JPS61128765A - Gate control semiconductor power converter - Google Patents

Gate control semiconductor power converter

Info

Publication number
JPS61128765A
JPS61128765A JP59249341A JP24934184A JPS61128765A JP S61128765 A JPS61128765 A JP S61128765A JP 59249341 A JP59249341 A JP 59249341A JP 24934184 A JP24934184 A JP 24934184A JP S61128765 A JPS61128765 A JP S61128765A
Authority
JP
Japan
Prior art keywords
gate
semiconductor element
heat sink
semiconductor
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249341A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuzaki
松崎 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59249341A priority Critical patent/JPS61128765A/en
Publication of JPS61128765A publication Critical patent/JPS61128765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To readily and effectively protect and discover a plurality of semiconductor elements against overheat by providing one overheat protecting means in a heat sink, and stopping the operation of a gate control semiconductor element on the heat sink by its detection signal. CONSTITUTION:Parallel semiconductor element units 2 are connected in parallel to form one arm 1 of a power converter, and cooled at the heat sink, for example, by cooling air 3 of air cooling type. In this case, A semiconductor element 10 is turned ON by the temperature detection of a temperature detecting sensor 12 to shortcircuit between the gate G and the cathode K of the element 10, a gate input signal 23 is turned OFF to stop the operation of the element 10. Thus, the heating of the element 10 due to the case that the unbalance of the current share increases can be protected, and the heat can be readily discovered by a heat indicator.

Description

【発明の詳細な説明】 〔発明の利用分野] 本発明はゲート制御用半導体電力変換装置に係シ、特に
、並列接続されたゲート制御付半導体素子毎の過熱保護
を行なうに好適なゲート制御用半導体電力変換装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor power conversion device for gate control, and particularly to a semiconductor power conversion device for gate control suitable for providing overheat protection for each semiconductor element with gate control connected in parallel. The present invention relates to a semiconductor power conversion device.

〔発明の背景〕[Background of the invention]

ゲート制御半導体素子の保護に関する先行技術(実公昭
58−59379号公報)として、半導体素子自身の故
障またはゲート制御回路の故障した結果の故障検出方法
がおる。
As a prior art related to the protection of gate control semiconductor elements (Japanese Utility Model Publication No. 58-59379), there is a method of detecting a failure as a result of failure of the semiconductor element itself or failure of the gate control circuit.

この技術は、該半導体素子の故障に至る以前の保護がで
きない問題を有する。
This technique has a problem in that it cannot protect the semiconductor element before it breaks down.

一般には、従来の半導体電力変換装置の半導体素子の過
熱保護は電力変換装置内の代表素子のみに過熱を検出す
る温度センサーを取付け、過電流が継続した場合の過熱
保護および冷却装置の故障による冷却媒体の減少、また
は、停止による過熱保護を図るものである。
Generally, overheating protection for semiconductor elements in conventional semiconductor power conversion equipment involves installing a temperature sensor that detects overheating only on representative elements within the power conversion equipment. This is to protect against overheating by reducing or stopping the medium.

しかも、この保護方式は装置全体のシステム保護が主体
となっておシ、負荷電流が定格電流、で正常運転中に電
流分担する複数半導体素子間の電流不平衡が回路部品の
特性変化、接続部の接触抵抗、インピーダンス変化によ
シ過大となると、電流分担が大きく変化した半導体素子
は順方向電圧降下による発生損失が大きくなシ、過熱が
生じた場合、該半導体素子の保護訃よび、発見ができな
い欠点がある。
Moreover, this protection method is mainly designed to protect the entire device, and when the load current is the rated current, current imbalance between multiple semiconductor elements that share the current during normal operation can cause changes in the characteristics of circuit components and connections. If the contact resistance or impedance of the semiconductor element changes too much, the loss caused by the forward voltage drop will be large, and if overheating occurs, the semiconductor element may be damaged or discovered. There is a drawback that it cannot be done.

