JPS61126680A - Address buffer for cmos memory - Google Patents

Address buffer for cmos memory

Info

Publication number
JPS61126680A
JPS61126680A JP59247106A JP24710684A JPS61126680A JP S61126680 A JPS61126680 A JP S61126680A JP 59247106 A JP59247106 A JP 59247106A JP 24710684 A JP24710684 A JP 24710684A JP S61126680 A JPS61126680 A JP S61126680A
Authority
JP
Japan
Prior art keywords
node
signal
whose
address
channel transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59247106A
Other languages
Japanese (ja)
Inventor
Toshio Komuro
小室 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59247106A priority Critical patent/JPS61126680A/en
Publication of JPS61126680A publication Critical patent/JPS61126680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To output an internal address signal at a high speed without causing a malfunction by making a pre part output signal into three states at the time of stand-by and at the time of an action. CONSTITUTION:At the time of the stand-by, an address control signal -phi is H, phiL and phiS are L, a point N11 and pre part output signals phii and -phii are L and points N12-N16 go to be H. At the time of an action, -phiS is from H to L, when an external address signal phiAD is H, -phiS is from H to L, a Q22 is off, a Q24 is on, and a point N11 is L and a Q21 goes to be on. Next, when phiS is from L to H, through an FF13 a point N14 is L, a point N15 is H and the signal phii goes to be L. On the other hand, the signal phiAD is L, and when -approx.=S is from H to L, a point N11 is from L to H, a Q26 is on, the signal phii is H and -phii goes to be L. The signal phiL raises phiS, and thereafter, the signal raises up to a high electric potential in order to latch the data.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、0MO8(相補tpiMO8)メモリ用アド
レスバッファに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an address buffer for 0MO8 (complementary tpiMO8) memory.

例の構成を示す回路図、第4図はその動作タイミングチ
ャートである。
A circuit diagram showing the configuration of an example, and FIG. 4 is an operation timing chart thereof.

第3図において、1はプリ部、2はメイン部である。第
3図のプリ部1及びメイン部2において、スタンバイ状
態は、アドレス制御信号φS、φP及びアドレス駆動信
号φEが低電位にあるために、節点Nl、N3.N4は
、高電位、節点N2は低電位にある。動作の開始はアド
レス制御信号φPが高電位になることで、PチャネルM
O8)ランジスタ(以下PchTrという。)Q8をオ
フ状態にすることから始まる。次にアドレス制御信号φ
Sが高電位になることで、PchTr Ql = Q2
、とNチャネルMO8)ランジスタ(以下、NchTr
という。)Q3.Q4からなるNAND回路のPchT
rQ2がオフ状態、NchTrQ4がオン状態になる。
In FIG. 3, 1 is a pre-part, and 2 is a main part. In the pre-part 1 and the main part 2 shown in FIG. 3, the standby state occurs at the nodes Nl, N3 . N4 is at a high potential and node N2 is at a low potential. The operation starts when the address control signal φP becomes high potential, and the P channel M
O8) The process begins by turning off transistor (hereinafter referred to as PchTr) Q8. Next, address control signal φ
With S becoming a high potential, PchTr Ql = Q2
, and N-channel MO8) transistor (hereinafter referred to as NchTr
That's what it means. )Q3. PchT of NAND circuit consisting of Q4
rQ2 is turned off and NchTrQ4 is turned on.

このとき、外部入力アドレス信号φムDが高電位ならば
、Pch Tr Q 1がオフe Nch TrQ3が
オン状態となるから節点N1は、高電位から低電位とチ
ャージを引き抜かれる。従って、インバータ1段後の節
点N2は、PchTrQ5がオン、Nch Tr Q6
がオフ状態になることで、低電位から高電位と変わる。
At this time, if the external input address signal φD is at a high potential, the Pch Tr Q1 is turned off and the Nch TrQ3 is turned on, so that the node N1 is drained from the high potential to the low potential. Therefore, at node N2 after one stage of inverter, PchTrQ5 is on and NchTrQ6 is on.
By turning off, the potential changes from low to high.

