JPS61128784A - Controller for load rotating speed - Google Patents

Controller for load rotating speed

Info

Publication number
JPS61128784A
JPS61128784A JP59248230A JP24823084A JPS61128784A JP S61128784 A JPS61128784 A JP S61128784A JP 59248230 A JP59248230 A JP 59248230A JP 24823084 A JP24823084 A JP 24823084A JP S61128784 A JPS61128784 A JP S61128784A
Authority
JP
Japan
Prior art keywords
value
current
load
power converter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248230A
Other languages
Japanese (ja)
Inventor
Masaki Obara
正樹 小原
Mitsunori Shirokura
白倉 三徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59248230A priority Critical patent/JPS61128784A/en
Publication of JPS61128784A publication Critical patent/JPS61128784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/02Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude
    • H02P27/026Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Abstract

PURPOSE:To rapidly convert one to the other of power converters normally or reversely by obtaining an induced voltage indirectly by utilizing a firing angle, a current average value and a momentary current value at power converter switching time, thereby eliminating a detector. CONSTITUTION:Conversion preparing means 14 of a power converter stores in advance a relationship between a firing angle and the induced voltage of a load for a current average value over one period, obtains the induced voltage of a load from the actual firing angle value, the current average value and the momentary current value of a power converter during operation at that time when switching the power supplying direction of the converter, and forms the initial value 15 of the firing angle of the power converter after switching by utilizing the value. A current controller 4 starts the current control with the value as a firing command 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直流電動機の如き負荷に対して、電源側から
第1の電力変換装置を介して電力を供給して駆動し、前
記負荷の回転速度が、その設定速度の変更やら負荷変動
等の故に、設定速度を上まわって負荷の逆起電力(誘起
電圧)の方が前記第1の電力変換装置を介して与えられ
る電源側電圧より高(なったとき、前記第1の電力変換
装置から、それと逆並列に接続された第2の電力変換装
置に切り換え、これを介して、負荷側から電源側へ電力
を回生ずることにより負荷の回転速度を低減させて設定
速度に近ずけるようにした負荷回転速度の制御装置に関
するものであり、更に詳しくは、前記第1の電力変換装
置から第2の電力変換装置へ(或いはその逆)の切換に
際し、切換後の電力変換装置に対する点弧角指令値の初
期値の決定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention drives a load such as a DC motor by supplying power from a power supply side through a first power converter to drive the load. If the rotational speed exceeds the set speed due to changes in the set speed or load fluctuations, the back electromotive force (induced voltage) of the load is greater than the power supply voltage applied via the first power converter. When the first power converter becomes high, the first power converter is switched to the second power converter connected in antiparallel to it, and power is regenerated from the load side to the power source side via this, thereby reducing the load. This relates to a load rotation speed control device that reduces the rotation speed so that it approaches a set speed, and more specifically, from the first power conversion device to the second power conversion device (or vice versa). The present invention relates to determining the initial value of the firing angle command value for the power conversion device after switching.

〔従来の技術〕[Conventional technology]

上述のような負荷回転速度の制御装置においては、一方
の電力変換装置の運転を止めて他方の電力変換装置の運
転を開始する電力変換装置の切換に際して従来は、内篭
力変換装置の点弧角を最大にして電源側と負荷側の間に
流れる電流の零確認後、点弧する電力変換装置を一方か
ら他方へ切り換え、最大位相からその点弧位相の制御を
開始する手法が行なわれていた。
In the above-mentioned load rotational speed control device, conventionally, when switching power converters to stop operation of one power converter and start operation of the other power converter, ignition of the internal power converter is used. After confirming that the current flowing between the power supply side and the load side is zero by setting the angle to the maximum, the power conversion device that is ignited is switched from one side to the other, and control of the ignition phase is started from the maximum phase. Ta.

しかしこの手法では、負荷の回転速度を設定速度へ近ず
けるための制御の立ち上がりが遅くなるという欠点があ
った。
However, this method has the disadvantage that the start-up of the control for bringing the rotational speed of the load closer to the set speed is delayed.

そこで、この欠点を解決するために次のような方法が試
みられている。すなわち電力変換装置を一方から他方へ
切り換え、再度電力変換装置の位相制御を開始する場合
、最大位相位置から制御を開始するのでなく、電力変換
装置を介して電源側から負荷側へ供給される電圧が丁度
負荷の誘起電圧に等しくなるような該電力変換装置の点
弧角から位相制御を開始する方法である。
Therefore, the following methods have been attempted to solve this drawback. In other words, when switching the power converter from one side to the other and starting phase control of the power converter again, control is not started from the maximum phase position, but rather the voltage supplied from the power supply side to the load side via the power converter In this method, phase control is started from the firing angle of the power converter at which the voltage is exactly equal to the induced voltage of the load.