更に、並列半導体素子毎の冷却用ヒートシンク内を流れ
る冷却媒体がたとえ冷却装置が健全であっても不平衡が
生じることもあシ得る。この場合も前述と同様に冷却媒
体の減少が生じたヒートシンクの冷却効果低下によシ過
熱し、その過熱半導体素子の発見および保護ができない
欠点がめる。
Furthermore, even if the cooling device is sound, an imbalance may occur in the cooling medium flowing in the cooling heat sink for each parallel semiconductor element. In this case as well, the cooling effect of the heat sink decreases due to the decrease in the amount of cooling medium, resulting in overheating, and the disadvantage is that the overheated semiconductor element cannot be detected and protected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、並列接続された複数半導体素子毎の過
熱保護および発見を効果的、且つ、確実に行ない得る高
信頼性のゲート制御半導体変換装置を提供するにある。
An object of the present invention is to provide a highly reliable gate-controlled semiconductor conversion device that can effectively and reliably perform overheat protection and detection for each of a plurality of parallel-connected semiconductor elements.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、電流分担
されかつ少なくとも1個ヒートシンクに搭載されたゲー
ト制御半導体素子を備えるゲート制御半導体電力変換装
置において、各ヒートシンクに対し、少なくとも1個の
過熱保護手段を設け、さらに、この過熱保護手段の検知
信号によって、該過熱保護手段に対応するヒートシンク
上のゲート制御半導体素子の動作を停止せしめる手段を
設けるようにしたものである。
To achieve such an object, the present invention provides a gated semiconductor power converter device comprising gated semiconductor devices current shared and mounted on at least one heatsink, in which at least one superheated semiconductor device is provided for each heatsink. A protection means is provided, and means is further provided for stopping the operation of a gate control semiconductor element on a heat sink corresponding to the overheat protection means in response to a detection signal from the overheat protection means.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例のゲート制御半導体電力変換
装置の一部のアーム1を示すものである。
FIG. 2 shows a part of the arm 1 of a gate-controlled semiconductor power conversion device according to an embodiment of the present invention.

同図において、並列半導体素子ユニット2(以下ユニッ
トと呼ぶ)はそれぞれUmtt  i、 Us息t2・
・・・・・Umtt −n %まで並列接続され電力変
換装置の一つのアーム1t−構成しているものである。
In the figure, parallel semiconductor element units 2 (hereinafter referred to as units) are Umtti, Ust2, and Umtti, respectively.
... Umtt -n % are connected in parallel to constitute one arm 1t of the power converter.

このアーム1のユニット2の並列数は、本例ではUmt
t −1,Uatt −2++jl@4U1t −n 
 として、アーム1の母線電流It−それぞれ各並列ユ
ニットの分担電流としてl1pI意・・・・・・工、が
流れるが、装置の容量しだいで当然増減されるものであ
る。
In this example, the number of parallel units 2 of arm 1 is Umt
t −1, Uatt −2++jl@4U1t −n
As a result, a bus current It of arm 1 - l1 pI as a shared current of each parallel unit flows, but this naturally increases or decreases depending on the capacity of the device.

各ユニットの冷却はたとえば風冷方式を適用したもので
冷却風3は並列ユニット2のヒートシンクを冷却し、各
ユニットの冷却風量はそれぞれQs 、Qs・・・・・
・Qsで冷却されるようになっている。
For example, each unit is cooled by an air cooling method, where the cooling air 3 cools the heat sink of the parallel unit 2, and the cooling air volume of each unit is Qs, Qs, etc.
・It is designed to be cooled by Qs.

第1図、(a)、 (b)、 (C)はそれぞれ第2図
の並列ユニット2の本実施例の各構成を示す。
1, (a), (b), and (C) each show the configuration of this embodiment of the parallel unit 2 shown in FIG. 2. FIG.

同図において、(a)の方式は本発明の最も基本的な実
施回路構成を示すものである。
In the figure, the method (a) shows the most basic implementation circuit configuration of the present invention.

この方式は、温度検出センサー12の温度検出によシO
N動作し半導体素子10のグー)G−カソードに間を短
絡(ON)させゲート入力信号を0FFL、半導体素子
10の動作を停止させるものである。
This method relies on temperature detection by the temperature detection sensor 12.
(N operation) of the semiconductor element 10, G-cathode is shorted (ON), the gate input signal is set to 0FFL, and the operation of the semiconductor element 10 is stopped.

また同図(b)の方式は、前記Ca)の方式とは逆に温
度検出センサー12の温度検出によ!DOFF動作し、
半導体素子10のカソードKit[を開放(OFF)さ
せゲート入力信号を0FFL半導体素子10の動作を停
止させる実施例である。なお、本実施例では温度検出セ
ンサー12のOFF (開放)接点をカソード側として
いるがゲートG側に設けることもできる。
In addition, the method shown in FIG. 3(b) is based on temperature detection by the temperature detection sensor 12, contrary to the method described in Ca). DOFF works,
This is an embodiment in which the cathode Kit[ of the semiconductor element 10 is opened (OFF) and the gate input signal is turned OFF to stop the operation of the semiconductor element 10. In this embodiment, the OFF (open) contact of the temperature detection sensor 12 is provided on the cathode side, but it can also be provided on the gate G side.