このとき、Nch TrQ7も同時にオン状態となって
いるが、Nch TrQ6がオフ状態となっているから
、節点N3以降はスタンバイ状態と変わりがなく、プリ
部出力信号φiは低電位、φiは高電位のままである。
At this time, Nch TrQ7 is also in the on state at the same time, but since the Nch TrQ6 is in the off state, there is no difference from the node N3 to the standby state, and the pre-part output signal φi is at a low potential and φi is at a high potential. It remains as it is.

逆に外部アドレス信号φムDが電位にあるならば、Pc
h Tr Q 1はオン、Nch Tr Q 3はオフ
状態であるから、節点N1はスタンバイ状態と同じく高
電位、節点N2は低電位にある。しかし、Nch Tr
 Q 7がオン状態となるから、節点N3は、Nch 
Tr Q7 、 Q6を通じて、高電位から低電位へと
チャージを引き抜かれる。従って、プリ部出力信号φi
は低電位から高電位へ、φiは高電位から低電位へと変
わる。
Conversely, if the external address signal φmD is at the potential, Pc
Since the h Tr Q 1 is on and the Nch Tr Q 3 is off, the node N1 is at a high potential and the node N2 is at a low potential as in the standby state. However, Nch Tr
Since Q7 is turned on, node N3 becomes Nch
Charge is extracted from high potential to low potential through Tr Q7 and Q6. Therefore, the pre-part output signal φi
changes from a low potential to a high potential, and φi changes from a high potential to a low potential.

以上の様にプリ部出力信号φi、φiの組み合わせは、
いずれか一方が低電位ならば、もう一方は高電位をとる
2つの状態しかないから、メイン部2において、更にア
ドレス駆動信号φEとの論理をとる必要がある。すなわ
ち、Pch Tr Q 13 eQ14とNch Tr
 Ql 5 、 Ql 6からなるNAN D回路がそ
れで、F’ch Tr Q 13 、 Nch Tr 
Q 15のゲートに入る信号のプリ部出力信号φiある
いはφiが高電位になってPch Tr Q 13をオ
フ。
As mentioned above, the combination of the pre-part output signals φi and φi is
Since there are only two states where one of them is at a low potential and the other is at a high potential, it is necessary in the main section 2 to further establish a logic with the address drive signal φE. That is, Pch Tr Q 13 eQ14 and Nch Tr
This is the NAND circuit consisting of Ql 5 and Ql 6, F'ch Tr Q 13 and Nch Tr
The pre-part output signal φi or φi of the signal entering the gate of Q15 becomes high potential and turns off the Pch Tr Q13.

Nch Tr Q 15をオン状態にした後、アドレス
駆動信号φBが高電位状態になることで、節点N4が高
電位から低電位になり、Pch Tr Q 17 eN
ch Tr Q 18からなるインバータで、内部アド
レス信号φ0を出力する。
After turning on the Nch Tr Q 15, the address drive signal φB goes to a high potential state, so that the node N4 goes from a high potential to a low potential, and the Pch Tr Q 17 eN
An inverter consisting of ch Tr Q 18 outputs an internal address signal φ0.

プリ部出力信号φi、φiが2つの状態しかないために
、メイン部2においてアドレス駆動信号φEを高電位に
するタイミングのとり方に問題があった。
Since the pre-part output signals φi and φi have only two states, there is a problem in determining the timing for setting the address drive signal φE to a high potential in the main part 2.