しかし、この方法でも従来のやり方によるのでは、後述
のような欠点がある。以下、具体的に説明する。
However, even with this method, if it is based on the conventional method, there are drawbacks as described below. This will be explained in detail below.

第3図は、上述のような負荷回転速度の制御装置として
の逆並列サイリスタレオナード装置の従来例を示すブロ
ック図である。
FIG. 3 is a block diagram showing a conventional example of an anti-parallel thyristor Leonard device as a load rotation speed control device as described above.

同図において、1aは速度指令値、■bは速度帰還値、
2は速度制御回路、3aは電流指令値、3bは電流帰還
値、4は電流制御回路、5は点弧角指令、6は位相制御
回路、7a、7bはそれぞれ点弧指令、8は三相交流電
源、9は電流検出装置、10.11は互いに逆並列に接
続された電力変換袋!(サイリスタ装置)、12は負荷
(例えば直流電動機)、13は速度検出装置、である。
In the figure, 1a is a speed command value, ■b is a speed feedback value,
2 is a speed control circuit, 3a is a current command value, 3b is a current feedback value, 4 is a current control circuit, 5 is a firing angle command, 6 is a phase control circuit, 7a and 7b are each a firing command, 8 is a three-phase AC power supply, 9 is a current detection device, 10.11 is a power conversion bag connected in antiparallel to each other! (thyristor device), 12 is a load (for example, a DC motor), and 13 is a speed detection device.

第4図は第3図における電流制御回路4の詳細を示すブ
ロック図である。同図において、R1−R5はそれぞれ
抵抗、C1はコンデンサ、SWI〜SW3はそれぞれ接
点、oPは演算増幅器、である。
FIG. 4 is a block diagram showing details of the current control circuit 4 in FIG. 3. In the figure, R1 to R5 are resistors, C1 is a capacitor, SWI to SW3 are contacts, and oP is an operational amplifier.

第3図、第4図を参照する。通常は接点SWIが閉、接
点SW2とSW3が開状態にあり、電流制御回路4はP
I調節器として動作している。
Please refer to FIGS. 3 and 4. Normally, contact SWI is closed, contacts SW2 and SW3 are open, and current control circuit 4 is
It operates as an I regulator.

すなわち、速度制御回路2は、速度指令値1aと速度帰
還値1b(負荷12の回転速度を検出装置13により検
出した値)を入力されてその偏差に関連した電流指令値
3aを出力する。電流制御回路4では、電流指令値3a
と電流帰還値(電流検出装置9により検出された電流値
)3bを入力され、その偏差にPI演算を施して得られ
る出力を点弧指令5として作成して位相制御回路6に供
給する。位相制御回路6では、該点弧指令5に従って、
その時点で選択されている方の電力変換装置(10と1
1のうちの何れか一方)の点弧位相の制御を行ない、負
荷12の回転速度を速度指令値1aに一致させようとす
る。
That is, the speed control circuit 2 receives the speed command value 1a and the speed feedback value 1b (the value detected by the detection device 13 of the rotational speed of the load 12), and outputs the current command value 3a related to the deviation thereof. In the current control circuit 4, the current command value 3a
and the current feedback value (current value detected by the current detection device 9) 3b are input, and the output obtained by performing PI calculation on the deviation is created as the ignition command 5 and supplied to the phase control circuit 6. In the phase control circuit 6, according to the ignition command 5,
The power conversion device selected at that time (10 and 1)
1) in order to make the rotational speed of the load 12 match the speed command value 1a.

次に速度指令値1aの変更とか負荷変動などにより電流
指令値3aの極性が変化したとすると、電流制御回路4
において接点SWIが開、接点SW2およびSW3が閉
状態になる。この時電流制御回路4は、速度帰還値16
を入力信号とする遅れ回路を含んだ比例回路となり、速
度帰還値16に比例した値に点弧角指令5を一致させ、
電力変換装置10と11の何れか一方から他方への切換
後、その指令値5を初期値として、再度電力変換装置の
位相制御を開始する。
Next, if the polarity of the current command value 3a changes due to a change in the speed command value 1a or a load fluctuation, the current control circuit 4
At , contact SWI is open, and contacts SW2 and SW3 are closed. At this time, the current control circuit 4 outputs a speed feedback value of 16
It becomes a proportional circuit including a delay circuit which takes as an input signal, and makes the firing angle command 5 match a value proportional to the speed feedback value 16,
After switching from one of the power converters 10 and 11 to the other, phase control of the power converter is started again using the command value 5 as the initial value.

