JPS61126056A - Production of phenylalanine-analogue aminoacid and its ester - Google Patents

Production of phenylalanine-analogue aminoacid and its ester

Info

Publication number
JPS61126056A
JPS61126056A JP59246179A JP24617984A JPS61126056A JP S61126056 A JPS61126056 A JP S61126056A JP 59246179 A JP59246179 A JP 59246179A JP 24617984 A JP24617984 A JP 24617984A JP S61126056 A JPS61126056 A JP S61126056A
Authority
JP
Japan
Prior art keywords
acid
phenylserine
formula
phenylalanine
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59246179A
Other languages
Japanese (ja)
Other versions
JPH0237912B2 (en
Inventor
Shoichi Miyamoto
正一 宮本
Hideo Ishikawa
石川 英男
Yasumasa Shizume
泰昌 鎮目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Yuki Kagaku Kogyo KK
Original Assignee
Osaka Yuki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Yuki Kagaku Kogyo KK filed Critical Osaka Yuki Kagaku Kogyo KK
Priority to JP59246179A priority Critical patent/JPS61126056A/en
Publication of JPS61126056A publication Critical patent/JPS61126056A/en
Publication of JPH0237912B2 publication Critical patent/JPH0237912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:Phenylserine, readily producible industrially, is catalytically hydrogenated to produce the titled compound which is used in aminoacid transfusion for medical purposes on an industrial scale in high yield and at low costs. CONSTITUTION:A benzaldehyde analogue and glycine are allowed to react in water or an alcoholic medium in the presence of an alkali and the resultant phenylserine of formula I (R<1>-R<5> are H, hydroxyl, alkoxy; R<6> is H, alkyl) is catalytically hydrogenated in the presence of a noble metal catalyst such as Pd/C in a medium of an organic acid such as formic acid or water, preferably in the presence of a mineral acid such as perchloric acid or a cation- exchange resin such as a strong-acid cation exchange resin for aqueous solution under hydrogen pressure from normal up to 8kg/cm<2>G to give the objective compound of formula II. USE:A component of aminoacid preparations and a starting material of aspartame, as low-calorie sweetener.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェニルアラニン系アミノ酸又はそのエステル
の製造方法に関する。更に詳しくは、フェニルセリン系
アミノ酸又はそのエステルからフェニルアラニン系アミ
ノ酸又はそのエステルを得るための新規にして極めて有
用な工業的製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing phenylalanine amino acids or esters thereof. More specifically, the present invention relates to a novel and extremely useful industrial production method for obtaining a phenylalanine amino acid or its ester from a phenylserine amino acid or its ester.

〔従来の技術〕[Conventional technology]

フェニルアラニン系アミノ酸のうち、フェニルアラニン
は医薬用アミノ酸輸液、総合アミノ酸製剤の成分として
有用なアミノ酸であり、ことに最近では、低カロリー甘
味料アスパルテームの原料として一躍脚光をあびてきた
アミノ酸であり、とくにこの原料フェニルアラニンの安
価な工業的製法が切望されている。
Among the phenylalanine amino acids, phenylalanine is an amino acid that is useful as a component of pharmaceutical amino acid infusions and comprehensive amino acid preparations.Recently, this amino acid has been in the spotlight as a raw material for the low-calorie sweetener aspartame. An inexpensive industrial method for producing the raw material phenylalanine is desperately needed.

また、フェニルアラニン系アミノ酸のうち、チロシンは
医薬品の中間体として有用である。
Furthermore, among phenylalanine amino acids, tyrosine is useful as an intermediate for pharmaceuticals.

上記の如キフェニルアラニン系アミノ酸の合成法として
以下の方法がある。
The following methods are available for synthesizing the above-mentioned phenylalanine amino acids.

■Wheeler−Hoffmann法ホルムアルデヒ
ドとシアン化カリウムから得られるヒダントイン(I)
とベンズアルデヒドを縮合させてベンザルヒダントイン
(II)を作る。このぶンザルヒダントインを赤リンと
ヨウ化水素酸テ還元し、得られたベンジルヒダントイン
(III)をアルカリで加水分解するとフェニルアラニ
ン(IV)が得られる。
■Wheeler-Hoffmann method Hydantoin (I) obtained from formaldehyde and potassium cyanide
and benzaldehyde are condensed to produce benzalhydantoin (II). This benzylhydantoin is reduced with red phosphorus and hydroiodide, and the resulting benzylhydantoin (III) is hydrolyzed with an alkali to yield phenylalanine (IV).