すなわち、外部入力アドレス信号φADが低電位にある
とき、動作が始まるとプリ部出力信号φiは、高電位か
ら低電位に変わるが、Pch Tr Ql3がオフ状態
Nch Tr Q 15がオフ状態になる前にアドレス
駆動信号φEが高電位になろうとしてNch Tr Q
 16をオン状態にさせると、高電位にチャージされて
いる節点N4の電位が抜ける。もしその電位が、次段の
インバータのPch TrQ17をオン状態にさせるま
で下がれば、本来、選択されるべきでない内部アドレス
信号φ0が出力されるという誤動作を生じる。
That is, when the external input address signal φAD is at a low potential, when the operation starts, the pre-part output signal φi changes from a high potential to a low potential, but before the Pch Tr Ql3 is in the off state and the Nch Tr Q15 is in the off state. When the address drive signal φE becomes high potential, the Nch Tr Q
16 is turned on, the potential of the node N4, which has been charged to a high potential, is removed. If the potential drops to a level that turns on the Pch TrQ17 of the inverter at the next stage, a malfunction will occur in which the internal address signal φ0, which should not originally be selected, is output.

従って、アドレスバッファを安定に動作させるには、プ
リ部出力信号φi、φiの電位が高電位か低電位にしっ
かり落ち看くまで、アドレス駆動信号φEの立ち上りを
待たせてお(ことが必要であった。そのため、従来のア
ドレスバッファの様に、2状患の出力信号をプリ部に持
つアドレスバッファでは駆動信号を入れる分だけ高速化
が制限されるという問題点を持っていた。
Therefore, in order to operate the address buffer stably, it is necessary to wait for the rise of the address drive signal φE until the potentials of the pre-part output signals φi and φi have fallen firmly to a high or low potential. For this reason, an address buffer having a dual output signal in its pre-circuit section, like the conventional address buffer, has the problem that speeding up is limited by the input of the drive signal.

従って、本発明の目的は、以上の様な従来の技術の問題
点を解消することにより、高速かつ安定に動作するCM
OSメモリ用アドレスバッファを提供することにある。
Therefore, an object of the present invention is to solve the problems of the conventional technology as described above, thereby providing a CM that operates at high speed and stability.
The purpose is to provide an address buffer for OS memory.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のCMOSメモリ用アドレスバッファは、ゲート
が外部入力アドレス信号にソースが電源にドレインが第
2の節点にそれぞれ接続された第1のPチャネルトラン
ジスタと、入力が前記外部アドレス入力信号と第1のア
ドレス制御信号に出力が第1の節点にそれぞれ接続され
たNOR回路と、ゲートが前記第1の節点にソースが電
源にドレインが第3の節点にそれぞれ接続された第2の
Pチャネルトランジスタと、ゲートが第2のアドレス制
御信号にソースが前記第2の節点にドレインが第4の節
点にそれぞれ接続された第3のPチャネルトランジスタ
と、ゲートが前記第2のアドレス制御信号にソースが前
記M30節点にドレインが第5の節点にそれぞれ接続さ
れた第4のPチャネルトランジスタと、ドレインがそれ
ぞれ前記第4の節点に接続された第5のPチャネルトラ
ンジスタと第1のNチャネルトランジスタ及びドレイン
がそれぞれ前記第5の節点に接続された第60Pチャネ
ルトランジスタと第2のNチャネルトランジスタからな
るフリップフロップ回路と、ゲートが第3のアドレス制
御信号にドレインが前記第1及び第2ONチャネルトラ
ンジスタのソース共通接続点にソースが接地点にそれぞ
れ接続された第3のNチャネルトランジスタと、ゲート
が前記第3のアドレス制御信号にソースが電源にドレイ
ンが前記第4の節点にそれぞれ接続された第70Pチャ
ネルトランジスタと、ゲートが前記第3のアドレス制御
信号にソース電源にドレインが前記第5の節点にそれぞ
れ接続された第8のPチャネルトランジスタと、入力が
前記第4の節点に接続され第1のプリ部出力信号を出力
する第1のインバータと、入力が前記第5の節点に接続
され第2のプリ部出力信号を出力する第2のインバータ
とからなるプリ部と、入力が前記第1あるいは第2のプ
リ部出力信号に出力が第6の節点にそれぞれ接続された
第3のインバータと、入力が前記第6の節点に接続され
内部アドレス信号を出力する第4のインバータとからな
るメイン部とを有している。
The CMOS memory address buffer of the present invention includes a first P-channel transistor whose gate is connected to an external input address signal, whose source is connected to a power supply, and whose drain is connected to a second node, and whose inputs are connected to the external address input signal and the first P-channel transistor. a NOR circuit whose output is connected to the first node, a second P-channel transistor whose gate is connected to the first node, whose source is connected to the power supply, and whose drain is connected to the third node. , a third P-channel transistor having a gate connected to the second address control signal, a source connected to the second node, a drain connected to the fourth node, and a gate connected to the second address control signal, a source connected to the a fourth P-channel transistor whose drains are respectively connected to the fifth node at the M30 node; a fifth P-channel transistor whose drains are respectively connected to the fourth node; a first N-channel transistor whose drains are respectively connected to the fourth node; a flip-flop circuit consisting of a 60th P-channel transistor and a second N-channel transistor connected to the fifth node, respectively; a gate is connected to a third address control signal; a drain is common to the sources of the first and second ON-channel transistors; a third N-channel transistor whose source is connected to the ground point at the node; and a 70th P-channel transistor whose gate is connected to the third address control signal, whose source is connected to the power supply, and whose drain is connected to the fourth node. an eighth P-channel transistor having a gate connected to the third address control signal, a source power supply, and a drain connected to the fifth node; and a first pre-channel transistor having an input connected to the fourth node. a first inverter that outputs an output signal; a second inverter having an input connected to the fifth node and outputting a second pre-unit output signal; a main part consisting of a third inverter whose output is connected to the sixth node, and a fourth inverter whose input is connected to the sixth node and outputs an internal address signal. have.