このような動作により、切換後の新たに選択された電力
変換装置の位相制御角を負荷12の誘起電圧に等しくな
る点から制御することが可能となる。しかし、上述のよ
うな従来の方法には次のような欠点がある。
Such an operation makes it possible to control the phase control angle of the newly selected power conversion device after switching from the point where it becomes equal to the induced voltage of the load 12. However, the conventional method as described above has the following drawbacks.

(1)負荷の誘起電圧は、磁束と回転速度の積に比例す
るため、磁束が一定の場合には回転速度に比例すること
になり、速度帰還値を利用する上述のやり方に問題は生
じない。しかし、磁束を弱めて回転速度を上げる速度制
御を実施している場合、誘起電圧と回転速度が比例しな
くなるため、電流制御回路4の入力信号である速度帰還
値1bをそのまま用いるのでなく、磁束を弱めた分だけ
補正して誘起電圧と回転速度(速度帰還値1b)が依然
として比例するようにする必要があるが、そのための手
段を講じることが厄介である。
(1) The induced voltage in the load is proportional to the product of magnetic flux and rotational speed, so if the magnetic flux is constant, it will be proportional to rotational speed, so there is no problem with the above method of using the speed feedback value. . However, when speed control is performed to increase the rotational speed by weakening the magnetic flux, the induced voltage and the rotational speed are no longer proportional. Although it is necessary to correct the induced voltage and the rotational speed (speed feedback value 1b) by the amount by which it has been weakened, it is difficult to take measures for this purpose.

(2)速度帰還値1bの代りに負荷12の誘起電圧を直
接電流検出回路4への入力信号とすれば上述した(1)
の欠点は解決するが、誘起電圧を検出する回路が別に必
要であり、高価となる。
(2) If the induced voltage of the load 12 is used as the direct input signal to the current detection circuit 4 instead of the speed feedback value 1b, the above (1) can be achieved.
However, it requires a separate circuit to detect the induced voltage, which is expensive.

(3)上述の逆並列サイリスクレオナード装置の例はア
ナログ回路によるものである。これをマイクロコンピュ
ータなどのディジタル回路によって実現する場合でも、
上述した+1)、 +2)の問題点が存在し、またこれ
らを解決するにしても、そのために別途アナログ−ディ
ジタル変換回路を必要とし、高価になる。例えば、上記
(1)の場合、磁束を検出するために界磁電流を検出し
て問題を解決したり、上記(2)の場合、負荷の電圧を
検出して問題を解決したり出来るが、その際アナログ−
ディジタル変換回路を必要とすることになる。
(3) The above-mentioned example of an anti-parallel thyristleonard device is based on an analog circuit. Even if this is achieved using a digital circuit such as a microcomputer,
Problems +1) and +2) mentioned above exist, and even if these problems were to be solved, a separate analog-to-digital conversion circuit would be required, which would be expensive. For example, in the case of (1) above, the problem can be solved by detecting the field current to detect the magnetic flux, and in the case of (2) above, the problem can be solved by detecting the load voltage. At that time, analog
A digital conversion circuit will be required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明により解決すべき問題点としては、逆並列
サイリスタレオナード装置の如き負荷回転速度の制御装
置において、磁束を弱めて回転速度を上げる制御を実施
している場合でも、磁束の補正手段を設けたり、或いは
誘起電圧の検出回路を別に用意したりすることなしに(
つまりコスト低度に)、また負荷回転速度の制御装置を
ディジタル回路で実現する場合には、追加のアナログ−
ディジタル変換回路を必要とすることなしに(つまりコ
スト低度に)、切換後の新たに選択された電力変換装置
の位相制御角を負荷の誘起電圧に等しくなる点から制御
することを可能にすること、であると云える。
Therefore, the problem to be solved by the present invention is that in a load rotation speed control device such as an anti-parallel thyristor Leonard device, even when control is performed to weaken the magnetic flux and increase the rotation speed, a magnetic flux correction means is provided. or without preparing a separate induced voltage detection circuit (
In other words, if the load rotation speed control device is implemented using a digital circuit, additional analog
It is possible to control the phase control angle of a newly selected power converter after switching from the point where it becomes equal to the induced voltage of the load, without requiring a digital conversion circuit (that is, at a low cost). It can be said that this is true.