(I)           (II)(III)  
                      (■ン
AAm−0he、J、、45368  (191))■
Erlenmeyer法 グリシ/を氷酢酸、無水酢酸でアセチル化した  ・ア
セチルグリシ/(V)とベンズアルデヒドの縮合忙よっ
て得られるアズラクトン(Vl)を水酸化ナトリウム溶
液中RaneM ”−ツヶル触媒を用(・て還元すると
アセチルフェニルアラニン(■)が得られ、これを塩酸
水溶液中で加水分解するとフェニルアラニン(IV)が
得られる。
(I) (II) (III)
(■nAAm-0he, J,, 45368 (191))■
Erlenmeyer method glycylate/(V) was acetylated with glacial acetic acid and acetic anhydride. ・Azlactone (Vl) obtained by condensation of acetyl glycylate/(V) and benzaldehyde was reduced using RaneM''-Tsugaru catalyst in a sodium hydroxide solution. Then, acetylphenylalanine (■) is obtained, which is hydrolyzed in an aqueous hydrochloric acid solution to obtain phenylalanine (IV).

(■)(■) Eull 、 Chem、 Soc 、 Japan 
、 30698■臭化アニシル(■)とアセトアミドマ
ロン酸エチル(IX)をナトリウムエトキシドの存在下
に縮合させ、縮合体(X)を加水分解すればチロシンが
得られる。
(■) (■) Eull, Chem, Soc, Japan
, 30698■ Tyrosine is obtained by condensing anisyl bromide (■) and ethyl acetamidomalonate (IX) in the presence of sodium ethoxide and hydrolyzing the condensate (X).

(1!HOOG!Hs (■)(■) (X) J、 Chem、 Soc、 、 1953 、131
6゜〔発明が解決しようとする問題点〕 上記従来技術のうち、■の方法は合成経路が長くて煩雑
であるだけでなく、副原料としてシアン化カリウムのよ
うな猛毒の薬品を必要とするなど、必ずしも十分満足さ
れる工業的製法とはい(・難い。
(1! HOOG! Hs (■) (■) (X) J, Chem, Soc, , 1953, 131
6゜ [Problems to be solved by the invention] Among the above conventional techniques, method (①) not only has a long and complicated synthesis route, but also requires highly toxic chemicals such as potassium cyanide as an auxiliary raw material. Yes, it is difficult to say that it is an industrial manufacturing method that is necessarily fully satisfactory.

また、■の方法も合成経路が長く、これも工業的製法と
して問題がある。更に、■の方法は、アセトアミドマロ
ン酸エチルを原料としてし・るが、これは高価な薬品で
あり、経済的な面から工業的製法として問題がある。
In addition, method (2) also has a long synthetic route, which is also problematic as an industrial production method. Furthermore, method (2) uses ethyl acetamidomalonate as a raw material, but this is an expensive chemical and is problematic as an industrial production method from an economical point of view.

そこで本発明は、水またはアルコール媒体中、アルカリ
の存在下で相当するベンズアルデヒド系化合物とグリシ
ンとを反応させて容易に製造されるフェニルセリン系ア
ミノ酸またはそのエステルを出発物質とする工業的に極
めて有意義なフェニルアラニン系アミノ酸を提供するこ
とを目的とするものである。
Therefore, the present invention provides an industrially extremely useful starting material that uses a phenylserine amino acid or its ester, which is easily produced by reacting a corresponding benzaldehyde compound with glycine in the presence of an alkali in water or an alcoholic medium. The purpose of this invention is to provide phenylalanine-based amino acids.

〔式(I)中R’ J R” 、 R3,R’ 、R’はそれぞれ同一または異なって水素原子、水酸基またはアルコキシ基であり BISは水素原子またはアルキル基を表わす。〕[In formula (I), R' J R'', R3, R', and R' are each the same or different and represent a hydrogen atom, a hydroxyl group, or an alkoxy group, and BIS represents a hydrogen atom or an alkyl group.]