〔実施例〕〔Example〕

以下、本発明の実施例tこついて図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の構成を示す回路図、第2図
のその動作タイミングチャートである。
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is an operation timing chart thereof.

本実施例は、ゲートが外部入力アドレス信号φムDにソ
ースが電源VDDにドレインが第2の節点N12にそれ
ぞれ接続された第1のPch Tr Q21と・入力が
外部アドレス入力信号φADと第1のアドレス制御信号
φSに出力が第1の節点Nilにそれぞれ接続されたP
chTrQ22.Q23とNch Tr Q24 、 
Q25とよりなるNOR回路と、ケートが節点Nilに
ソースが電rJAvDDにドレインが第3の節点NL3
にそれぞれW!続された第20E’ch Tr Q 2
6と、ゲートが第2のアドレス制御信号φLにソースが
節点N12に゛ドレインが第4の節点N14にそれぞれ
接続された第3のPchTrQ27と、ゲートがアドレ
ス制御信号φLにソースが節点N13にドレインが第5
の節点N15にそれぞれ接続された第4のPch Tr
 Q Z 8と、ドレインがそれぞれ節点N14に接続
された第5のPch Tr Q29と第1のNch T
r Q 31及びドレインがそれぞれ節点N15に接続
された第6のPch Tr Q 30と第2のNch 
Tr Q 32からなるフリップフロップ回路13と、
ゲートが第3のアドレス制御信号φSにドレイン力Nc
h Tr Q 31 。
In this embodiment, a first Pch Tr Q21 whose gate is connected to the external input address signal φD, whose source is connected to the power supply VDD, and whose drain is connected to the second node N12, and whose input is connected to the external address input signal φAD and the first P whose outputs are connected to the address control signal φS and the first node Nil, respectively.
chTrQ22. Q23 and Nch Tr Q24,
A NOR circuit consisting of Q25, the gate is the node Nil, the source is the current rJAvDD, and the drain is the third node NL3
W for each! Continued 20th E'ch Tr Q 2
6 and a third PchTrQ27 whose gate is connected to the second address control signal φL and whose source is connected to the node N12 and whose drain is connected to the fourth node N14, whose gate is connected to the address control signal φL and whose source is connected to the node N13. is the fifth
The fourth Pch Tr connected to the node N15 of
Q Z 8, a fifth Pch Tr Q29 and a first Nch T whose drains are respectively connected to the node N14.
r Q 31 and a sixth Pch Tr Q 30 and a second Nch whose drains are respectively connected to the node N15.
A flip-flop circuit 13 consisting of Tr Q 32;
The gate applies the drain force Nc to the third address control signal φS.
h Tr Q 31 .