従って本発明は、上述のことを可能にした負荷回転速度
の制御装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a load rotation speed control device that makes the above possible.

〔問題を解決するための手段および作用〕この発明は、
電力変換装置を介して電源側と接続された負荷の誘起電
圧が、該電力変換装置の点弧角及び該負荷と電源側の間
で流れる電流の平均値(1周期にわたる平均値)により
決定され、かつ該電流が連続状態にあるのか断続状態に
あるのかに応じてその関係が異なる点に着目し、予め点
弧角と1周期にわたる電流平均値に対する負荷の誘起電
圧の関係を記憶しておき、電力変換装置の給電方向を切
り換える場合(つまり逆並列に接続された2個の電力変
換装置のうちの一方から他方へ切り換える場合)、その
時点で運転中の電力変換装置の点弧角実際値、電流平均
値及び電流瞬時値から負荷の誘起電圧を求め、この値を
利用して切り換え後の電力変換装置の点弧角の初期値を
決定するようにしたものである。
[Means and effects for solving the problem] This invention has the following features:
The induced voltage of a load connected to the power supply side via the power conversion device is determined by the firing angle of the power conversion device and the average value (average value over one cycle) of the current flowing between the load and the power source side. , and the relationship differs depending on whether the current is in a continuous state or in an intermittent state, and the relationship between the firing angle and the average current value over one cycle is memorized in advance. , when switching the power supply direction of the power converter (that is, when switching from one power converter to the other of two power converters connected in antiparallel), the actual value of the firing angle of the power converter currently in operation. The induced voltage of the load is determined from the average current value and the instantaneous current value, and this value is used to determine the initial value of the firing angle of the power converter after switching.

すなわち、負荷の誘起電圧Edc、電力変換装置の点弧
角α、電電流均値Id、点弧時点での電流瞬時値iI+
−周期(電気角にて60度)後の電流瞬時値12の関係
は負荷の誘起電圧Edcが一周期の間はほぼ一定と見做
しても実用上問題ないため、転流型なり現象を無視でき
れば、電流連続状態では、一般に次式で与えられる(な
お、点弧角α。
That is, the induced voltage Edc of the load, the firing angle α of the power converter, the average current value Id, and the instantaneous current value iI+ at the time of firing.
- The relationship between the instantaneous current value 12 after a period (60 degrees in electrical angle) is based on the commutation type phenomenon, since there is no practical problem even if the induced voltage Ed of the load is assumed to be almost constant during one period. If it can be ignored, in a continuous current state, it is generally given by the following equation (note that the firing angle α is

電流平均値Id、点弧時点での電流瞬時値il+1周期
後の同瞬時値12の関係を第5図に示した)。
The relationship between the average current value Id and the instantaneous current value il at the time of ignition + the same instantaneous value 12 after one cycle is shown in FIG.

πRR (iz   it )  ・−・tanyπ ・・・・・・(1) 但し、EΔ:交流電源の線間電圧実効値R:負荷(例え
ば直流電動機)の電 機子回路抵抗 ωL tanψ8 ωは交流電源角周波数、 Lは負荷の電機子回路インダクタンス また電流断続状態では、電流の通流角をωL0とおくと
、点弧角αと電流断続限界値Idc(電流値がIdc以
上であれば電流は連続状態となり、Edc以下であれば
断続状態となるという限界を示す電流値)との関係は、 但し、 −sin (−一ψ+α)・ε−号7%mnW )/(
1−ε−1/Lanψ) であり、ある点弧角αに対する電流断続限界値をIoと
おくと1周期にわたる電流平均値Idとのd 比を表わす − は、次式で与えられ、O 但し −XI2 EΔ          3−  sin 
(−−ψ+α) ・ ε−号′t!1/(1−ε−号八
へfi′) d 電流が断続しないと仮定した場合の −は次I。
πRR (iz it) ・-・tanyπ・・・・・・(1) However, EΔ: Effective line voltage value of AC power supply R: Armature circuit resistance of load (e.g. DC motor) tanψ8 ω is AC power supply angle Frequency, L is the armature circuit inductance of the load. In the current intermittent state, if the current conduction angle is ωL0, then the firing angle α and the current intermittent limit value Idc (if the current value is greater than Idc, the current is in a continuous state) The relationship between the current value (which indicates the limit that an intermittent state will occur if it is below Edc) is, however, −sin (−1ψ+α)・ε−7%mnW )/(
1-ε-1/Lanψ), and if the current intermittent limit value for a certain firing angle α is Io, - represents the ratio of d to the average current value Id over one cycle, which is given by the following formula, where O -XI2 EΔ 3- sin
(--ψ+α) ・ε-No.'t! 1/(1-ε-fi' to No. 8) d Assuming that the current is not intermittent, - is the following I.