で示すしるフェニルセリン系アミノ酸またはそのエステ
ルを、貴金属触媒の存在下で接触水素還元することを特
徴とする式(■): 〔式(n)中R1、12、R3、R4、Hls 、 R
6は前記と同じ意味を表わす。〕 で示されるフェニルアラニン系アミノ酸の製造方法が提
供される。
Formula (■) characterized in that the phenylserine amino acid or its ester represented by is subjected to catalytic hydrogen reduction in the presence of a noble metal catalyst: [In formula (n), R1, 12, R3, R4, Hls, R
6 represents the same meaning as above. ] A method for producing a phenylalanine amino acid represented by the following is provided.

一般式(I)で示される化合物のうち、具体的には、フ
ェニルセリン、p−ヒドロキシフェニルセリン、p−メ
トキシフェニルセリン、3.4−ジヒドロキシフェニル
セリン、及びこれらのエステル誘導体が好ましい出願物
質として例示される。特に好ましい出発物質はフェニル
セリン、p−ヒドロキシフェニルセリンテアル。
Among the compounds represented by the general formula (I), specifically, phenylserine, p-hydroxyphenylserine, p-methoxyphenylserine, 3,4-dihydroxyphenylserine, and ester derivatives thereof are preferred application substances. Illustrated. A particularly preferred starting material is phenylserine, p-hydroxyphenylserine theal.

本発明に用いられる出発物質としてのフェニルセリン系
アミノ酸は、水またはアルコール媒体中、アルカリの存
在下で相当するベンズアルデヒド系化合物とグリシンを
反応させることにより容易に得られる。
The phenylserine amino acid as a starting material used in the present invention can be easily obtained by reacting the corresponding benzaldehyde compound with glycine in the presence of an alkali in water or an alcoholic medium.

本発明の製造方法にお℃・では、有機酸または水あるい
はこれらの混合物を媒体として、一般式(1)で示され
る化合物を貴金属触媒の存在下で接触水素還元する。接
触水素還元反応は、鉱酸または陽イオン交換樹脂の存在
下で行なわれるのが好まし℃゛。
In the production method of the present invention, the compound represented by the general formula (1) is subjected to catalytic hydrogen reduction in the presence of a noble metal catalyst using an organic acid, water, or a mixture thereof as a medium. The catalytic hydrogen reduction reaction is preferably carried out in the presence of a mineral acid or a cation exchange resin.

上記の反応に当っては、鉱酸の選択は収率に大きく影響
を及ぼす。使用可能な鉱酸としては、過塩素酸、硫酸、
リン酸、硝酸、塩酸等が挙げられるが、中でも過塩素酸
、硫酸が好適に使用される。
In the above reaction, the choice of mineral acid greatly affects the yield. Mineral acids that can be used include perchloric acid, sulfuric acid,
Examples include phosphoric acid, nitric acid, and hydrochloric acid, among which perchloric acid and sulfuric acid are preferably used.

フェニルセリン系アミノ酸と鉱酸との使用割合(モル比
)はフェニルセリン系アミノ酸:鉱酸二l二〇、5〜5
の範囲、好ましくは1・1〜3の範囲から選ぶのが好ま
しい。
The usage ratio (molar ratio) of phenylserine amino acid and mineral acid is phenylserine amino acid:mineral acid 2l20, 5-5
It is preferable to select from the range of , preferably from the range of 1.1 to 3.