Q32のソース共通接点にソースが接地点にそれぞれ接
続された第3のNch Tr Q 33と、ゲートがア
ドレス制御信号φSにソースが電源VDDにドレインが
節点N141こそれぞれ接続された第7のPch Tr
 Q 34と、ゲートがアドレス制御信号φSにソース
が電源VDDにドレインが節点N15にそれぞれ接続さ
れた第8のPch Tr Q 35と、入力が節点N1
5に接続され第1のプリ部出力信号φiを出力するP、
ch Tr Q38 、 Nch Tr Q39からな
る第1のインバータと、入力が節点N14に接続され第
2のプリ部出力信号φiを出力するいは第2のプリ部出
力信号φi、φiに出力が第6の節点N16にそれぞれ
接続されたF’ch Tr Q40゜Nch Tr Q
41からなる第3のインバータと、入力が節点N16に
接続され内部アドレス信号φ0を出力するE’ch T
r Q42 、 Nch Tr Q43からなる第4の
インバータとからなるメイン部12とを含むことから構
成される。
A third Nch Tr Q33 whose source is connected to the common source contact of Q32 and the ground point, and a seventh Pch Tr whose gate is connected to the address control signal φS, whose source is connected to the power supply VDD, and whose drain is connected to the node N141, respectively.
Q 34, an eighth Pch Tr Q 35 whose gate is connected to the address control signal φS, whose source is connected to the power supply VDD, and whose drain is connected to the node N15, and whose input is connected to the node N1.
5 and outputs the first pre-part output signal φi,
A first inverter consisting of a channel Tr Q38 and an Nch Tr Q39 has an input connected to a node N14 and outputs a second pre-part output signal φi, or a sixth inverter has an output connected to the second pre-part output signal φi and φi. F'ch Tr Q40°Nch Tr Q connected to node N16 of
E'ch T whose input is connected to node N16 and outputs internal address signal φ0.
r Q42 and a fourth inverter consisting of an Nch Tr Q43.

次に、本実施例の動作を第2図の動作タイミングチャー
トを参照して説明する。
Next, the operation of this embodiment will be explained with reference to the operation timing chart of FIG.

第1図に右いて、スタンバイ状態では、アドレス制御信
号φSが高電位、φいφSが低電位状態にあるために、
節点NIL及びプリ部出力信号φin l’ tは低電
位、節点N12.N13.N14゜N15.N16は高
電位状愚にある。
As shown on the right in FIG. 1, in the standby state, the address control signal φS is at a high potential, and the address control signal φS is at a low potential.
Node NIL and pre-part output signal φin l' t are at low potential, and node N12. N13. N14°N15. N16 is at a high potential.

動作の開始は、アドレスんり画信号φSが高電位から低
電位に変わることで始まる。外部アドレス信号φムDが
高電位lこあるとき、アドレス制御信号φSが高電位か
ら低電位に変わることで、PchTrQ22はオフ状%
 NcklTr Q 24はオン状態で、節点Nilの
電位はスタンバイ状態と同様低電位にある。従って、P
ch ir Q 21とQ26のゲート電位をそれぞれ
VG (Q21 ) 、 VG(Q26 ) −トする
と、VG(Q21 ) >VaCQ26 )となる。1
c7)’レス制御信号φSを低電位から高電位に上げる
ことでs  Pch Tr Q 34 = Q 35を
オフ状態にして、11E源VDDからの電流供給を中止
しつつ、Nch Trめるが、VG(Q21)>VG(
Q26)  タカら、PchTrQ21を流れる電流I
on(Q21)  と、PchTr  Q26を流れる
tfflt Ion(Q26ン には、Ion(Q21
 )<fan(Q26)の関係があるので、フリ。
The operation begins when the address image signal φS changes from a high potential to a low potential. When the external address signal φD is at a high potential, the address control signal φS changes from a high potential to a low potential, so that the PchTrQ22 is turned off.
NcklTr Q 24 is in the on state, and the potential of the node Nil is at a low potential as in the standby state. Therefore, P
When the gate potentials of channels Q21 and Q26 are set to VG(Q21) and VG(Q26)-, respectively, VG(Q21)>VaCQ26). 1
c7) By raising the response control signal φS from a low potential to a high potential, the s Pch Tr Q 34 = Q 35 is turned off, and the Nch Tr is turned off while stopping the current supply from the 11E source VDD, but VG (Q21)>VG(
Q26) Current I flowing through PchTrQ21
on (Q21) and tfflt Ion (Q26 on) flowing through PchTr Q26.
) < fan (Q26), so it's fake.