式で与えられる。It is given by Eq.

・・・・・・(4) 第6図は上記(2)式からcos p =0.5の場合
について求まるrdcとαの関係を示した特性図で、斜
線領域が電流断Vt5I域を、それ以外が電流連Vt領
域を示している。
......(4) Figure 6 is a characteristic diagram showing the relationship between rdc and α obtained from the above equation (2) for the case of cos p = 0.5, where the shaded area is the current cutoff Vt5I area, The other areas indicate the current-related Vt region.

第7図は上記(3)、 (4)式からcosp−0,5
、CX=d 90度の場合について求めた □ とΔαとの関I。
Figure 7 shows cosp-0,5 from equations (3) and (4) above.
, the relationship I between □ and Δα obtained for the case where CX=d 90 degrees.

係を図示した特性図である。すなわち、Id/I。FIG. That is, Id/I.

が0〜1の間にあるときは、電流断続状態にあり、その
ときの点弧角補正量Δαの大きさを示したものである。
When is between 0 and 1, the current is in an intermittent state, and this shows the magnitude of the firing angle correction amount Δα at that time.

これらの関係を記憶しておき、電力変換装置の切換時に
点弧角実際値、電流平均値、電流瞬時値11+12が与
えられると、第6図の関係より電流が連続状態をとるか
断続状態をとるかを判定し、連続状態をとるのであれば
、上記(11式、断続状態をとる場合でも第7図の関係
より、その時の点弧角αの補正量Δαを求め、点弧角を
次式によりα=α−Δα              
      ・・・・・・(5)補正して等価的に連続
状態と見做せる点弧角を求め上記(1)式の関係より負
荷の誘起電圧を求め、この値に見合った点弧角から制御
を開始するようにしたものである。
If these relationships are memorized and the actual firing angle, average current value, and instantaneous current value 11+12 are given at the time of switching the power converter, the relationship shown in Figure 6 will determine whether the current is continuous or intermittent. If the continuous state is to be assumed, the correction amount Δα of the firing angle α at that time is calculated from the relationship shown in Equation 11 above, and even in the case of an intermittent state shown in Fig. 7, and the firing angle is determined as follows. By the formula α=α−Δα
......(5) Find the firing angle that can be equivalently considered as a continuous state after correction, find the induced voltage in the load from the relationship in equation (1) above, and use the firing angle that corresponds to this value. The control is started.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図である。同
図において、第3図におけるのと同じ符号(1〜13)
は同じものを示す。そのほか、14は電力変換装置の切
換準備手段、15は切換後の電力変換装置に対する点弧
角指令の初期値を示している。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, the same symbols (1 to 13) as in Figure 3
indicate the same thing. In addition, 14 indicates switching preparation means for the power converter, and 15 indicates an initial value of a firing angle command for the power converter after switching.

第2図は第1図における切換準備手段14の詳細を示す
ブロック図である。
FIG. 2 is a block diagram showing details of the switching preparation means 14 in FIG. 1.

同図において、16は論理和手段、17はゲート手段、
18は切換判定手段、19は1周期検出手段、20は、
電流平均値検出手段、21は保持手段、21aは点弧角
、22は保持手段、22aは電流瞬時値i+、23は保
持手段、23aは電流瞬時値1−124は保持手段、2
4aは電流平均値1d、25は断続限界検出手段、25
aは断続限界値io、26は補正手段、26aは補正角
Δα、27は減算手段、27aは点弧角、28は演算手
段、である。
In the figure, 16 is an OR means, 17 is a gate means,
18 is a switching determination means, 19 is a one cycle detection means, and 20 is a
Current average value detection means, 21 is a holding means, 21a is a firing angle, 22 is a holding means, 22a is an instantaneous current value i+, 23 is a holding means, 23a is an instantaneous current value 1-124 is a holding means, 2
4a is a current average value 1d, 25 is an intermittent limit detection means, 25
a is an intermittent limit value io, 26 is a correction means, 26a is a correction angle Δα, 27 is a subtraction means, 27a is a firing angle, and 28 is a calculation means.