陽イオン交換樹脂としては強酸性および弱酸性いずれの
型のものも使用できるが、特に水溶液用の強酸性陽イオ
ン交換樹脂が好適である。なお樹脂は遊離酸型(H型)
で用いられる。フェニルセリン系アミノ酸と強酸性陽イ
オン交換樹脂との使用割合(当量比)はフェニルセリン
系アミノ酸二強酸性陽イオン交換樹脂=t:O,S〜5
の範囲、好ましくは1:1〜3の範囲から選ぶのが好ま
しい。・ 本発明による方法には貴金属触媒として、ベンジル−〇
−結合を分裂させる既知の事実止金ての触媒を使用する
ことができる( Organic几eac tions
 b■巻、5章264頁以下(1953)を参照)。更
に詳しくは、適当な水素添加触媒としてこの場合元素周
期表の第8亜族の元素(白金属元素)を挙げることがで
き(Ru+ Rh、 Pd、 Os、  Ir、 Pt
)、中でもパラジウムPdが特に好ましい。金属触媒は
通常、既知の担体材料例えば5iO9、炭、酸化アルミ
ニウム、アルミノ珪酸塩、Ba5Q4等上に付けられる
。上記貴金属触媒の担持率は065〜5重量%が適当で
ある。又、該触媒は原料フェニルセリン系アミノ酸の重
量に対して2〜25%程度使用される。
Although both strongly acidic and weakly acidic types of cation exchange resins can be used, strongly acidic cation exchange resins for use in aqueous solutions are particularly suitable. The resin is free acid type (H type)
used in The usage ratio (equivalent ratio) of phenylserine amino acid and strongly acidic cation exchange resin is phenylserine amino acid two strongly acidic cation exchange resin = t: O, S ~ 5
It is preferable to select from the range of 1:1 to 3, preferably 1:1 to 3. - As noble metal catalysts for the process according to the invention, it is possible to use any known catalyst that splits the benzyl-〇-bond (Organic reactions).
(See Volume B, Chapter 5, pp. 264 et seq. (1953)). More specifically, suitable hydrogenation catalysts in this case include elements of subgroup 8 of the periodic table (white metal elements) (Ru+ Rh, Pd, Os, Ir, Pt
), among which palladium Pd is particularly preferred. Metal catalysts are usually mounted on known support materials such as 5iO9, charcoal, aluminum oxide, aluminosilicate, Ba5Q4, etc. The supporting ratio of the noble metal catalyst is suitably 0.65 to 5% by weight. The catalyst is used in an amount of about 2 to 25% based on the weight of the raw phenylserine amino acid.

媒体となる有機酸としてはギ酸、酢酸、プロピオン酸、
酪酸、吉草酸等が挙げられるが、中でもギ酸、酢酸が好
適に使用される。
Examples of organic acids used as media include formic acid, acetic acid, propionic acid,
Examples include butyric acid and valeric acid, among which formic acid and acetic acid are preferably used.

次に反応時の圧力は常圧で充分反応を行なうことが出来
るが、約8 kg/+cm2Gまでの水素加圧でも反応
を行なうことができる。もつと高い圧力は一般に何の利
益ももたらさない。
Next, the reaction can be carried out sufficiently at normal pressure, but the reaction can also be carried out under hydrogen pressure of up to about 8 kg/+cm2G. Higher pressures generally have no benefit.

反応は加熱下に行なわれる。反応時の温度は、反応圧力
や使用する媒体としての有機酸の種類によって多少異な
るが、反応圧力が常圧の場合50〜120℃の範囲、好
ましくは80〜1)0’Cの範囲で実施される。又反応
時間は2〜8時間程度必要である。
The reaction is carried out under heat. The temperature during the reaction varies somewhat depending on the reaction pressure and the type of organic acid used as a medium, but when the reaction pressure is normal pressure, it is in the range of 50 to 120°C, preferably in the range of 80 to 1)0'C. be done. Further, the reaction time is required to be about 2 to 8 hours.

かくして接触水素還元反応が終了した後は常法に従って
触媒成分を除去したのち、反応p液を濃縮して得られた
結晶または液体を水で溶解する。
After the catalytic hydrogen reduction reaction is thus completed, the catalyst component is removed according to a conventional method, and the reaction p solution is concentrated and the resulting crystal or liquid is dissolved in water.

この水溶液をアルカリで州調整(t4−Is〜6)する
トフェニルアラニン系アミノ酸が結晶として析出する。
This aqueous solution is adjusted with an alkali (t4-Is to 6) to precipitate tophenylalanine-based amino acids as crystals.

これを戸別、乾燥して製品を得る。This is then dried door to door to obtain the product.

必要であれば活性炭処理、再結晶等の任意の精製が実施
可能である。
If necessary, optional purification such as activated carbon treatment and recrystallization can be carried out.

次に実例を挙げて本発明の方法を更に詳しく説明するが
、これに限定されるも°のではない。「%」は特にこと
わりのない限り重量基準である。
Next, the method of the present invention will be explained in more detail with reference to examples, but the method is not limited thereto. "%" is by weight unless otherwise specified.

