JPS61125496A - Device for preventing scale formation - Google Patents

Device for preventing scale formation

Info

Publication number
JPS61125496A
JPS61125496A JP24595784A JP24595784A JPS61125496A JP S61125496 A JPS61125496 A JP S61125496A JP 24595784 A JP24595784 A JP 24595784A JP 24595784 A JP24595784 A JP 24595784A JP S61125496 A JPS61125496 A JP S61125496A
Authority
JP
Japan
Prior art keywords
chamber
reaction chamber
members
components
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24595784A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Hosaka
保坂 信義
Tasuku Shimizu
翼 清水
Kenzo Mikata
三ケ田 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24595784A priority Critical patent/JPS61125496A/en
Publication of JPS61125496A publication Critical patent/JPS61125496A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain water having the quality of extremely low power to form scale in a water flow system after this device by bringing mineral components such as Ca<2+> ions in an aq. soln. to contact with catalytically activated collision members to deposit positively said components then separating and capturing the deposited components. CONSTITUTION:The catalytically activated through-shaped collision members 11 are provided in the magnetic field of a magnet 10 in a reaction chamber 3 and the mineral components such as Ca<2+> and Mg<2+> in the aq. soln. are brought into collision against the members 11 to accelerate the deposition of the components thereof. Shielding members 13 having many fine pores on the surface are provided in a separating chamber 14 formed of a thermoplastic resin in succession to said chamber and the deposits formed in the chamber 3 are stuck to the fine pores of the members 13, by which the deposits are separated. The fine particles of said deposits are captured in a dust collecting chamber 5. The quality of the water having the extremely low power to form scale is thus obtd. in the water flow system beyond this device.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スケール防止装置に係り、熱交換器一般、温
水器、洗浄機械、半導体などの製造過程の一次洗浄系な
どに供せられる水溶液中から。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a scale prevention device, which is suitable for use in aqueous solutions used in primary cleaning systems in the manufacturing process of heat exchangers in general, water heaters, cleaning machines, semiconductors, etc. from.

Ca2+、Mg2+などのミネラル成分を取除き、スケ
ールの生成能のない水溶液を得るのに好適なスケール防
止装置に関するものである。
The present invention relates to a scale prevention device suitable for removing mineral components such as Ca2+ and Mg2+ and obtaining an aqueous solution that does not have the ability to generate scale.

〔発明の背景〕[Background of the invention]

海水を冷却水として利用している機械装置、例えば、発
電所の復水器用熱交換器、海水淡水化プラントの冷却用
熱交換器をはじめとし、太陽熱利用システム、温水器、
飲料自動販売機、洗浄機械等においては、熱効率の向上
、洗浄効率の向上が計られており、利用水質はより軟質
化が要求されている。
Mechanical equipment that uses seawater as cooling water, such as power plant condenser heat exchangers, seawater desalination plant cooling heat exchangers, solar thermal utilization systems, water heaters,
BACKGROUND ART In beverage vending machines, washing machines, etc., efforts are being made to improve thermal efficiency and cleaning efficiency, and there is a demand for softer water quality.

従来、市販されているスケール防止器には、磁場を適用
したものがある。
Conventionally, some commercially available scale preventers use a magnetic field.

しかし、これらのスケール防止器は、流水を単に磁界中
を通過させているのみのため、スケール付着傾向を強め
るものであった。
However, these scale preventers simply pass running water through a magnetic field, which increases the tendency for scale to adhere.

なお1本発明のスケール防止装置に関する先行技術情報
として特記すべきものはない。
Note that there is nothing particularly noteworthy as prior art information regarding the scale prevention device of the present invention.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術に鑑みなされたもので、流水
からのスケール生成要因であるC a”。
The present invention has been made in view of the above-mentioned prior art, and is based on Ca'', which is a factor in the formation of scale from running water.

M g3 +イオンなどのミネラル成分を積極的に析出
させて、これを分離捕集し、本装置以降の流水系には、
いちじるしくスケール生成能の低い水質を得ることの可
能なスケール防止装置の提供を、その目的としている。
Mineral components such as M g3 + ions are actively precipitated and separated and collected, and the flowing water system after this device is
The purpose of this invention is to provide a scale prevention device that can obtain water quality with significantly low scale-forming ability.