第1図、第2図を参照する。Please refer to FIGS. 1 and 2.

ゲート手段17は論理和手段16にて論理和された点弧
パルス信号(点弧指令)7a、7bを通常通過させ、そ
の信号により保持手段22は点弧時の電流瞬時値を保持
し、かつ1周期検出手段19は動作を開始する。
The gate means 17 normally passes the ignition pulse signals (ignition commands) 7a and 7b logically summed by the OR means 16, and the holding means 22 holds the instantaneous current value at the time of ignition based on the signal, and The one cycle detection means 19 starts its operation.

今、電力変換装置を切り換える場合、すなわち、電流措
令値3aの極性の変化を検出すると電流制開回路4は点
弧角指令5を最大位相角に設定する。
Now, when switching the power converter, that is, when a change in the polarity of the current command value 3a is detected, the current control circuit 4 sets the firing angle command 5 to the maximum phase angle.

従って切換判定手段18は、電流指令値3aの極性−の
変化を検出すると、電流制御回路4が動作する前に、保
持手段21に点弧角指令5を保持させると共に、ゲート
手段17の動作を停止させる。
Therefore, when the switching determination means 18 detects a change in the polarity of the current command value 3a, it causes the holding means 21 to hold the firing angle command 5 and stops the operation of the gate means 17 before the current control circuit 4 operates. make it stop.

1周期検出手段】9は電気角で60度経過後保持手段2
3.24を動作させ、電流の瞬時値と、1周期にわたる
電流の平均値を検出する電流平均値検出手段20のデー
タと、を保持する。断続限界値検出手段25は、予め上
記関係式(2)から求めておいた電流断続限界値を、保
有するメモリに記憶しておき、点弧角21aに対応した
前記電流断続限界値(Io)25aを求める。
1 cycle detection means] 9 is the electrical angle after 60 degrees, the holding means 2
3.24 is operated to hold the instantaneous value of the current and the data of the current average value detection means 20 that detects the average value of the current over one cycle. The intermittent limit value detection means 25 stores the intermittent current limit value obtained in advance from the above relational expression (2) in its own memory, and calculates the intermittent current limit value (Io) corresponding to the firing angle 21a. Find 25a.

補正手段26は、予め上記関係式(31,+41から求
めておいた電流断続限界値I0と電流平均値Idとの比
(Id /Io )に対する補正角(Δα)のデータを
、保有するメモリに記憶しておき、電流断続限界値(I
o )25aと電流平均値24aからId をメモリから求める。この時二が1より大きいO 場合、すなわち電流が連続している場合、補正角26a
は零に設定される。減算手段27は点弧角21aから補
正角26aを減算し、演算手段28は点弧角27aと電
流平均値(Id)24a、電流瞬時値(i、)22a、
(it )23aから上記関係式(1)により負荷の逆
起電圧(E dc)を求め、この値に見合つた点弧角初
期値15を作成する。
The correction means 26 stores data of a correction angle (Δα) for the ratio (Id/Io) between the current intermittent limit value I0 and the current average value Id, which has been obtained in advance from the above relational expression (31, +41), in a stored memory. Memorize the current intermittent limit value (I
o) Obtain Id from memory from 25a and current average value 24a. At this time, if 2 is larger than 1, that is, if the current is continuous, the correction angle 26a
is set to zero. The subtraction means 27 subtracts the correction angle 26a from the firing angle 21a, and the calculation means 28 calculates the firing angle 27a, the average current value (Id) 24a, the instantaneous current value (i,) 22a,
(it) From 23a, the counter electromotive force (E dc) of the load is determined using the above relational expression (1), and an initial firing angle value 15 corresponding to this value is created.

電流制御回路4は、この値を点弧角指令5として電流制
御を開始する。
The current control circuit 4 starts current control using this value as the firing angle command 5.

