるカルボスチリル
誘導䜓をクロルスルホン化しお䞀般匏で衚
わされるクロルスルホニル誘導䜓を埗、次いで䞀
般匏の化合物を還元しお䞀般匏で衚
わされるメルカプトカルボスチリル誘導䜓を埗、
曎にアルカリの存圚䞋に䞀般匏の化合物ず
䞀般匏で衚わされる化合物ずを反応させる
こずにより䞀般匏の化合物䞭がむオり原
子である化合物−が補造される。たた䞀
般匏−の化合物を酞化するこずにより䞀
般匏の化合物䞭がスルホニル基である化
合物−が補造される。 䞀般匏の化合物のクロルスルホン化反応
は無溶媒であるいは通垞甚いられる䞍掻性溶媒、
䟋えば硫酞、酢酞、塩化メチレン、ゞクロロ゚タ
ン、クロロホルム、四塩化炭玠等の溶媒䞭で行な
われる。クロルスルホン酞の䜿甚量は䞀般匏
の化合物に察しお通垞倍モル〜倧過剰
量、奜たしくは〜倍モルである。該反応の反
応枩床は通垞−20〜100℃、奜たしくは−10℃〜
宀枩であり、反応時間は通垞0.5〜24時間であ
る。 䞀般匏の化合物の還元反応には通垞行な
われおいる還元方法を適甚でき、䟋えば亜鉛末、
鉄等の金属ず硫酞、塩酞、りん酞、酢酞等の酞ず
を甚いる方法を挙げるこずができる。䞊蚘金属及
び酞は䞀般匏の化合物に察しお通垞それぞ
れ倧過剰量甚いられる。反応枩床は通垞〜200
℃、奜たしくは〜100℃であり、反応時間は通
垞〜24時間である。 䞀般匏の化合物ず䞀般匏の化合物
ずの反応は、通垞の脱ハロゲン化氎玠反応の条件
䞋に行なわれる。甚いられる脱ハロゲン化剀ずし
おは皮々の塩基性化合物があり、たずえば、氎酞
化ナトリりム、氎酞化カリりム、炭酞ナトリり
ム、炭酞カリりム、炭酞氎玠ナトリりム、炭酞氎
玠カリりム、炭酞銀などの無機塩基、ナトリり
ム、カリりムなどのアルカリ金属、ナトリりムメ
チラヌト、ナトリりム゚チラヌトなどのアルコラ
ヌト、トリ゚チルアミン、ピリゞン、・−ゞ
メチルアニリンなどの有機塩基が挙げられる。斯
かる反応は無溶媒でも、あるいは溶媒の圚存䞋で
も行なわれ、溶媒ずしおは反応に悪圱響を䞎えな
い䞍掻性のものがすべお甚いられ、たずえば、メ
タノヌル、゚タノヌル、プロパノヌル、ブタノヌ
ル、゚チレングリコヌルなどのアルコヌル類、ゞ
゚チル゚ヌテル、テトラヒドロフラン、ゞオキサ
ン、モノグラむム、ゞグラむムなどの゚ヌテル
類、アセトン、メチル゚チルケトンなどのケトン
類、ベンれン、トル゚ン、キシレンなどの芳銙族
炭化氎玠類、酢酞メチル、酢酞゚チルなどの゚ス
テル類、・−ゞメチルホルムアミド、ゞメチ
ルスルホキサむド、ヘキサメチルリン酞トリアミ
ドなどの非プロトン性極性溶媒などが挙げられ
る。たた、本反応は沃化ナトリりム、沃化カリり
ムなどの金属沃化物の存圚䞋に行なうのが有利で
ある。甚いられる詊薬の割合は特に限定されず広
範囲の䞭から適宜に遞択されるが、通垞䞀般匏
の化合物に察しお䞀般匏の化合物を
等モル〜倍モル、奜たしくは等モル〜倍モル
量にお甚いるのが望たしい。たた、その反応枩床
もずくに限定されないが、通垞、宀枩〜200℃、
奜たしくは50〜150℃で行なわれる。反応時間は
通垞〜30時間、奜たしくは〜15時間である。
以䞊の劂くしお䞀般匏−の本発明化合物
が補造される。 䞀般匏−の化合物の酞化反応は慣甚の
酞化剀、䟋えば過酞化氎玠氎、過酢酞、過安息銙
酞、メタクロロ過安息銙酞等の有機過酞、無氎ク
ロム酞ず空気等を甚いお行なわれる。斯かる酞化
剀の䜿甚量は䞀般匏−の化合物に察しお
通垞倍〜倧過剰量、奜たしくは〜倍モルで
ある。該酞化反応は通垞の䞍掻性溶媒、䟋えば酢
酞、プロピオン酞、クロロホルム、塩化メチレ
ン、ゞメチルホルムアミド等の溶媒䞭で行なわれ
る。反応枩床は通垞−20〜100℃、奜たしくは
〜50℃であり、反応時間は通垞〜24時間であ
る。以䞊の劂くしお䞀般匏−の本発明化
合物が補造される。 斯くしお埗られる本発明化合物は反応終了埌垞
法に埓぀お反応混合物から単離される。䟋えば反
応混合物の溶剀を留去あるいは皀釈するこずによ
り埗られる。埗られた化合物を必芁に応じ分別再
結晶法、カラムクロマトグラフむヌ、薄局クロマ
トグラフむヌ等の通垞の方法により曎に粟補する
こずができる。 曎に䞀般匏における−CH2−oが有枝の
アルキレン基に眮き倉わ぀た化合物、䟋えば−
−゚トキシカルボニル−−メチルプロピル
チオ−・−ゞヒドロカルボスチリル、−
−゚トキシカルボニル−−メチルプロピル
スルホニル−カルボスチリルも本発明化合物ず
同様の薬理掻性を有する。 以䞋に実斜䟋を掲げお本発明を曎に明らかにす
る。 実斜䟋  クロロスルフオン酞30mlに四塩化炭玠40mlを加
えお倖郚氷什、撹拌䞋、・−ゞヒドロカルボ
スチリル8.9を少量づ぀添加する。添加埌宀枩
䞋撹拌を時間行う。反応終了埌、反応液を氷−