がオン状B e E’ch ’rr Q29 s Nc
h Tr Q32はオフ状態になり、節点N14が低電
位、節点N15は高電位のままである。従ってF’ch
 TrQ36 、 Nch Tr Q37からなるイン
バータによってプリ・部出力信号φiは、低電位から高
電位へ変わるが、プリ部出力信号φiは節点N15が高
電位のままなので低電位状態にある。
is on state B e E'ch 'rr Q29 s Nc
h Tr Q32 is turned off, node N14 remains at low potential and node N15 remains at high potential. Therefore F'ch
Although the pre-section output signal φi changes from a low potential to a high potential by an inverter consisting of Tr Q36 and Nch Tr Q37, the pre-section output signal φi remains at a low potential because the node N15 remains at a high potential.

逆に外部入力アドレス信号φADが低電位のときは、P
ch Tr Q 22がオン、 Nch Tr Q24
がオフ状態にあるから、アドレス制御信号φSが高電位
から低電位に変わることで、PchTr Q23をオン
、 Nch Tr Q25をオフ状態とし、節点Nil
を低電位から高電位に変える。従って、今度ハVaCQ
21 ) <Ve(Q26 )  テアルo 以降o 
1th キは外部入力アドレス信号φ入りが高電位のと
きと変わりがないが、Ion (Q21 )>Ion 
(Q26 )  であるから、節点N14が高電位のま
ま、節点N15が低電位へと抜かれる。よってPch 
Tr Q38 。
Conversely, when external input address signal φAD is at a low potential, P
ch Tr Q22 is on, Nch Tr Q24
Since the address control signal φS changes from high potential to low potential, PchTr Q23 is turned on, Nch Tr Q25 is turned off, and the node Nil
change from low potential to high potential. Therefore, next time HaVaCQ
21) <Ve(Q26) Theal o Hereafter o
1th key is the same as when the external input address signal φ is at a high potential, but Ion (Q21)>Ion
(Q26) Therefore, the node N15 is pulled to a low potential while the node N14 remains at a high potential. Therefore, Pch
Tr Q38.

Nch Tr Q 39からなるインバータによってプ
リ部出力信号φiは低電位から高電位へと変わりφiは
低電位のままである。
The pre-part output signal φi changes from a low potential to a high potential by an inverter consisting of an Nch Tr Q 39, and φi remains at a low potential.

アドレス制御信号φLはアドレス制御信号φSを立ち上
げて後に、データをラッチするためlこ高電位に上げる
After raising the address control signal φS, the address control signal φL is raised to a higher potential in order to latch data.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、不発明のCMOSメモリ用
アドレスバッファは、上記の手段により、そのプリ部出
力信号φi、φiがスタンバイ時はいずれも低電位、動
作時はいずれか一方が高電位になるという3状態の形を
とるため、従来のように、2状態の形をとるアドレスバ
ッファのように、プリ部を出た後に更にアドレス駆動信
号を入力する必要がないので、従来の様に誤動作を生じ
ることなく、第1図のメイン部の様にインバータを迫す
だけで内部アドレス信号を^速に出力できる。
As explained above in detail, the uninvented address buffer for CMOS memory uses the above means to have its pre-part output signals φi, φi both at a low potential during standby, and one of them becomes a high potential during operation. Since it takes the form of 3 states, unlike the conventional address buffer which takes the form of 2 states, there is no need to further input the address drive signal after exiting the pre-circuit, so it is possible to avoid malfunctions as in the case of the conventional address buffer. The internal address signal can be output at high speed simply by pressing the inverter as shown in the main part of Fig. 1.