以上の動作により、負荷12と電源8との間の電流の給
電方向を変化させる場合、電力変換装置の切換動作を迅
速に行なうことができる。
With the above operation, when changing the direction of current feeding between the load 12 and the power source 8, the switching operation of the power conversion device can be performed quickly.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、逆並列サイリスタレオナード装置の
如き負荷回転速度の制御装置において、負荷(例えば直
流電動機)の誘起電圧を直接検出、せずに、電力変換装
置(サイリスク装置)切換時の点弧角、電流平均値及び
電流瞬時値を利用して間接的に前記誘起電圧を求めるこ
とにより、検出回路を不要にでき、しかも切換後の点弧
角初期値をこの誘起電圧に見合った値にすることにより
、磁束弱めの状態においても電力変換装置の一方から他
方への正逆切換を迅速に行うことができる。
According to the present invention, in a load rotation speed control device such as an anti-parallel thyristor Leonard device, ignition occurs when switching a power converter device (thyrisk device) without directly detecting the induced voltage of the load (for example, a DC motor). By indirectly determining the induced voltage using the angle, average current value, and instantaneous current value, a detection circuit can be eliminated, and the initial value of the firing angle after switching can be set to a value commensurate with this induced voltage. Thereby, even in a state where the magnetic flux is weakened, forward and reverse switching from one side of the power converter to the other can be quickly performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図における切換準備手段14の詳細を示すブロック
図、第3図は逆並列サイリスタレオナード装置の従来例
を示すブロック図、第4図は第3図における電流制御回
路4の詳細を示すブロック図、第5図は第3図において
電力変換装置10と11が切り換わるときの電流波形を
示す波形図、第6図は電力変換装置における電流断続限
界値Idcと点弧角αの関係を示す特性図、第7図は電
力変換装置において電流が断続状態にある場合に、それ
が連続状態にあると等価的に見做せる点弧角を求める際
に用いる点弧角の補正量Δαの大きさを示した特性図、
である。 符号説明 1a・・・速度指令値、1b・・・速度帰還値、2・・
・速度制御回路、3a・・・電流指令値、3b・・・電
流帰還値、4・・・電流制御回路、5・・・点弧角指令
、6・・・位相制御回路、7a、7b・・・点弧指令、
8・・・三相交流電源、9・・・電流検出装置、10.
II・・・電力変換装置、12・・・負荷、13・・・
速度検出装置、14・・・切換準備手段、15・・・切
換後の点弧角初期値、16・・・論理和手段、17・・
・ゲート手段、18・・・切換判定手段、19・・・1
周期検出手段、2o・・・電流平均値検出手段、21〜
24・・・保持手段、25・・・断続限界検出手段、2
6・・・補正手段、27・・・減算手段、28は演算手
段 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 1b 嬉4図 16al1 1g7図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing details of the switching preparation means 14 in FIG. 1, and FIG. 3 is a block diagram showing a conventional example of an anti-parallel thyristor Leonard device. , FIG. 4 is a block diagram showing details of the current control circuit 4 in FIG. 3, FIG. 5 is a waveform diagram showing the current waveform when the power converters 10 and 11 are switched in FIG. 3, and FIG. Figure 7 is a characteristic diagram showing the relationship between the current intermittent limit value Idc and the firing angle α in the power converter, and when the current is in an intermittent state in the power converter, it is equivalently regarded as being in a continuous state. A characteristic diagram showing the magnitude of the firing angle correction amount Δα used when determining the firing angle to be adjusted,
It is. Code explanation 1a...Speed command value, 1b...Speed feedback value, 2...
- Speed control circuit, 3a... Current command value, 3b... Current feedback value, 4... Current control circuit, 5... Firing angle command, 6... Phase control circuit, 7a, 7b.・・Ignition command,
8... Three-phase AC power supply, 9... Current detection device, 10.
II...Power converter, 12...Load, 13...
Speed detection device, 14... Switching preparation means, 15... Initial firing angle value after switching, 16... Logical sum means, 17...
- Gate means, 18...Switching determination means, 19...1
Period detection means, 2o... Current average value detection means, 21~
24... Holding means, 25... Intermittent limit detection means, 2
6...Correction means, 27...Subtraction means, 28 is calculation means agent Patent attorney Akio Namiki Agent Patent attorney Kiyoshi Matsuzaki 1b Uri 4 figure 16 al1 1g7 figure

Claims (1)