氎玄200mlに泚ぎ析出晶を取し氎掗する。埗ら
れた結晶を也燥埌クロロホルムから再結晶しお、
無色板状晶の−クロロスルホニル−・−ゞ
ヒドロカルボスチリル13を埗る。 融点209〜212℃分解 æ°·70に濃硫酞13mlを加えた溶液を倖郚氷冷撹
拌䞋、−クロロスルホニル−・−ゞヒドロ
カルボスチリル7.4を少量づ぀添加した埌、宀
枩撹拌䞋亜鉛末13を少量づ぀添加する。添加埌
50〜60℃にお時間撹拌する。反応埌䞍溶物を
取し、氎掗埌0.5N−NaOH氎溶液100mlに溶解さ
せ䞍溶物を去する。母液を塩酞にお酞性ずしお
析出晶を取し氎掗する。埗られた結晶を氎から
再結晶しお無色針状晶の−メルカプト−・
−ゞヒドロカルボスチリル・H2O3.5を埗る。
融点170.5〜172.5℃ ・−ゞメチルホルムアミド40mlに−メル
カプト−・−ゞヒドロカルボスチリルのNa
å¡©2.0を加えお撹拌䞋、50〜60℃にお−ブロ
モ酪酞゚チル゚ステル2.34を含む・−ゞメ
チルホルムアミド10ml溶液を30分間を芁しお滎䞋
する。滎䞋埌同枩床にお時間撹拌し、冷埌飜和
食塩氎200mlに泚ぎクロロホルムで抜出する100
ml×回。クロロホルム局を十分氎掗し、さら
に飜和NaHCO3氎、氎で掗浄し、Na2SO4で也燥
する。Na2SO4を去し、クロロホルムを留去す
る。濃瞮残をクロロホルム−石油゚ヌテルから再
結晶しお、無色針状晶の−−゚トキシカル
ボニルプロピルチオ−・−ゞヒドロカルボ
スチリル1.8を埗る。 融点78.5〜81℃ 適圓な原料を甚い䞊蚘ず同様にしお䞋蚘化合物
を埗る。 Γ−−゚トキシカルボニルプロピルチオ−
カルボスチリル 融点99〜101℃ Γ−メトキシカルボニルメチルチオ−・−
ゞヒドロカルボスチリル 融点120.5〜123℃ Γ−−む゜プロポキシカルボニルプロピル
チオ−・−ゞヒドロカルボスチリル
融点68〜70℃ 実斜䟋  酢酞30mlに−−゚トキシカルボニルプロ
ピルチオ−・−ゞヒドロカルボスチリル1.5
を溶解させ、宀枩撹拌䞋30過酞化氎玠氎ml
を加えお、日間攟眮する。反応埌、反応液を飜
和食塩氎玄300mlに泚ぎ、析出量を取し、氎掗
埌也燥する。埗られた結晶をクロロホルム−石油
゚ヌテルから再結晶しお、無色針状晶の−
−゚トキシカルボニルプロピルスルホニル−
・−ゞヒドロカルボスチリル1.0を埗る。
融点116〜117℃ 適圓な原料を甚い䞊蚘ず同様にしお䞋蚘化合物
を埗る。 Γ−−゚トキシカルボニルプロピルスルホ
ニル−カルボスチリル 融点141〜143℃ Γ−メトキシカルボニルメチルスルホニル−カ
ルボスチリル 融点181〜183℃ 実斜䟋  ・−ゞメチルホルムアミド40mlに−メル
カプト−・−ゞヒドロカルボスチリルのNa
å¡©2.0を加えお撹拌䞋、50〜60℃にお−ブロ
モ吉草酞゚チル゚ステル2.5を含む・−ゞ
メチルホルムアミド10ml溶液を30分間を芁しお滎
䞋する。滎䞋埌同枩床にお時間撹拌し、冷埌飜
和食塩氎200mlに泚ぎクロロホルムで抜出する
100ml×回。クロロホルム局を十分氎掗し、
さらに飜和NaHCO3氎、氎で掗浄し、NaSO4で也
燥する。NaSO4を去し、クロロホルムを留去し
お、癜色結晶の−−゚トキシカルボニルブ
チルチオ−・−ゞヒドロカルボスチリル1.7
を埗る。融点68〜71℃ 元玠分析倀 C16H21O3NS    蚈算倀 62.52 6.88 4.56 実枬倀 62.24 6.63 4.77 〈薬理詊隓〉 ネむチダヌ第927〜929頁1962幎に蚘茉の方
法に準じお血小板凝集阻止䜜甚を調べた。即ち血
小板凝集阻止䜜甚をAG−型の凝集蚈
aggregometer〔ブラむスマン・マニナフアク
チナアリング・コンパニ−Bryston
Manufacturing Co.補を甚いお枬定した。兎か
ら採取した血液詊料はク゚ン酞ナトリりムず党血
液の混合物でその混合比率は容量比で
ある。該詊料を1000rpmで10分間遠心分離しお、
血小板濃床の高い血挿〔platelet rich plasma〕
以䞋「PRP−」ずいうを埗る。埗られた
PRP−を分離し、残りの血液詊料を3000rpmで
15分間さらに遠心分離しお血小板濃床の䜎い血挿
〔platelet poor plasma〕以䞋「PPP」ずいう
を埗る。 前蚘PRP−䞭に含たれおいる血小板の数をブ
レツチダヌ・クロンカむト法Brecher−
Clonkite Methodで枬定し、PRP−をPPPで
垌釈しおアデノシン・ゞホスプヌトADP−
誘発凝集詊隓に䟛するため300000mmの血小板
を含む詊料以䞋「PRP−」ずいうを調補
し、たたコラヌゲン−誘発凝集詊隓に䟛するため