従って、本発明により、高速かつ安定な動作をするCM
OSメモリ用アドレスバッファが得られる。
Therefore, according to the present invention, a CM that operates at high speed and stably
An address buffer for OS memory is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す回路図、成を示
す回路図、第4図のその動作タイミングチャートである
。 Q27.Q28.Q29.Q30.Q34.Q35.Q
36.Q3B。 Q10.Q42・・−・−1’チヤネル1vlOSトラ
ンジスタ、Q24.見25.Q31.Q32.Q33.
Q37.Q39.Q41゜Q43・・・・・・Nチャネ
ルMOSトランジスタ、vDD・・・・・・電源、φえ
D・・・・・−外部人力アドレス信号、φ89.。 ・・・アドレス駆動信号、φi、φi・・・・・・プリ
部員カ信号、φいφsIφS・・・・・・アドレス制御
信号、φ0・−・・・内部アドレス信号。
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, a circuit diagram showing its construction, and FIG. 4 is an operation timing chart thereof. Q27. Q28. Q29. Q30. Q34. Q35. Q
36. Q3B. Q10. Q42...--1' channel 1vlOS transistor, Q24. See 25. Q31. Q32. Q33.
Q37. Q39. Q41゜Q43...N-channel MOS transistor, vDD...Power supply, φED...-External manual address signal, φ89. . ...address drive signal, φi, φi...pre-member signal, φsIφS...address control signal, φ0...internal address signal.

Claims (1)

【特許請求の範囲】[Claims]  ゲートが外部入力アドレス信号にソースが電源にドレ
インが第2の節点にそれぞれ接続された第1のPチャネ
ルトランジスタと、入力が前記外部アドレス入力信号と
第1のアドレス制御信号に出力が第1の節点にそれぞれ
接続されたNOR回路と、ゲートが前記第1の節点にソ
ースが電源にドレインが第3の節点にそれぞれ接続され
た第2のPチャネルトランジスタと、ゲートが第2のア
ドレス制御信号にソースが前記第2の節点にドレインが
第4の節点にそれぞれ接続された第3のPチャネルトラ
ンジスタと、ゲートが前記第2のアドレス制御信号にソ
ースが前記第3の節点にドレインが第5の節点にそれぞ
れ接続された第4のPチャネルトランジスタと、ドレイ
ンがそれぞれ前記第4の節点に接続された第5のPチャ
ネルトランジスタと第1のNチャネルトランジスタ及び
ドレインがそれぞれ前記第5の節点に接続された第6の
Pチャネルトランジスタと第2のNチャネルトランジス
タからなるフリップフロップ回路と、ゲートが第3のア
ドレス制御信号にドレインが前記第1及び第2のNチャ
ネルトランジスタのソース共通接続点にソースが接地点
にそれぞれ接続された第3のNチャネルトランジスタと
、ゲートが前記第3のアドレス制御信号にソースが電源
にドレインが前記第4の節点にそれぞれ接続された第7
のPチャネルトランジスタと、ゲートが前記第3のアド
レス制御信号にソースが電源にドレインが前記第5の節
点にそれぞれ接続された第8のPチャネルトランジスタ
と、入力が前記第4の節点に接続され第1のプリ部出力
信号を出力する第1のインバータと、入力が前記第5の
節点に接続され第2のプリ部出力信号を出力する第2の
インバータとからなるプリ部と、入力が前記第1あるい
は第2のプリ部出力信号に出力が第6の節点にそれぞれ
接続された第3のインバータと、入力が前記第6の節点
に接続され内部アドレス信号を出力する第4のインバー
タとからなるメイン部とを含むことを特徴とするCMO
Sメモリ用アドレスバッファ。
a first P-channel transistor having a gate connected to an external input address signal, a source connected to a power supply, and a drain connected to a second node; an input connected to the external address input signal and a first address control signal; a NOR circuit connected to each node, a second P-channel transistor having a gate connected to the first node, a source connected to the power supply, a drain connected to the third node, and a gate connected to the second address control signal. a third P-channel transistor having a source connected to the second node, a drain connected to the fourth node, a gate connected to the second address control signal, a source connected to the third node, and a drain connected to the fifth node; a fourth P-channel transistor each connected to the node; a fifth P-channel transistor and a first N-channel transistor each having a drain connected to the fourth node; and a first N-channel transistor, each having a drain connected to the fifth node. a flip-flop circuit having a gate connected to a third address control signal and a drain connected to a common connection point between the sources of the first and second N-channel transistors; a third N-channel transistor whose gate is connected to the ground point, and a seventh N-channel transistor whose gate is connected to the third address control signal, whose source is connected to the power supply, and whose drain is connected to the fourth node, respectively.
an eighth P-channel transistor whose gate is connected to the third address control signal, whose source is connected to the power supply, and whose drain is connected to the fifth node, and whose input is connected to the fourth node. a first inverter that outputs a first output signal; a second inverter having an input connected to the fifth node and outputting a second output signal; a third inverter whose output is connected to the sixth node for the first or second pre-part output signal, and a fourth inverter whose input is connected to the sixth node and outputs an internal address signal. A CMO characterized by comprising a main part
Address buffer for S memory.
JP59247106A 1984-11-22 1984-11-22 Address buffer for cmos memory Pending JPS61126680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247106A JPS61126680A (en) 1984-11-22 1984-11-22 Address buffer for cmos memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247106A JPS61126680A (en) 1984-11-22 1984-11-22 Address buffer for cmos memory