【特許請求の範囲】 1)点弧位相制御を受けて電源から負荷へ電力を供給す
る第1の電力変換装置と、同じく点弧位相制御を受けて
負荷から電源へ電力を回生する第2の電力変換装置と、
前記負荷の回転速度の指令値と実際値を比較し、その偏
差の極性に応じて前記第1および第2の何れかの電力変
換装置を選択する手段と、選択された方の電力変換装置
について前記偏差が解消するようにその点弧位相を制御
する手段と、から成る負荷回転速度の制御装置において
、 前記負荷と電源の間を流れる電流の1周期にわたる平均
値を検出する手段と、前記電流の瞬時値を検出する手段
と、前記電流の平均値および瞬時値と運転中の電力変換
装置における点弧角実際値とからその時点における負荷
の誘起電圧を演算して出力する電圧演算手段と、を備え
、 前記偏差の極性が変化するのに応じて、一方の電力変換
装置から他方の電力変換装置へ選択切換を行なう際、新
たに選択される側の電力変換装置に対する点弧角指令値
の初期値を、前記電圧演算手段によって求められたその
時点における負荷誘起電圧によって決定するようにした
ことを特徴とする負荷回転速度の制御装置。
[Claims] 1) A first power converter that receives ignition phase control and supplies power from the power source to the load, and a second power conversion device that also receives ignition phase control and regenerates power from the load to the power source. a power conversion device;
Means for comparing a command value and an actual value of the rotational speed of the load and selecting either the first or second power converter according to the polarity of the deviation, and the selected power converter. means for controlling the ignition phase so as to eliminate the deviation; means for detecting an average value over one cycle of the current flowing between the load and the power supply; means for detecting the instantaneous value of the current, and voltage calculation means for calculating and outputting the induced voltage of the load at that time from the average value and instantaneous value of the current and the actual value of the firing angle in the power converter in operation; In response to a change in the polarity of the deviation, when performing selection switching from one power converter to the other power converter, a firing angle command value for the newly selected power converter is determined. A control device for a load rotation speed, characterized in that the initial value is determined by the load induced voltage at that point in time determined by the voltage calculation means.
JP59248230A 1984-11-26 1984-11-26 Controller for load rotating speed Pending JPS61128784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248230A JPS61128784A (en) 1984-11-26 1984-11-26 Controller for load rotating speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248230A JPS61128784A (en) 1984-11-26 1984-11-26 Controller for load rotating speed

Publications (1)

Publication Number Publication Date
JPS61128784A true JPS61128784A (en) 1986-06-16

Family

ID=17175102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248230A Pending JPS61128784A (en) 1984-11-26 1984-11-26 Controller for load rotating speed

Country Status (1)

Country Link
JP (1) JPS61128784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557603U (en) * 1991-12-28 1993-07-30 株式会社竹中工務店 Measuring tool for measuring reinforcing bar arrangement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136089A (en) * 1983-01-26 1984-08-04 Hitachi Ltd Normal and reverse switching method of digital thyristor leonard

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136089A (en) * 1983-01-26 1984-08-04 Hitachi Ltd Normal and reverse switching method of digital thyristor leonard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557603U (en) * 1991-12-28 1993-07-30 株式会社竹中工務店 Measuring tool for measuring reinforcing bar arrangement

Similar Documents

Publication Publication Date Title
JPS6222359B2 (en)
JPH05292753A (en) Current detecting method for pwm inverter
JPS6013390B2 (en) Control device for power converter
JPS61128784A (en) Controller for load rotating speed
JPS58108994A (en) Method and device for controlling ac motor load
JPH0337397B2 (en)
JPH04364384A (en) Resistance estimation starting system for induction motor
EP0231315A1 (en) Induction motor drive arrangement
JPH0783599B2 (en) Control method of circulating current type cycloconverter
JP3206866B2 (en) Inverter dead time compensation method
JPS59194686A (en) Drive device for motor
JPH08266059A (en) Power converter
JPH03253291A (en) Driving device for motor
JPH02123969A (en) Offset compensating circuit for current control system
JPH0731300Y2 (en) Capacitor group switchgear control device
JPH08126400A (en) Vector controller for induction motor
JPS5821518B2 (en) Museiliyushidendoukinoseigiyosouchi
JPH04156292A (en) Equipment for controlling permanent magnet type motor
JPH04222464A (en) Controlling device for pwm inverter
JPH0746076Y2 (en) Elevator speed control device
JPS5831828B2 (en) Power converter control device
JPS6041832Y2 (en) DC power supply
JPS63133886A (en) Controller for ac motor
JPS63117686A (en) Method for compensating light load of dc motor variable speed controller
JPH0670573A (en) Speed controller for wound-rotor induction motor