450000mmの血小板を含む詊料以䞋「PRP−
」ずいうを調補した。 (1) ADP−誘発凝集抑制詊隓 詊隓すべき化合物を予め定めた濃床で含有す
る溶液0.01mlに䞊蚘で調補したPRP−を0.6
ml加え、混合物を枩床37℃の恒枩槜に分間入
れた。次に該混合物にADP溶液を0.07ml加え
た。この混合物の透過床を枬定し、透過床の倉
化を撹拌噚の回転速床1100rpmにお凝集蚈を甚
いお枬定した。この詊隓においお甚いられる
ADP溶液は、オヌレン・ベロナヌル緩衝液を
甚い、濃床が7.5×10-5Mになるように調補し
たものである。血小板の凝集が最倧ずな぀た時
点光の透過床が最倧ずな぀た時点の凝集率
を䞋蚘の匏より算出した。 凝集率−−×100 ここで a1PRP−の透過床 b1PPPの透過床 c1詊隓化合物及びADPを混合したPRP−の
透過床 䞊匏で算出された凝集率をB1ずする。たた
詊隓化合物を䜿甚しない以倖は䞊蚘ず同様にし
お血小板を凝集させお凝集率を求め、この凝集
率をコントロヌルの凝集率A1ずする。 詊隓化合物の血小板凝集阻止䜜甚は、コント
ロヌルの凝集率に察しお阻止率ずしお求
めた。 阻止率−×100 (2) コラヌゲン−誘発凝集抑制詊隓 詊隓すべき化合物を予め定めた濃床で含有す
る溶液0.01mlに䞊蚘で調補したPRP−を0.6
ml加え、混合物を枩床37℃の恒枩槜に分間入
れた。次に該混合物にコラヌゲン溶液を0.07ml
加えた。この混合物の透過床を枬定し、透過床
の倉化を撹拌噚の回転速床1100rpmにお凝集蚈
を甚いお枬定した。この詊隓においおコラヌゲ
ンは、100mgのコラヌゲンにオヌレン・ベロナ
ヌル緩衝液PH7.35mlを加えおすり぀ぶ
し、その䞊柄液を䜿甚した。血小板の凝集が最
倧ずな぀た時点光の透過床が最倧ずな぀た時
点の凝集率を䞋蚘の匏より算出した。 凝集率−−×100 ここで a2PRP−の透過床 b2PPPの透過床 c2詊隓化合物及びコラヌゲンを混合したPRP
−の透過床 䞊匏で算出された凝集率をB2ずする。たた
詊隓化合物を䜿甚しない以倖は䞊蚘ず同様にし
お血小板を凝集させお凝集率を求め、この凝集
率をコントロヌルの凝集率A2ずする。 詊隓化合物の血小板凝集阻止䜜甚は、コント
ロヌルの凝集率に察しお阻止率ずしお求
めた。 阻止率−×100 詊隓化合物 No.1 −゚トキシカルボニルプロピルチオ
−・−ゞヒドロカルボスチリル No.2 −−゚トキシカルボニルプロポキシ
スルホニルカルボスチリル No.3 −カルボメトキシ−・−ゞヒドロ
カルボスチリル No.4 −−カルボキシむ゜プロポキシ−
・−ゞヒドロカルボスチリル No.5 −−カルボキシ゚トキシ−・
−ゞヒドロカルボスチリル No.6 −−カルボキシ゚トキシ−・
−ゞヒドロカルボスチリル No.7 −−゚トキシカルボニルプロピルチ
オカルボスチリル No.8 −メトキシカルボニルメチルチオ−
・−ゞヒドロカルボスチリル No.9 −−む゜プロポキシカルボニルプロ
ピルチオ−・−ゞヒドロカルボスチリル No.10 −−゚トキシカルボニルプロピル
スルホニル−・−ゞヒドロカルボスチリ
ル No.11 −メトキシカルボニルメチルスルホ
ニルカルボスチリル No.12 −−゚トキシカルボニルブチルチ
オ−・−ゞヒドロカルボスチリル 䞊蚘詊隓化合物のうちNo.1及びNo.2及びNo.7
〜12は本発明の化合物であり、No.3及びNo.4は
特開昭51−1481号公報に蚘茉の化合物であり、
No.5及びNo.6は特開昭51−82279号公報に蚘茉の
化合物である。 結果を䞋蚘第衚に瀺す。第衚における数倀
は阻止率を衚わす。
The present invention relates to novel carbostyril derivatives. The compound of the present invention is a new compound and has the general formula [In the formula, R is a lower alkyl group, X is a sulfur atom or a sulfonyl group, n is an integer of 1 to 4, 3.4
Dotted lines at positions indicate saturation or double bonds, respectively. ]
It is a carbostyril derivative represented by The compound has platelet aggregation inhibiting action and anti-inflammatory action,