Publications (1)

Publication Number Publication Date
JPS61126680A true JPS61126680A (en) 1986-06-14

Family

ID=17158516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247106A Pending JPS61126680A (en) 1984-11-22 1984-11-22 Address buffer for cmos memory

Country Status (1)

Country Link
JP (1) JPS61126680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489689A (en) * 1990-07-26 1992-03-23 Nec Ic Microcomput Syst Ltd Driver circuit for semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489689A (en) * 1990-07-26 1992-03-23 Nec Ic Microcomput Syst Ltd Driver circuit for semiconductor memory

Similar Documents

Publication Publication Date Title
KR100242782B1 (en) Semiconductor device and control circuit therefor
US4417328A (en) Random access semiconductor memory device using MOS transistors
JPH05144273A (en) Semiconductor integrated circuit device
EP0639000B1 (en) Flip-flop type amplifier circuit
GB2123634A (en) Master-slave flip-flop
EP0259861B1 (en) Buffer circuit operable with reduced power consumption
JPH04238197A (en) Sense amplifier circuit
US4606012A (en) Sense amplifier
JPS61126680A (en) Address buffer for cmos memory
EP0508652B1 (en) Semiconductor memory circuit
US4451908A (en) Address Buffer
US5530380A (en) Decoder circuit which resists a fluctuation of a power supply
JPH1173775A (en) Output circuit of semiconductor memory device
JP2010182346A (en) Semiconductor integrated circuit
JP2658551B2 (en) Power-on reset circuit
US5600599A (en) Data signal output circuit and semiconductor memory device including the same
EP0808022B1 (en) Latch circuit operating in synchronization with clock signals
JPH0580080B2 (en)
JPH08190799A (en) Sense-amplifier circuit
JP3513158B2 (en) Semiconductor integrated circuit device
JPH0578972B2 (en)
JP3830765B2 (en) Logic gate based on latching invalidation
EP0091721A2 (en) Read resettable memory circuit
US5304868A (en) Non-inverting buffer circuit device and semiconductor memory circuit device
JPH06260902A (en) Flip-flop circuit