〔発明の概要〕[Summary of the invention]

本発明に係るスケール防止装置の構成は、水溶液中に含
まれるCa2+、Mg2+イオンなどのミネラル成分を
取除き、スケール生成能のない水質を得るスケール防止
装置であって、磁石の磁界中に触媒活性化した樋状の衝
突部材を設け、前記水溶液中のCa”、Mg’+イオン
などのミネラル成分を当該衝突部材に衝突させてこれら
の化合物析出を促進させる反応室と、熱可塑性樹脂で形
成されたその室内に1表面に多数の微細孔を有する遮蔽
部材を設けて、前記反応室で生成した析出物を前記遮断
部材の微細孔に付着させて析出物を分離する分離室と、
前記析出物の微粒子を捕集する集塵室とを備えたもので
ある。
The structure of the scale prevention device according to the present invention is a scale prevention device that removes mineral components such as Ca2+ and Mg2+ ions contained in an aqueous solution and obtains water quality free of scale generation ability. A reaction chamber is provided with a trough-like collision member in which the mineral components such as Ca'' and Mg'+ ions in the aqueous solution collide with the collision member to promote precipitation of these compounds; a separation chamber in which a shielding member having a large number of micropores on one surface is provided in the chamber, and the precipitates generated in the reaction chamber are attached to the micropores of the blocking member to separate the precipitates;
It is equipped with a dust collection chamber that collects fine particles of the precipitate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第5図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 5.

ここに、第1図は、本発明の一実施例に係るスケール防
止装置の構成図で、(a)は各構成要素別の断面図で、
一点鎖線は各要素を組立てたとき共通の中心となる中心
線を示す、(b)は、その各構成要素を組立てた装置の
縦断面図(小さい図のため断面を示すハツチングを省略
した)、(c)は、(b)の上面図、(d)は、(b)
の下面図。
Here, FIG. 1 is a block diagram of a scale prevention device according to an embodiment of the present invention, and (a) is a sectional view of each component,
The dashed-dotted line indicates the center line that is the common center when each element is assembled, (b) is a longitudinal cross-sectional view of the device in which each component is assembled (the hatching indicating the cross section is omitted because the figure is small), (c) is a top view of (b), (d) is a top view of (b)
bottom view.

第2図は、第1図の反応室の詳細断面図、第3図は、第
1図の分離室の詳細図で、(a)は縦断面図、(b)は
、(a)の上面図、(C)は、(a)の下面図、第4図
は1分離室に付着した炭酸カルシウムを示す顕微鏡写真
、第5図は、第1図のスケール防止装置内を通過する流
体の移動経路を示す全体図である。
Figure 2 is a detailed sectional view of the reaction chamber shown in Figure 1, and Figure 3 is a detailed view of the separation chamber shown in Figure 1, where (a) is a longitudinal sectional view, and (b) is a top view of (a). Fig. 4 is a micrograph showing calcium carbonate adhering to the separation chamber 1; Fig. 5 is a movement of fluid passing through the scale prevention device of Fig. 1. It is an overall diagram showing a route.

第1図において、1は取水配管、2は鋼製のケーシング
、3は、流水中に溶解しているC ai +。
In FIG. 1, 1 is a water intake pipe, 2 is a steel casing, and 3 is C ai + dissolved in flowing water.

M g@ +イオンなどのミネラル成分を化合物として
析出を促進させる反応室、4は、固体析出物を流体から
分離する分離室、5は、これら固体析出物を捕集する集
塵室、6は排水管、7はケーシングカバー、8はシール
リング、9は袋ナツトである。
4 is a separation chamber that separates solid precipitates from a fluid; 5 is a dust collection chamber that collects these solid precipitates; 6 is a A drain pipe, 7 a casing cover, 8 a seal ring, and 9 a cap nut.