It is useful as a thromboprophylactic and anti-inflammatory agent. In the compound represented by the general formula (), R
The lower alkyl group represented by has 1 to 4 carbon atoms.
straight-chain or branched alkyl groups, specifically methyl, ethyl, n-propyl, isopropyl, n-butyl, tert.
Examples include -butyl group, sec-butyl group, and the like. Representative compounds of the present invention are listed below. 6-(3-ethoxycarbonylpropylthio)-
3,4-dihydrocarbostyryl, 6-(3-ethoxycarbonylpropylthio)-carbostyryl, 6-(2-butoxycarbonylethylthio)-
3,4-dihydrocarbostyryl, 6-isopropoxycarbonylmethylthio-carbostyryl,
6-(3-ethoxycarbonylpropylsulfonyl)-3,4-dihydrocarbostyryl, 6-(3
-ethoxycarbonylpropylsulfonyl)-carbostyryl, 6-(3-tert-butoxycarbonylpropylsulfonyl)-3,4-dihydrocarbostyryl, 6-propoxycarbonylmethylsulfonyl-3,4-dihydrocarbostyryl,
6-(3-tert-butoxycarbonylpropylthio)-3,4-dihydrocarbostyryl, 6-(3
-isopropoxycarbonylpropylthio)-carbostyryl, 6-(3-isopropoxycarbonylpropylsulfonyl)-carbostyryl, 6
-(4-ethoxycarbonylbutylthio)-3・4
-Dihydrocarbostyryl The compound of the present invention can be produced by various methods, but one preferred example is as shown in the following formula, by chlorosulfonating a carbostyryl derivative represented by the general formula (). ) to obtain a chlorosulfonyl derivative represented by the formula (), and then reduce the compound of the general formula () to obtain a mercaptocarbostyryl derivative represented by the general formula (),
Further, by reacting the compound of general formula () with the compound represented by general formula () in the presence of an alkali, a compound (-A) in which X in the compound of general formula () is a sulfur atom is produced. Further, by oxidizing the compound of general formula (-A), a compound (-B) in which X in the compound of general formula () is a sulfonyl group is produced. The chlorosulfonation reaction of the compound of general formula () can be carried out without a solvent or with a commonly used inert solvent.