〔実施例〕〔Example〕

実施例1 攪拌機並びに温度計を備えた内容積2 Q Omlのフ
ラスコにフェニルセリン6g、80%ギ酸75g、60
%過塩素酸8,3gを供給した。反応容器内を窒素置換
後、05%パラジウム/炭素1gを供給した。フラスコ
内を再度窒素置換、更に水素置換した後、水素を供給し
ながら昇温し反応温度90℃に維持して反応を行なった
。6時間後に水素の吸収が停止した。
Example 1 In a flask with an internal volume of 2 Q Oml equipped with a stirrer and a thermometer, 6 g of phenylserine, 75 g of 80% formic acid, 60
8.3 g of % perchloric acid were fed. After purging the inside of the reaction vessel with nitrogen, 1 g of 05% palladium/carbon was supplied. After the inside of the flask was again purged with nitrogen and further with hydrogen, the temperature was raised while supplying hydrogen and the reaction temperature was maintained at 90° C. to carry out the reaction. Hydrogen absorption stopped after 6 hours.

反応終了後、フラスコを冷却し反応生成液から触媒を戸
別した。p液を濃縮してこの濃縮残分を、30、Fの水
で溶解して、アルカリで川を5.5に調整するとフェニ
ルアラニンの白色結晶が析出した。
After the reaction was completed, the flask was cooled and the catalyst was separated from the reaction product liquid. The p solution was concentrated, the concentrated residue was dissolved in 30.F water, and the concentration was adjusted to 5.5 with an alkali to precipitate white crystals of phenylalanine.

収率はフェニルセリンに対して90モル%であつ  :
た。
The yield is 90 mol% based on phenylserine:
Ta.

又、水−エタノールから再結後の薄層クロマトグラフィ
ーで分析したところ1スポツトであった。
Further, analysis by thin layer chromatography after reconsolidation from water-ethanol revealed 1 spot.

実施例2 内容積1000 mlの電磁誘導回転攪拌式ガラス製オ
ートクレーブにフェニルセリン30p、80%ギ酸37
5g、60%過塩素酸41gを供給した。オートクレー
ブ内を窒素置換後、0.5%パラジウム/炭素3gを供
給した。オートクレーブ内を再度窒素置換、更に水素置
換した後、昇温し反応温度1)0℃において水素で全圧
を5 kg/ctrt ” Gにコントロールし、以後
水素を補給しながら上記温度、圧力を維持して反応を行
なった。3時間後に水素の吸収が停止した。
Example 2 30p of phenylserine and 37g of 80% formic acid were placed in an electromagnetic induction rotating stirring type glass autoclave with an internal volume of 1000ml.
5g, 41g of 60% perchloric acid were fed. After purging the inside of the autoclave with nitrogen, 3 g of 0.5% palladium/carbon was supplied. After replacing the inside of the autoclave with nitrogen again and further replacing it with hydrogen, the temperature was raised and the reaction temperature 1) At 0°C, the total pressure was controlled to 5 kg/ctrt''G with hydrogen, and the above temperature and pressure were then maintained while replenishing hydrogen. After 3 hours, hydrogen absorption stopped.

反応終了後、オートクレーブを冷却し反応生成液から触
媒を戸別した。p液を濃縮してこの濃縮残分を150g
の水で溶解して、アルカリで田5,5に調整すると7エ
ニルアラニンの白色結晶が析出した。収率はフェニルセ
リンに対して93モル%であった。
After the reaction was completed, the autoclave was cooled and the catalyst was separated from the reaction product liquid. Concentrate the p liquid and collect 150g of this concentrated residue.
When the solution was dissolved in water and adjusted to a concentration of 5.5 with alkali, white crystals of 7-enylalanine were precipitated. The yield was 93 mol% based on phenylserine.

又、水−エタノールがら再結後の薄層クロマトグラフィ
ーで分析したところ1スポツトであった。
Further, analysis by thin layer chromatography after reconsolidation from water-ethanol revealed 1 spot.

実施例3 60%過塩素酸の代りに濃硫酸を4.91を使用した以
外は実施例1と同一の実験を行なった。フェニルアラニ
ンの収率は85モル%であった。
Example 3 The same experiment as Example 1 was conducted except that 4.91% of concentrated sulfuric acid was used instead of 60% perchloric acid. The yield of phenylalanine was 85 mol%.

実施例4 80%ギ酸の代りに氷酢酸を使用した以外は実施例2と
同一の実験を行なった。フェニルアラニンの収率は88
モル%であった。
Example 4 The same experiment as Example 2 was conducted except that glacial acetic acid was used instead of 80% formic acid. The yield of phenylalanine is 88
It was mol%.