同図(c)の方式は、ゲート入力信号の遮断方式を無接
点方式とした回路構成の実施例を示す。同図(C)にお
いて、半導体素子過熱保農装置11は半導体素子の温度
を検出センサー12と半導体素子の順電圧Vムー区 に
よシ、ホトトランジスタ13−2駆動用発光ダイオード
13−1、と過熱表示用発光ダイオード16、および発
光ダイオードの最適な電流とするための直列抵抗器15
が直列に接続され、半導体素子10のアノードA1カソ
ードに間に並列接続される。ダイオード14は発光ダイ
オード13の逆電圧保護用として並列に接続される。ま
た、半導体素子10のゲート入力信号23のゲート入力
を遮断を目的としたホトトランジスタ13−2はゲート
G−カンードに間に接続される。
The method shown in FIG. 2(c) shows an example of a circuit configuration in which the gate input signal cutoff method is a non-contact method. In the same figure (C), a semiconductor element overheat protection device 11 includes a sensor 12 for detecting the temperature of the semiconductor element, a forward voltage V of the semiconductor element, a light emitting diode 13-1 for driving a phototransistor 13-2, and a phototransistor 13-2 driving light emitting diode 13-1. A light emitting diode 16 for indicating overheating, and a series resistor 15 for optimizing the current of the light emitting diode.
are connected in series and connected in parallel between the anode and the cathode of the semiconductor element 10. The diode 14 is connected in parallel to protect the light emitting diode 13 from reverse voltage. Further, a phototransistor 13-2 for the purpose of blocking the gate input of the gate input signal 23 of the semiconductor element 10 is connected between the gate G-cando.

第1図(d)は半導体素子10の冷却用ヒートシンク3
0と温度検出センサー12の取付の一実施例である。な
お、温度検出センサー12の検出方法としでは冷却用ヒ
ートシンク30には直接取付ず間接的にヒートシンク冷
却媒体の温度を検出する方法もある。
FIG. 1(d) shows a heat sink 3 for cooling the semiconductor element 10.
This is an example of how the temperature detection sensor 12 and temperature detection sensor 12 are attached. Note that there is also a method of detecting the temperature detection sensor 12 by indirectly detecting the temperature of the heat sink cooling medium without directly attaching it to the cooling heat sink 30.

ここで注意すべきことは、半導体素子自身の順電圧を利
用して素子自身の過熱検出動作によシゲートG−カンー
ドに間を短絡動作によシ、ゲート信号t−oとし素子の
動作停止保護および過熱検出表示が個々にできることで
ある。
What should be noted here is that the forward voltage of the semiconductor element itself is used to detect overheating of the element itself, and the gate G-cando is short-circuited, and the gate signal t-o is used to protect the element from operating. and the ability to individually display overheating detection.

一般に、第2図に示す母線電流工は並列ユニット2にI
t、I!・・・・・・工、とほぼ平均に分担して流れる
が、半導体素子がサイリスタの場合、ターンオフ時間の
バラツキ、順方向電圧降下(FVD 1のバラツキ、回
路インピーダンスおよび接続部の接触抵抗のバラツキ等
が大きくなった場合、特定のユニットのみに分担電流が
過大となることが考えられる。
In general, the busbar electrical work shown in Figure 2 is connected to parallel unit 2.
T-I! ...... However, when the semiconductor device is a thyristor, variations in turn-off time, variations in forward voltage drop (FVD 1, variations in circuit impedance and contact resistance of connections) etc. becomes large, it is conceivable that the shared current will become excessive only to a specific unit.

このような不具合が生じた場合、本実施例によシ保護お
よび過熱表示ができる。
If such a malfunction occurs, this embodiment can provide protection and display an overheat indication.

一例として、第2図のU−+t−1の分担電流の初期値
をIt’v”(A)と仮定する。
As an example, assume that the initial value of the shared current of U-+t-1 in FIG. 2 is It'v'' (A).

ここで、I s  : U−+t−1の初期分担電流(
A)工 :電力変換装置の母線電K (A)n :電力
変換装置の並列半導体ユニ ット数 この場合のU−1t  1の半導体素子の接合部温度T
1および温度検出センサ一部温度T26tt は次のよ
うに表わされる。
Here, I s : initial shared current of U-+t-1 (
A) Engineering: Bus line voltage K of the power converter (A)n: Number of parallel semiconductor units of the power converter In this case, U-1t Junction temperature T of the 1 semiconductor element
1 and the temperature detection sensor part temperature T26tt are expressed as follows.