For example, it is carried out in a solvent such as sulfuric acid, acetic acid, methylene chloride, dichloroethane, chloroform, or carbon tetrachloride. The amount of chlorosulfonic acid used is usually 2 times to a large excess, preferably 2 to 5 times, by mole, relative to the compound of general formula (). The reaction temperature for this reaction is usually -20 to 100°C, preferably -10°C to
The temperature is room temperature, and the reaction time is usually 0.5 to 24 hours. Conventional reduction methods can be applied to the reduction reaction of the compound of general formula (), such as zinc powder,
Examples include a method using a metal such as iron and an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, or acetic acid. The above metals and acids are usually used in large excess amounts relative to the compound of general formula (). Reaction temperature is usually 0~200℃
℃, preferably 0 to 100℃, and the reaction time is usually 1 to 24 hours. The reaction between the compound of general formula () and the compound of general formula () is carried out under normal dehydrohalogenation reaction conditions. There are various basic compounds that can be used as dehalogenating agents, such as inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, and silver carbonate; Examples include alkali metals such as, alcoholates such as sodium methylate and sodium ethylate, and organic bases such as triethylamine, pyridine, and N.N-dimethylaniline. Such reactions can be carried out without a solvent or in the presence of a solvent, and all inert solvents that do not adversely affect the reaction can be used, such as methanol, ethanol, propanol, butanol, ethylene glycol, etc. Alcohols, ethers such as diethyl ether, tetrahydrofuran, dioxane, monoglyme and diglyme, ketones such as acetone and methyl ethyl ketone, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as methyl acetate and ethyl acetate, N - Aprotic polar solvents such as N-dimethylformamide, dimethyl sulfoxide, and hexamethyl phosphoric acid triamide, etc. can be mentioned. Further, this reaction is advantageously carried out in the presence of a metal iodide such as sodium iodide or potassium iodide. The ratio of the reagents used is not particularly limited and is appropriately selected from a wide range, but usually the proportion of the compound of the general formula () to the compound of the general formula () is 5 times the mole, preferably 1 mole to 5 times the mole of the compound of the general formula (). It is desirable to use twice the molar amount. Furthermore, the reaction temperature is not particularly limited, but is usually room temperature to 200°C,
Preferably it is carried out at 50 to 150°C. The reaction time is usually 1 to 30 hours, preferably 1 to 15 hours.
The compound of the present invention of general formula (-A) is produced as described above. The oxidation reaction of the compound of general formula (-A) is carried out using a conventional oxidizing agent, such as a hydrogen peroxide solution, an organic peracid such as peracetic acid, perbenzoic acid, or metachloroperbenzoic acid, chromic anhydride, and air. It can be done. The amount of the oxidizing agent used is usually 2 times to a large excess amount, preferably 2 to 4 times the amount of the compound of general formula (-A). The oxidation reaction is carried out in a conventional inert solvent such as acetic acid, propionic acid, chloroform, methylene chloride, dimethylformamide and the like. The reaction temperature is usually -20 to 100℃, preferably 0
~50°C, and the reaction time is usually 1 to 24 hours. The compound of the present invention of general formula (-B) is produced as described above. After completion of the reaction, the compound of the present invention thus obtained is isolated from the reaction mixture according to a conventional method. For example, it can be obtained by distilling off or diluting the solvent of the reaction mixture. The obtained compound can be further purified, if necessary, by conventional methods such as fractional recrystallization, column chromatography, and thin layer chromatography. Furthermore, compounds in which (-CH 2 ) -o in the general formula () is replaced with a branched alkylene group, such as 6-
(3-ethoxycarbonyl-2-methylpropylthio)-3,4-dihydrocarbostyryl, 6-
(3-Ethoxycarbonyl-2-methylpropylsulfonyl)-carbostyryl also has the same pharmacological activity as the compound of the present invention. The present invention will be further clarified with reference to Examples below. Example 1 40 ml of carbon tetrachloride is added to 30 ml of chlorosulfonic acid, and 8.9 g of 3,4-dihydrocarbostyryl is added little by little under stirring under external cooling. After the addition, stir at room temperature for 3 hours. After the reaction is complete, put the reaction solution on ice.
Pour into approximately 200ml of water to remove the precipitated crystals and wash with water. The obtained crystals were dried and then recrystallized from chloroform.
13 g of 6-chlorosulfonyl-3,4-dihydrocarbostyryl are obtained as colorless plate-like crystals. Melting point: 209-212℃ (decomposition) To a solution of 70 g of ice and 13 ml of concentrated sulfuric acid, 7.4 g of 6-chlorosulfonyl-3,4-dihydrocarbostyryl was added little by little to a solution of 13 ml of concentrated sulfuric acid added to 70 g of ice while stirring at room temperature. Add 13g of powder little by little. After addition
Stir at 50-60°C for 2 hours. After the reaction, remove the insoluble matter, wash with water, and dissolve in 100 ml of 0.5N NaOH aqueous solution to remove the insoluble matter. The mother liquor is acidified with hydrochloric acid, and the precipitated crystals are collected and washed with water. The obtained crystals were recrystallized from water to give colorless needle-like crystals of 6-mercapto-3 and 4.