実施例5 60%過塩素酸の代りに強酸性陽イオン交換樹脂(アン
バーライトIR−120、東京有機化学社品スルホン酸
型強酸性)1)0gを使用した以外は、実施例2と同一
の実験を行なった。フェニルアラニンの収率は83モル
%であった。
Example 5 Same as Example 2 except that 0 g of strongly acidic cation exchange resin (Amberlite IR-120, Tokyo Organic Chemical Co., Ltd. sulfonic acid type strong acid) 1) was used instead of 60% perchloric acid. We conducted an experiment. The yield of phenylalanine was 83 mol%.

実施例6 攪拌機並びに温度計を備えた内容積200m1のフラス
コKp−ヒドロキシフェニルセリン1.451.80%
ギ酸1ooy、60%過塩素酸185gを供給した。反
応容器内を窒素置換後、0.5%パラジウム/炭素0.
36.9を供給した。フラスコ内を再度窒素置換、更に
水素置換した後、水素を供給しながら昇温し反応温度9
0°Cに維持して反応を行なった。5時間後に水素の吸
収が停止した。
Example 6 Flask with internal volume of 200 ml equipped with stirrer and thermometer Kp-hydroxyphenylserine 1.451.80%
100 g of formic acid and 185 g of 60% perchloric acid were supplied. After purging the inside of the reaction vessel with nitrogen, 0.5% palladium/carbon 0.5% was added.
36.9 was supplied. After replacing the inside of the flask with nitrogen again and then with hydrogen, the temperature was raised while supplying hydrogen until the reaction temperature reached 9.
The reaction was maintained at 0°C. Hydrogen absorption stopped after 5 hours.

反応終了後、熱時に反応生成液から触媒を戸別した。p
液を濃縮してこの濃縮残分を、300gの水で溶解して
、アルカリで…を5.5に調整するとチロシンの白色結
晶が析出した。収率はp−ヒドロキシフェニルセリンに
対して88モル%であった。
After the reaction was completed, the catalyst was removed from the reaction product liquid while still hot. p
The liquid was concentrated, the concentrated residue was dissolved in 300 g of water, and the concentration was adjusted to 5.5 with an alkali to precipitate white crystals of tyrosine. The yield was 88 mol% based on p-hydroxyphenylserine.

又、水−エタノールから再結後の薄層クロマトグラフィ
ーで分析したところ1スポツトであった。
Further, analysis by thin layer chromatography after reconsolidation from water-ethanol revealed 1 spot.

比較例1 60%過塩素酸を使用せずに実施例2と同一の実験を行
なった。濃縮残分の水溶液をアルカリで田を5,5に調
整した液を薄層クロマトグラフィーで分析したところフ
ェニルアラニンは全く認められなかった。
Comparative Example 1 The same experiment as Example 2 was conducted without using 60% perchloric acid. When an aqueous solution of the concentrated residue was adjusted to a concentration of 5.5 with an alkali and analyzed by thin layer chromatography, no phenylalanine was detected.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法にあっては上記のように、工業的に容
易に製造されるフェニルセリン系アミノ酸またはそのエ
ステル誘導体を貴金属触媒の存在下で接触水素還元する
ことにより、高収率、安価、かつ容易にフェニルアラニ
ン系アミノ酸を製造することができる。フェニルアラニ
ン系アミノ酸は医薬用アミノ酸輸液、総合アミノ酸製剤
の成分、低カロリー甘味料アスパルテームの原料、医薬
品の中間体として重要であり、その安価な工業的製法を
提供することにおける本発明の意義は太き(・。
As described above, in the production method of the present invention, phenylserine amino acids or their ester derivatives, which are easily produced industrially, are subjected to catalytic hydrogen reduction in the presence of a noble metal catalyst, resulting in high yield, low cost, Moreover, phenylalanine amino acids can be easily produced. Phenylalanine amino acids are important as components of pharmaceutical amino acid infusions, comprehensive amino acid preparations, raw materials for the low-calorie sweetener aspartame, and intermediates for pharmaceuticals, and the present invention has great significance in providing an inexpensive industrial method for producing them. (・.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式( I ): ▲数式、化学式、表等があります▼( I ) 〔式( I )中R^1、R^2、R^3、R^4、R^
5はそれぞれ同一または異なって水素原子、水酸基また
はアルコキシ基であり、R^6は水素原子またはアルキ
ル基を表わす。〕 で示されるフェニルセリン系アミノ酸またはそのエステ
ルを、貴金属触媒の存在下で接触水素還元することを特
徴とする式(II): ▲数式、化学式、表等があります▼(II) 〔式(II)中R^1、R^2、R^3、R^4、R^5
、R^6は前記と同じ意味を表わす。〕 で示されるフェニルアラニン系アミノ酸又はそのエステ
ルの製造方法。
(1) General formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In formula (I), R^1, R^2, R^3, R^4, R^
5 are the same or different and each represents a hydrogen atom, a hydroxyl group or an alkoxy group, and R^6 represents a hydrogen atom or an alkyl group. ] Formula (II) characterized by catalytic hydrogen reduction of the phenylserine amino acid or its ester represented by the formula (II) in the presence of a noble metal catalyst: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ) Medium R^1, R^2, R^3, R^4, R^5
, R^6 represent the same meaning as above. ] A method for producing a phenylalanine amino acid or an ester thereof.
(2)鉱酸の存在下で行うことを特徴とする特許請求の
範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, which is carried out in the presence of a mineral acid.
(3)陽イオン交換樹脂の存在下で行なうことを特徴と
する特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, which is carried out in the presence of a cation exchange resin.
JP59246179A 1984-11-22 1984-11-22 Production of phenylalanine-analogue aminoacid and its ester Granted JPS61126056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246179A JPS61126056A (en) 1984-11-22 1984-11-22 Production of phenylalanine-analogue aminoacid and its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246179A JPS61126056A (en) 1984-11-22 1984-11-22 Production of phenylalanine-analogue aminoacid and its ester