本スケール防止装置は、取水配管1を固定したケーシン
グ2に、反応室3、分離室4を第1図(b)に示すよう
に挿入して組立て1次いで集塵室5と排水管6が固定さ
れているケーシングカバー7を、シールリング8を介し
て袋ナツト9によリケーシング2のねじ部2aに締結す
るものである。
This scale prevention device is assembled by inserting a reaction chamber 3 and a separation chamber 4 into a casing 2 to which a water intake pipe 1 is fixed as shown in FIG. The casing cover 7 is fastened to the threaded portion 2a of the recasing 2 with a cap nut 9 via a seal ring 8.

次に、これらの主要構成要素を各回ごとに、その構成と
機能を説明する。
Next, the configuration and functions of these main components will be explained each time.

第1図に示した反応室3は、具体的には第2図に示すよ
うに構成されている。
The reaction chamber 3 shown in FIG. 1 is specifically constructed as shown in FIG.

第2図において、10は、円弧状断面を有する永久磁石
、10aは、磁石の磁界に係る磁路(N極とS極との空
間)、11は、白い矢印に示すように挿入され前記磁路
10a内に垂直方向に設置される樋状の衝突部材に係る
銅製の樋である。
In FIG. 2, 10 is a permanent magnet having an arcuate cross section, 10a is a magnetic path related to the magnetic field of the magnet (the space between the N pole and the S pole), and 11 is the magnetic field inserted as shown by the white arrow. This is a copper trough for a trough-like impact member installed vertically in the channel 10a.

永久磁石10は、防食のために樹脂製の磁石用ケーシン
グ12に収納されている。
The permanent magnet 10 is housed in a resin magnet casing 12 for corrosion protection.

ここで、樋11は、あらかじめ塩化第一錫塩酸溶液に浸
漬して表面にSn1イオンを吸着させたのち、その表面
にさらに塩化パラジウム塩酸溶液を接触させて、下記の
(1)式に示す酸化還元反応により、その表面に活性パ
ラジウムPd’ を生成させて触媒活性化させておく。
Here, the gutter 11 is immersed in advance in a stannous chloride hydrochloric acid solution to adsorb Sn1 ions on the surface, and then further brought into contact with a palladium chloride hydrochloric acid solution to form an oxidation filter shown in the following formula (1). Through the reduction reaction, active palladium Pd' is generated on the surface to activate the catalyst.

S n”+P d”−+S n’″+Pd’  ・ (
1)また、樋11は1本体をカソード分極させることに
より、その表面では、下記の(2)式に示すようなカソ
ード反応が継続しているためにアルカリ性を示している
S n"+P d"-+S n'"+Pd' ・(
1) Furthermore, by cathodically polarizing the main body of the gutter 11, the surface thereof exhibits alkalinity because a cathodic reaction as shown in equation (2) below continues.

2 Ht O+ O== + 4 a→40H・(2)
反応室3の樋11中を水溶液が流通する際、流体中のミ
ネラル成分は電荷を有するために永久磁石10の磁束に
より下記(3)式に示すような力Fを受ける。
2 Ht O+ O== + 4 a→40H・(2)
When the aqueous solution flows through the gutter 11 of the reaction chamber 3, the mineral components in the fluid are electrically charged and are therefore subjected to a force F as shown in the following equation (3) due to the magnetic flux of the permanent magnet 10.

F=e−v−BSinθ     ・・・・・・(3)
ここに、e:電荷を有するイオン v:eの移動速度 B:磁束密度 この方Fは、イオンを樋11の壁面に衝突させるように
作用するため、樋11の表面にミネラル成分イオンの濃
縮が起り、これらのミネラルイオンは飽和濃度へと濃度
が高められる。
F=e−v−BSinθ (3)
Here, e: Charged ions v: Moving speed of e B: Magnetic flux density This direction F acts to cause the ions to collide with the wall of the gutter 11, so that concentration of mineral component ions occurs on the surface of the gutter 11. , these mineral ions are concentrated to a saturating concentration.

次に、樋11の表面は触媒活性であるため、これら濃縮
されたイオンの炭酸塩や水酸化物の生成反応が促進され
る。
Next, since the surface of the gutter 11 is catalytically active, the reaction of these concentrated ions to produce carbonates and hydroxides is promoted.