- Obtain 3.5 g of dihydrocarbostyryl.H 2 O.
Melting point 170.5-172.5℃ Sodium 6-mercapto-3,4-dihydrocarbostyryl in 40 ml of N-N-dimethylformamide
After adding 2.0 g of salt, 10 ml of N.N-dimethylformamide solution containing 2.34 g of r-bromobutyric acid ethyl ester was added dropwise at 50 to 60° C. over 30 minutes while stirring. After dropping, stir at the same temperature for 2 hours, cool, pour into 200 ml of saturated saline, and extract with chloroform (100 ml).
ml x 3 times). The chloroform layer is thoroughly washed with water, further washed with saturated NaHCO 3 water, water, and dried over Na 2 SO 4 . Na 2 SO 4 is removed and chloroform is distilled off. The concentrated residue was recrystallized from chloroform-petroleum ether to obtain 1.8 g of 6-(3-ethoxycarbonylpropylthio)-3,4-dihydrocarbostyryl in the form of colorless needles. Melting point: 78.5-81°C The following compound is obtained in the same manner as above using appropriate raw materials. Γ6-(3-ethoxycarbonylpropylthio)-
Carbostyril Melting point 99-101℃ Γ6-methoxycarbonylmethylthio-3,4-
Dihydrocarbostyryl Melting point 120.5-123℃ Γ6-(3-isopropoxycarbonylpropylthio)-3,4-dihydrocarbostyryl
Melting point 68-70℃ Example 2 1.5 6-(3-ethoxycarbonylpropylthio)-3,4-dihydrocarbostyryl in 30 ml of acetic acid
Dissolve g in 2 ml of 30% hydrogen peroxide solution while stirring at room temperature.
Add and leave for 2 days. After the reaction, pour the reaction solution into about 300 ml of saturated saline, take out the amount of precipitate, wash with water, and then dry. The obtained crystals were recrystallized from chloroform-petroleum ether to give colorless needle-shaped 6-(3
-ethoxycarbonylpropylsulfonyl)-
1.0 g of 3,4-dihydrocarbostyryl is obtained.
Melting point: 116-117°C The following compound is obtained in the same manner as above using appropriate raw materials. Γ6-(3-ethoxycarbonylpropylsulfonyl)-carbostyryl Melting point 141-143°C Γ6-Methoxycarbonylmethylsulfonyl-carbostyryl Melting point 181-183°C Example 3 6-mercapto-3,4 in 40 ml of N·N-dimethylformamide -Sodium of dihydrocarbostyryl
After adding 2.0 g of salt, 10 ml of N.N-dimethylformamide solution containing 2.5 g of 5-bromovaleric acid ethyl ester was added dropwise at 50 to 60° C. over 30 minutes while stirring. After dropping, stir at the same temperature for 2 hours, cool, pour into 200 ml of saturated saline, and extract with chloroform (100 ml x 3). Wash the chloroform layer thoroughly with water,
Further wash with saturated NaHCO 3 water, water and dry with NaSO 4 . NaSO 4 was removed, chloroform was distilled off, and white crystals of 6-(4-ethoxycarbonylbutylthio)-3,4-dihydrocarbostyryl 1.7
get g. Melting point 68-71℃ Elemental analysis value C 16 H 21 O 3 NS C H N Calculated value 62.52 6.88 4.56 Actual value 62.24 6.63 4.77 <Pharmacological test> Platelet test according to the method described in Nature, pp. 927-929 (1962) The aggregation inhibition effect was investigated. In other words, the platelet aggregation inhibition effect was measured using an AG-type aggregometer (Bryston Manufacturing Company).
Manufacturing Co.). The blood sample collected from the rabbit was a mixture of sodium citrate and whole blood at a mixing ratio of 1:9 (volume ratio). The sample was centrifuged at 1000 rpm for 10 minutes,
platelet rich plasma
(hereinafter referred to as "PRP-1"). obtained
Separate PRP-1 and collect remaining blood sample at 3000 rpm.
Further centrifugation for 15 minutes produces platelet poor plasma (hereinafter referred to as "PPP").
get. The number of platelets contained in the PRP-1 was determined by the Bretcher-Cronkhite method.
Adenosine diphosphate (ADP) was measured by diluting PRP-1 with PPP.
A sample containing 300,000/ mm3 platelets (hereinafter referred to as "PRP-2") was prepared for the induced aggregation test, and also for the collagen-induced aggregation test.