Tr =Ta+r+P tx (R+−*+Rs−*s
s+Ru5−a+r ) (C)T 2 m g = 
T a□+P1×几was−atr (C)ここで、T
、:冷却風温度40(C) PK =分担電流工、時の素子順方向電流による損失2
20(W) RJ−*:素子接合部〜素子ケース間の熱抵抗0、os
(C/W) Ram−,6,、素子ケース間〜温度センサー取付部間
の熱抵抗0.04 (C/W) Rsss−air:温度センサー取付部〜冷却空気(ヒ
ートシンク)間の熱抵抗 0.13(C’/W) と仮定すると、T J I THs の各々の温度はT
i=40C+220WX(0,05+0.04+0.1
3)C/W=84C T2g11=40C+220Wx0.13=66Gが通
常の動作となシ、この場合の温度センサーの設定温度を
800とすると、保護動作および過熱検出表示はしない
Tr = Ta+r+P tx (R+-*+Rs-*s
s+Ru5-a+r) (C)T2m g=
T a□+P1×几was−atr (C) Here, T
, : Cooling air temperature 40 (C) PK = shared current, loss due to element forward current 2
20(W) RJ-*: Thermal resistance between element junction and element case 0, os
(C/W) Ram-, 6, Thermal resistance between the element case and the temperature sensor mounting part 0.04 (C/W) Rsss-air: Thermal resistance between the temperature sensor mounting part and the cooling air (heat sink) 0 .13(C'/W), the temperature of each T J I THs is T
i=40C+220WX(0.05+0.04+0.1
3) C/W = 84C T2g11 = 40C + 220W x 0.13 = 66G is not normal operation, and if the temperature sensor setting temperature in this case is 800, there will be no protective operation or overheat detection display.

次に、上記工1の電流が分担電流130%程度に増加し
て不具合が生じたと仮定すると、素子の順方向電流によ
る発生損失Piは、はぼ1501以上に増加し、約33
0(W)に増加したと仮定すると、TJ 、 T!al
l は次のように、T+=400+330WX(0,0
5+0.04+0.13)C/W=11L6G Txag= 40C+330WX0.13 C/W= 
82..9 Cとなり、温度センサーの設定値が80C
以上となシ、第1図(C)および(ψの温度センサー1
2が過熱を検出して動作し、ホトトランジスタ用発光ダ
イオード13−1および過熱表示発光ダイオード16に
素子屓電圧(VA−K)の直列抵抗15による分担電圧
が印加されホトトランジスタのON動作によシゲート入
力の停止および発光加熱表示を行なうことKなる。
Next, if we assume that the current of the above-mentioned process 1 increases to about 130% of the shared current and a problem occurs, the loss Pi caused by the forward current of the element increases to more than 1501, which is about 33
Assuming that it increases to 0 (W), TJ, T! al
l is as follows, T+=400+330WX(0,0
5+0.04+0.13) C/W=11L6G Txag= 40C+330WX0.13 C/W=
82. .. 9C, and the temperature sensor's set value is 80C.
With the above, Figure 1 (C) and (ψ temperature sensor 1
2 is activated by detecting overheating, and a voltage shared by the series resistor 15 of the element voltage (VA-K) is applied to the phototransistor light emitting diode 13-1 and the overheating indicating light emitting diode 16, and the ON operation of the phototransistor applies the voltage shared by the series resistor 15. This means that the input signal is stopped and the light emitting heating display is performed.

この時、素子接合部の温度Tjは11Z6Cであシ、サ
イリスタの場合は接合部許容温度125C以内であり、
サイリスタは加熱から保護されることKなる。
At this time, the temperature Tj of the element junction is 11Z6C, and in the case of a thyristor, the junction temperature is within the allowable temperature of 125C.
The thyristor must be protected from heating.

以上は、電流分担の不平衡率が大きくなった場合を詳細
に説明したが、冷却風量の低下、または各素子のヒート
シンク部の冷却風量の不平衡が生じた場合も、ヒートシ
ンク部の熱抵抗R*5s−airが大きくなシ、前述と
全く同様に、保護動作および過熱検出表示器が動作する
ことVCする。
The above describes in detail the case where the unbalance rate of current sharing becomes large, but also when the cooling air volume decreases or the cooling air volume of the heat sink part of each element becomes unbalanced, the thermal resistance R of the heat sink part *If 5s-air is large, the protection operation and overheat detection indicator will operate in exactly the same way as described above.