例えば、炭酸カルシウムの生成促進作用について説明す
れば、まず、Ca”イオンが樋11表面に濃縮されると
同時に、水溶液中の炭酸も樋11の表面に濃縮される。
For example, to explain the effect of promoting the production of calcium carbonate, first, Ca'' ions are concentrated on the surface of the gutter 11, and at the same time, carbonic acid in the aqueous solution is also concentrated on the surface of the gutter 11.

この場合、樋11表面付近はアルカリ性であるため、炭
酸の存在形態はco、”−である確率が非常に大きい、
そのため、@11の表面では、その触媒作用を起点とし
て下記の(4)式に示すように、炭酸カルシウムの生成
が促進される。
In this case, since the area near the surface of the gutter 11 is alkaline, there is a very high probability that the existing form of carbonic acid is co.
Therefore, on the surface of @11, the production of calcium carbonate is promoted starting from the catalytic action as shown in the following equation (4).

Ca”+CO,”−→CaC0,・=  (4)次に、
これら析出物を流体から分離するための分離室4につい
て説明する。
Ca”+CO,”−→CaC0,・= (4) Next,
The separation chamber 4 for separating these precipitates from the fluid will be explained.

分離室4の具体的形状を第3図に示す。The specific shape of the separation chamber 4 is shown in FIG.

分離室4は、ABS樹脂に代表されるアクリロニトリル
、ブタジェン、スチレンの3成分からなる熱可塑性樹脂
を素材としている。
The separation chamber 4 is made of a thermoplastic resin made of three components, typified by ABS resin, acrylonitrile, butadiene, and styrene.

分離室4は第3図に示す形状に加工形成されたのち、そ
の内表面にa硫酸を接触させるとABS樹脂中に分散し
ているブタジェンが選択的に酸化溶融し、その表面に、
深さ1〜5μm程度の微細な腐食孔が多数生成される。
After the separation chamber 4 is formed into the shape shown in FIG. 3, when its inner surface is brought into contact with a-sulfuric acid, the butadiene dispersed in the ABS resin is selectively oxidized and melted, and the surface contains:
Many fine corrosion holes with a depth of about 1 to 5 μm are generated.

この多数の微細孔は、析出物が固定されやすく。Precipitates are easily fixed in this large number of micropores.

一度、析出物が固定されると、次の析出物がその部分に
堆積する傾向が示されることから、この表面に多数の微
細孔を生成させた分離室の形状は、流体から析出物を分
離するのに著しい効果がある。
Once a precipitate is fixed, the next precipitate tends to accumulate in that area, so the shape of the separation chamber with many micropores on its surface separates the precipitate from the fluid. It has a remarkable effect on

第4図は、炭酸カルシウム(Aragonita )の
固定の状態を示す顕微鏡写真である。
FIG. 4 is a micrograph showing the state of fixation of calcium carbonate (Aragonita).

分離室4には、上層と下層にそれぞれ遮蔽部材に係る3
枚の遮蔽板13が設置されており1反応室3から流出し
た流体は、遮蔽板13に案内され、第3図に白い矢印お
よび実線矢印で示す移動経路に従って分離室4内を流れ
る。
In the separation chamber 4, there are 3 shielding members in the upper layer and the lower layer, respectively.
A plurality of shielding plates 13 are installed, and the fluid flowing out from one reaction chamber 3 is guided by the shielding plates 13 and flows within the separation chamber 4 along the movement path shown by white arrows and solid line arrows in FIG.

この間に、各遮蔽板13の角隅部や、遮蔽板13の表面
の多数の微細孔に析出物の微粒子を付着堆積させる。
During this time, fine particles of precipitate are deposited on the corners of each shielding plate 13 and in a large number of micropores on the surface of the shielding plate 13 .

また、第3図のA部は集塵室5に接しており、析出物の
微粒子は、この部分から集塵室5に沈澱する。
Further, a portion A in FIG. 3 is in contact with the dust collection chamber 5, and the fine particles of precipitate are deposited in the dust collection chamber 5 from this portion.