Publications (2)

Publication Number Publication Date
JPS61126056A true JPS61126056A (en) 1986-06-13
JPH0237912B2 JPH0237912B2 (en) 1990-08-28

Family

ID=17144689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246179A Granted JPS61126056A (en) 1984-11-22 1984-11-22 Production of phenylalanine-analogue aminoacid and its ester

Country Status (1)

Country Link
JP (1) JPS61126056A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687405U (en) * 1993-05-27 1994-12-22 丸井産業株式会社 Greave sheet material for concrete paving surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185751A (en) * 1984-03-05 1985-09-21 Mitsui Toatsu Chem Inc Production of phenylalanine or its acyl derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185751A (en) * 1984-03-05 1985-09-21 Mitsui Toatsu Chem Inc Production of phenylalanine or its acyl derivative

Also Published As

Publication number Publication date
JPH0237912B2 (en) 1990-08-28

Similar Documents

Publication Publication Date Title
JPS60152499A (en) Manufacture of alpha-l-aspartyl-l- phenylalninemethyl ester
CA1231719A (en) Synthesis of phenyl alanine derivatives
JPS61126056A (en) Production of phenylalanine-analogue aminoacid and its ester
EP0007738A1 (en) Process for producing 2-amino-4-acylaminophenyl ether and 2,4-diaminophenyl ether
JPS61172877A (en) Production of (6r)-tetrahydro-l-biopterin
JPH1045692A (en) Production of cyclohexylamino acids
EP0376184B1 (en) Process for preparing DL-serine and process for separation and purification of the same
JPH01233255A (en) Cyclopentenone derivative and production thereof
TWI310031B (en)
Bensalah et al. Solvent-and catalyst-free transamidations of unprotected glycosyl carboxamides
JPH0331245A (en) Production of hydroxy-n-acyl-alpha-amino acid derivative
JPS6122081A (en) Preparation of hydantoin compound
CN109896966B (en) Preparation method of N, N-dibutyl m-aminophenol
JPH02235850A (en) Production of hydroxy-n-acyl-alpha-amino acid derivative, oligomer and lactone thereof
JPS5967252A (en) Preparation of optically active beta-aminoisobutyric acid and its derivative
JPS58188862A (en) Preparation of n-acylcarnosine
JP4168416B2 (en) Process for producing optically active aminopentanenitrile
Huffman et al. Glutamic Acid: Chemical Syntheses and Resolutions.
JPH02129158A (en) Optically active glycine derivative and preparation thereof
JP2995448B2 (en) Method for producing (6S) -tetrahydro-D-neopterin
JPS61140552A (en) Production of n2-formyllysine
JPS58124750A (en) Preparation of n-acyl-l-carnosine
WO1984001574A1 (en) Process for preparing physiologically active substance fa-5859 and its derivatives
JPS60185751A (en) Production of phenylalanine or its acyl derivative
JPH04356446A (en) Production of carbonic acid ester