A sample containing 450,000/ mm3 platelets (hereinafter referred to as “PRP-
3) was prepared. (1) ADP-induced aggregation inhibition test Add 0.6 ml of PRP-2 prepared above to 0.01 ml of a solution containing the compound to be tested at a predetermined concentration.
ml was added, and the mixture was placed in a constant temperature bath at a temperature of 37°C for 1 minute. Then 0.07 ml of ADP solution was added to the mixture. The permeability of this mixture was measured, and the change in permeability was measured using an agglomerometer at a stirrer rotation speed of 1100 rpm. used in this test
The ADP solution was prepared using Oren-Veronal buffer to a concentration of 7.5×10 −5 M. The aggregation rate at the time when platelet aggregation reached the maximum (the time when the light transmittance reached the maximum) was calculated using the following formula. Aggregation rate = c 1 - a 1 / b 1 - a 1 × 100 where a 1 : Permeability of PRP-2 b 1 : Permeability of PPP c 1 : Permeability of PRP-2 mixed with test compound and ADP Let the aggregation rate calculated by the above formula be B1 . In addition, platelets are aggregated in the same manner as above except that no test compound is used, and the aggregation rate is determined, and this aggregation rate is defined as the control aggregation rate A1 . The platelet aggregation inhibiting effect of the test compound was determined as the inhibition rate (%) relative to the aggregation rate of the control. Inhibition rate (%) = A 1 - B 1 / A 1 × 100 (2) Collagen-induced aggregation inhibition test Add 0.6 ml of PRP-3 prepared above to 0.01 ml of a solution containing the compound to be tested at a predetermined concentration.
ml was added, and the mixture was placed in a constant temperature bath at a temperature of 37°C for 1 minute. Next, add 0.07ml of collagen solution to the mixture.
added. The permeability of this mixture was measured, and the change in permeability was measured using an agglomerometer at a stirrer rotation speed of 1100 rpm. In this test, collagen was ground by adding 5 ml of Oren-Veronal buffer (PH7.35) to 100 mg of collagen, and the resulting supernatant was used. The aggregation rate at the time when platelet aggregation reached the maximum (the time when the light transmittance reached the maximum) was calculated using the following formula. Aggregation rate = c 2 − a 2 / b 2 − a 2 ×100 where a 2 : Permeability of PRP-3 b 2 : Permeability of PPP c 2 : PRP mixed with test compound and collagen
Transmittance of -3 Let the aggregation rate calculated by the above formula be B2 . In addition, platelets are aggregated in the same manner as above except that no test compound is used, and the aggregation rate is determined, and this aggregation rate is defined as the control aggregation rate A2 . The platelet aggregation inhibiting effect of the test compound was determined as the inhibition rate (%) relative to the aggregation rate of the control. Rejection rate (%) = A 2 - B 2 /A 2 ×100 Test compound No. 1 6-(ethoxycarbonylpropylthio)
-3,4-dihydrocarbostyryl No.2 6-(3-ethoxycarbonylpropoxysulfonyl)carbostyryl No.3 6-carbomethoxy-3,4-dihydrocarbostyryl No.4 5-(1-carboxyisopropoxy) −
3,4-dihydrocarbostyryl No.5 5-(2-carboxyethoxy)-3,4
-Dihydrocarbostyryl No.6 6-(2-carboxyethoxy)-3・4
-dihydrocarbostyryl No.7 6-(3-ethoxycarbonylpropylthio)carbostyryl No.8 6-(methoxycarbonylmethylthio)-
3,4-dihydrocarbostyryl No.9 6-(3-isopropoxycarbonylpropylthio)-3,4-dihydrocarbostyryl No.10 6-(3-ethoxycarbonylpropylsulfonyl)-3,4-dihydrocarbostyryl No.11 6-(methoxycarbonylmethylsulfonyl)carbostyryl No.12 6-(4-ethoxycarbonylbutylthio)-3,4-dihydrocarbostyryl No.1, No.2, and No.7 among the above test compounds
-12 are compounds of the present invention, No. 3 and No. 4 are compounds described in JP-A-51-1481,
No. 5 and No. 6 are compounds described in JP-A-51-82279. The results are shown in Table 1 below. The numbers in Table 1 represent the inhibition rate (%).

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  䞀般匏 〔匏䞭は䜎玚アルキル基を、はむオり原子又
はスルホニル基を、は〜の敎数を、・
䜍の点線は飜和若しくは二重結合を倫々瀺す。〕 で衚わされるカルボスチリル誘導䜓。
[Claims] 1. General formula [In the formula, R is a lower alkyl group, X is a sulfur atom or a sulfonyl group, n is an integer of 1 to 4, 3.4
Dotted lines at positions indicate saturation or double bonds, respectively. ] A carbostyril derivative represented by.