本発明の実施例によれば、不具合加熱素子の加熱表示が
可能となシ、半導体素子の保護とともKその加熱表示装
置により加熱部発見が容易にできる。
According to the embodiments of the present invention, it is possible to display the heating of a malfunctioning heating element, protect the semiconductor element, and facilitate the discovery of a heated portion by means of the heating display device.

本発明の一実施例の第1図(C)において、発光ダイオ
ード160代シに、ネオンランプ等も使用可能であシ、
これらの発光表示の光信号を利用して、共通の警報出力
を得る制御部を備えることによシ容易に保護警報信号が
得られることも可能である。
In FIG. 1(C) of an embodiment of the present invention, a neon lamp or the like can also be used for the light emitting diode in the 160s.
It is also possible to easily obtain a protection alarm signal by providing a control section that obtains a common alarm output using the optical signals of these light-emitting displays.

また、温度検出センサーとして、温度スイッチを使用し
たが、その代シに、感熱抵抗体(正特性、又は負特性)
によシ温度を検出し、加熱によるインピーダンス変化に
よp1加熱表示を点灯(通常消灯の場合)又は消灯(通
常点灯表示の場合)によシ保護および加熱検出表示を行
なうこともできる。
In addition, although a temperature switch was used as the temperature detection sensor, a heat-sensitive resistor (positive characteristic or negative characteristic) was used instead.
It is also possible to perform protection and heating detection display by detecting the heat temperature and changing the impedance due to heating to turn on the p1 heating display (in the case of normally off display) or off (in the case of normally on display).

又、本実施例(a)と(c)の回路構成例ではゲート入
力信号のOFFの方法として、半導体素子10のゲート
Gとカソードに間をON動作信号によシ短絡しているが
、ゲート入力直列抵抗器22とゲート直列ダイオード2
1の間とカソードに間をON動作信号によシ短絡してゲ
ート入力信号’eOFFさせる方法もある。
In addition, in the circuit configuration examples of embodiments (a) and (c), as a method for turning off the gate input signal, the gate G and cathode of the semiconductor element 10 are short-circuited by an ON operation signal. Input series resistor 22 and gate series diode 2
There is also a method of short-circuiting the gate input signal 'e' and the cathode with an ON operation signal to turn off the gate input signal 'e'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート制御半導体素子を使用した電力
変換装置の一例に加熱が生じても、容易に加熱発生部の
保護と発見ができる。
According to the present invention, even if heating occurs in an example of a power conversion device using a gate-controlled semiconductor element, it is possible to easily protect and detect the heating portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくd)はそれぞれ本発明によるゲー
ト制御半導体電力変換装置の一実施例を示す回路構成図
および正面図、第2図はゲート制御半導体電力変換装置
の1アーム中の半導体素子エニットの並列接続回路例を
示す図である。 l・・・半導体素子ユニット、10・・・ゲート制御半
導体素子、11・・・素子過熱保護装置、12・・・温
度検出センサー、13・・・ホトカプラー(13−1・
・・発光ダイオード、13−2・・・ホトトランジスタ
)、14・・・ダイオード、15・・・抵抗器、16・
・・発光ダイオード、21・・・ダイオード、22・・
・抵抗器、23・・・ゲートトリガ「信号、30・・・
素子冷却用ヒートシンク。
FIGS. 1(a) to d) are a circuit configuration diagram and a front view showing an embodiment of a gate-controlled semiconductor power converter according to the present invention, respectively, and FIG. 2 shows semiconductors in one arm of the gate-controlled semiconductor power converter. FIG. 3 is a diagram illustrating an example of a circuit in which elements are connected in parallel. l...Semiconductor element unit, 10...Gate control semiconductor element, 11...Element overheat protection device, 12...Temperature detection sensor, 13...Photocoupler (13-1)
...Light emitting diode, 13-2...Phototransistor), 14...Diode, 15...Resistor, 16.
...Light emitting diode, 21...Diode, 22...
・Resistor, 23... Gate trigger "Signal, 30...
Heat sink for element cooling.