本実施例のスケール防止装置を流れる流体の移動経路の
全体図を第5図に示す。図中、第1図と同一符号は同一
部分であるから、説明を省略する。
FIG. 5 shows an overall view of the movement path of the fluid flowing through the scale prevention device of this embodiment. In the figure, the same reference numerals as in FIG. 1 indicate the same parts, so the explanation will be omitted.

流体の流れは白い矢印、実線および実線矢印に示すとお
りである。
Fluid flow is as shown by white arrows, solid lines and solid arrows.

すなわち、取水配管1から流入する流水は1反応室3の
永久磁石10の磁路中にある4i111の壁に衝突しつ
つ化合物析出を促進させ1次いで分離室4に入り、遮蔽
板13表面の微細孔に析出物を付着させ流水から分離す
る。
That is, the flowing water flowing in from the water intake pipe 1 collides with the wall of 4i111 in the magnetic path of the permanent magnet 10 of the first reaction chamber 3, promotes the precipitation of compounds, and then enters the separation chamber 4 to remove the fine particles on the surface of the shielding plate 13. Precipitates adhere to the pores and are separated from the flowing water.

この析出物の微粒子は、熱塵室5に沈澱し堆積するが、
これらの堆積物はドレイン14を開放して取除くことが
可能である。
Fine particles of this precipitate precipitate and accumulate in the hot dust chamber 5,
These deposits can be removed by opening the drain 14.

また、反応室3は、ケーシング2と電気的に接続されて
おり、反応室3自体のカソード分極はケーシング2に接
続された犠牲陽極15によりおこなわれる。
Further, the reaction chamber 3 is electrically connected to the casing 2, and the cathode polarization of the reaction chamber 3 itself is performed by the sacrificial anode 15 connected to the casing 2.

次に、本実施例のスケール防止装置を第6図に示す伝熱
性能測定装置に組込み、スケール防止効果を実験的に確
かめた。
Next, the scale prevention device of this example was incorporated into the heat transfer performance measuring device shown in FIG. 6, and the scale prevention effect was experimentally verified.

ここに、第6図は、伝熱性能測定装置の系統図。Here, FIG. 6 is a system diagram of the heat transfer performance measuring device.

第7図は、第6図の装置による実験結果を示す熱通過率
の線図である。
FIG. 7 is a diagram of heat transfer rate showing experimental results using the apparatus shown in FIG.

本実験の供試水は、塩化カルシウムCCaCQ2・2H
,O)  と水素炭酸ナトリウム(NaHCO□)を用
いて、Mアルカリ度: 600CaCO,PPRI、カ
ルシウム硬度: 630CaCO,ppm、PH中8.
1 となした水溶液を冷却水とした。
The test water for this experiment was calcium chloride CCaCQ2.2H
, O) and sodium hydrogen carbonate (NaHCO□), M alkalinity: 600 CaCO, PPRI, calcium hardness: 630 CaCO, ppm, 8.
1 was used as cooling water.

この供試水を、第6図に示す2系統の熱交換装置に一定
時間循環させて、その場合の伝熱管の伝熱性能に及ぼす
影響を調べた。
This sample water was circulated for a certain period of time through the two systems of heat exchange equipment shown in FIG. 6, and the effect on the heat transfer performance of the heat transfer tubes was investigated.

第6図の伝熱性能測定装置において、上記供試水は2系
統の熱交換システムのタンク16−1゜16−2に貯水
され、これを各系統それぞれのポンプ17−1.17−
2、バルブ18−1.18−2を介して冷却ユニット1
9を通過させ、各系統の熱交換器20−1.20−2に
導入したのち。
In the heat transfer performance measuring device shown in FIG.
2. Cooling unit 1 via valve 18-1.18-2
9 and introduced into heat exchangers 20-1 and 20-2 of each system.

ふたたびタンク16−1.16−2に帰環させる。Return to tank 16-1 and 16-2 again.

その流れは2点鎖線の矢印に示すとおりである。The flow is as shown by the two-dot chain arrow.

ここで、一方の熱交換器20−2に導通する管路に本実
施例のスケール防止装置21を配設した。
Here, the scale prevention device 21 of this embodiment was arranged in a pipe line leading to one heat exchanger 20-2.