JP9526476A 1976-08-09 1976-08-09 Carbostyryl derivatives Granted JPS5321175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9526476A JPS5321175A (en) 1976-08-09 1976-08-09 Carbostyryl derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9526476A JPS5321175A (en) 1976-08-09 1976-08-09 Carbostyryl derivatives

Publications (2)

Publication Number Publication Date
JPS5321175A JPS5321175A (en) 1978-02-27
JPS6112903B2 true JPS6112903B2 (en) 1986-04-10

Family

ID=14132895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9526476A Granted JPS5321175A (en) 1976-08-09 1976-08-09 Carbostyryl derivatives

Country Status (1)

Country Link
JP (1) JPS5321175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368701A (en) * 1986-09-03 1988-03-28 ゚ムテ−り−・モ−トレン−りント・ツルビ−ネン−りニオン・ミュンヘン・ゲ−゚ムベ−ハ− Metallic hollow part with metallic assembly, particularly, turbine blade with cooling assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938138A (en) * 1982-08-30 1984-03-01 Nissan Motor Co Ltd Detecting device for dozy driving
JPS60135330A (en) * 1983-12-22 1985-07-18 Aisin Seiki Co Ltd Detector of holding state of steering wheel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511481A (en) * 1974-06-24 1976-01-08 Otsuka Pharma Co Ltd KARUBOKISHIARUKOKISHI 3 * 44 JIHIDOROKARUBOSUCHIRIRUJUDOTAINO SEIZOHO
JPS5116678A (en) * 1974-07-29 1976-02-10 Otsuka Pharma Co Ltd Ashiru hidorokishi 3*44 jihidorokarubosuchirirujudotaino seizoho
JPS5182279A (en) * 1974-07-05 1976-07-19 Otsuka Pharma Co Ltd Karubokishetokishi 3*44 jihidorokarubosuchirirujudotainoseizoho

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511481A (en) * 1974-06-24 1976-01-08 Otsuka Pharma Co Ltd KARUBOKISHIARUKOKISHI 3 * 44 JIHIDOROKARUBOSUCHIRIRUJUDOTAINO SEIZOHO
JPS5182279A (en) * 1974-07-05 1976-07-19 Otsuka Pharma Co Ltd Karubokishetokishi 3*44 jihidorokarubosuchirirujudotainoseizoho
JPS5116678A (en) * 1974-07-29 1976-02-10 Otsuka Pharma Co Ltd Ashiru hidorokishi 3*44 jihidorokarubosuchirirujudotaino seizoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368701A (en) * 1986-09-03 1988-03-28 ゚ムテ−り−・モ−トレン−りント・ツルビ−ネン−りニオン・ミュンヘン・ゲ−゚ムベ−ハ− Metallic hollow part with metallic assembly, particularly, turbine blade with cooling assembly

Also Published As

Publication number Publication date
JPS5321175A (en) 1978-02-27

Similar Documents

Publication Publication Date Title
JPS6155514B2 (en)
HEDGE et al. Some Condensation Reactions of Isopropylidene Malonate1
KR870004961A (en) Process for preparing substituted benzyl ether
Knox et al. 134. Ferrocene derivatives. Part VII. Some sulphur derivatives
TW202135829A (en) Crystalline and liquid crystalline 25-hydroxy-cholest-5-en-3-sulfate sodium and methods for preparing same
JPS6112903B2 (en)
JPS6112904B2 (en)
KR900017978A (en) Indan-1,3-dione derivatives and herbicidal compositions containing them as active ingredients
HU212497B (en) Process for producing new cephalosporin derivatives and pharmaceutical compositions containing them as active component
US4716236A (en) Method for synthesizing esters
JPS5951941B2 (en) carbostyril derivatives
EP0242289A1 (en) Process for the preparation of oxazinobenzothiazine 6,6-dioxide derivatives
WO2002090351A1 (en) Process for producing carbostyril derivative
US2883378A (en) 11,18-dioxygenated-delta-3,20-dioxopregnene-21 als
JPS6117824B2 (en)
SE444944B (en) METHOD OF PREPARING S-TRIETHYLPHOSPHINE WOULD-2,3,4,6-TETRA-O-ACETYL-1-THIO-BETA-D-GLUCOPYRANOSIDE (AURANOFINE)
Blau et al. The Synthesis of Dimethyl-(α-hydroxy-β-propiothetin) Hydrochloride and Related Compounds
CA1098906A (en) Derivatives of thiazolin, their preparation and compositions containing them
JPS62144B2 (en)
JP3170651B2 (en) Prothinal substituted with a dithiane ring and method for preparing the pronal
PT85392B (en) Process for the preparation of 2,4-diamino-3-oxy-6-piperidylpurimidine
Oldham et al. A Synthesis of 2, 4, 6-Trimethylglucose
JPS6112902B2 (en)
US5274086A (en) N-acetyl-β-d-glucosamine derivatives and reagents for determining n-acetyl-β-d-glucosaminidase activity containing the same as effective ingredients
Reynolds et al. The reactions of pyranylidenemethylpyrylium salts with sodium sulfide