Claims (1)

【特許請求の範囲】 1、電流分担されかつ少なくとも1個のヒートシンクに
搭載されたゲート制御半導体素子を備えるゲート制御半
導体電力変換装置において、各ヒートシンクに対し、少
なくとも1個の過熱保護手段を設け、さらに、この過熱
保護手段の検知信号によつて、該過熱保護手段に対応す
るヒートシンク上のゲート制御半導体素子の動作を停止
せしめる手段を設けたことを特徴とするゲート制御半導
体電力変換装置。 2、前記過熱保護手段はそれぞれ各ゲート制御半導体素
子毎に設けられている特許請求の範囲第1項記載のゲー
ト制御半導体電力変換装置。 3、前記過熱保護手段の検知信号によつて表示装置を駆
動せしめるようにした特許請求の範囲第1項および第2
項記載のゲート制御半導体電力変換装置。
[Scope of Claims] 1. In a gate-controlled semiconductor power conversion device comprising a gate-controlled semiconductor element that is current-shared and mounted on at least one heat sink, each heat sink is provided with at least one overheat protection means, A gate-controlled semiconductor power conversion device further comprising means for stopping the operation of a gate-controlled semiconductor element on a heat sink corresponding to the overheat protection means in response to a detection signal from the overheat protection means. 2. The gate-controlled semiconductor power conversion device according to claim 1, wherein the overheat protection means is provided for each gate-controlled semiconductor element. 3. Claims 1 and 2, wherein the display device is driven by the detection signal of the overheat protection means.
The gate-controlled semiconductor power conversion device described in 1.
JP59249341A 1984-11-26 1984-11-26 Gate control semiconductor power converter Pending JPS61128765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249341A JPS61128765A (en) 1984-11-26 1984-11-26 Gate control semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249341A JPS61128765A (en) 1984-11-26 1984-11-26 Gate control semiconductor power converter

Publications (1)

Publication Number Publication Date
JPS61128765A true JPS61128765A (en) 1986-06-16

Family

ID=17191574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249341A Pending JPS61128765A (en) 1984-11-26 1984-11-26 Gate control semiconductor power converter

Country Status (1)

Country Link
JP (1) JPS61128765A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756851B2 (en) * 2000-02-03 2003-01-23 Kabushiki Kaisha Toshiba Power converter control device and power converter thereof
KR20140111449A (en) * 2013-03-11 2014-09-19 삼성전자주식회사 Semiconductor package and electronic system including the same
JP2018050433A (en) * 2016-09-23 2018-03-29 株式会社デンソー Semiconductor device
JP2019126117A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Current control circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233154U (en) * 1975-08-30 1977-03-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233154U (en) * 1975-08-30 1977-03-08

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756851B2 (en) * 2000-02-03 2003-01-23 Kabushiki Kaisha Toshiba Power converter control device and power converter thereof
KR20140111449A (en) * 2013-03-11 2014-09-19 삼성전자주식회사 Semiconductor package and electronic system including the same
JP2018050433A (en) * 2016-09-23 2018-03-29 株式会社デンソー Semiconductor device
WO2018055908A1 (en) * 2016-09-23 2018-03-29 株式会社デンソー Semiconductor device
JP2019126117A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Current control circuit

Similar Documents

Publication Publication Date Title
US8264806B2 (en) Electronic device including a protection circuit for a light-emitting device
US7224150B2 (en) Redundancy circuit for series-connected diodes
JP2000125463A (en) Device for controlling continuity and break
JP2007330043A (en) Semiconductor power converter
JP3663506B2 (en) Fault detection circuit for braking switching element of inverter, and inverter
CN111313731B (en) Intelligent power module
JP4178904B2 (en) Power element temperature protection device
JP2002222920A (en) Protective device for parallel-connected mosfet
JPS61128765A (en) Gate control semiconductor power converter
JP2004129378A (en) Gate drive circuit for power semiconductor device
JP2002280886A (en) Semiconductor device
JP3369890B2 (en) Inverter abnormality detection circuit
JP4770064B2 (en) IPM circuit
JPH04317365A (en) Semiconductor ic and data processing system incorporating same
JPH0730390A (en) Overheat protecting circuit of semiconductor device
KR20190062215A (en) Electronic protective circuit
JP3607490B2 (en) Optical coupling device
JP2001161078A (en) Controller for power converter
JPS62107672A (en) Power transistor protecting device for transistor inverter
JP3145868B2 (en) Power device and power device control system
JP6995175B1 (en) Switching equipment and power conversion equipment
JP4106853B2 (en) Load drive circuit
KR100202558B1 (en) Circuit protection apparatus for induction cooker
KR100354128B1 (en) Circuit for preventing overheat of heater
JP2001128466A (en) Inverter device for driving motor