なお冷却ユニット19は、@度調節装置22により温度
調節される。
Note that the temperature of the cooling unit 19 is controlled by a temperature control device 22 .

一方、熱交換器20−1.20−2を流通する温水も冷
却水の場合と同様、温度調節されている温水タンク23
から2系統のシステムそれぞれのポンプ24−1.24
−2.バルブ25−1゜25−2を介して3点lIi線
矢印に示す対向流として前記の熱交換器20−1.20
−2に導入されてのち、タンク23に帰環する。
On the other hand, the hot water flowing through the heat exchangers 20-1 and 20-2 is also temperature-controlled in the hot water tank 23, as in the case of cooling water.
Pumps for each of the two systems from 24-1.24
-2. The aforementioned heat exchanger 20-1.20 flows through the valves 25-1 and 25-2 as a counterflow indicated by the three point lIi line arrows.
-2 and then returned to tank 23.

伝熱性能を評価するために、熱交換器20−1゜20−
2の冷却水、温水の各出入口の温度を温度センサー26
により測定した。
In order to evaluate heat transfer performance, heat exchanger 20-1゜20-
Temperature sensor 26 detects the temperature of each inlet and outlet of cooling water and hot water.
It was measured by

実験の結果を第7図に示す。The results of the experiment are shown in FIG.

第7図は、横軸に供試水循環の時間(h)をとり、縦軸
に熱交換器の伝熱管の熱通過率(kcajl/−・℃・
h)をとり、熱通過率の線は、実線がスケール防止装置
21を配設した系統、一点鎖線がスケール防止装置21
を配設しない系統の結果を示したものである。
In Fig. 7, the horizontal axis shows the time (h) of sample water circulation, and the vertical axis shows the heat transfer rate of the heat exchanger tube (kcajl/-・℃・
h), and the heat transfer rate line is the solid line for the system equipped with the scale prevention device 21, and the dashed line for the system equipped with the scale prevention device 21.
This figure shows the results for a system without .

第7図から明らかなように、本実施例のスケール防止装
置21を配設しない場合は、熱交換器20−1の伝熱管
の冷却表面にスケールの付着が著しく、その熱通過率は
一点鎖線のように漸次低下した。
As is clear from FIG. 7, when the scale prevention device 21 of the present embodiment is not provided, scale adhesion is significant on the cooling surface of the heat exchanger tubes of the heat exchanger 20-1, and the heat transfer rate is indicated by the dashed-dotted line. It gradually decreased as follows.

一方、スケール防止装置21を配設した経路においては
、熱交換器20−2の伝熱管の冷却表面にほとんどスケ
ールの付着がなく、第7図の実線のように熱通過率の低
下は認められなかった。
On the other hand, in the route where the scale prevention device 21 was installed, there was almost no scale adhesion to the cooling surface of the heat exchanger tubes of the heat exchanger 20-2, and no decrease in the heat transfer rate was observed as shown by the solid line in FIG. There wasn't.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、流水からのスケー
ル生成要因であるCa2+、Mg2+イオンなどのミネ
ラル成分を積極的に析出させて、これを分離捕集し1本
装置以降の流水系には、著しくスケール生成能の低い水
質を得ることの可能なスケール防止装置を提供すること
ができる。
As described above, according to the present invention, mineral components such as Ca2+ and Mg2+ ions, which are factors for scale formation, are actively precipitated from flowing water, and these are separated and collected to be added to the flowing water system after one device. can provide a scale prevention device capable of obtaining water quality with significantly low scale-forming ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係るスケール防止装置の
構成図で、(a)は各構成要素別の断面図、(b)は、
その各構成要素を組立てた装置の縦断面図、(c)は、
(b)の上面図、(d)は。 (b)の下面図、第2図は、第1図の反応室の詳細断面
図、第3図は、第1図の分離室の詳細図で、(a)は縦
断面図、(b)は、(a)の上面図。 (c)は、(a)の下面図、第4図は、分離室に付着し
た炭酸カルシウムを示す顕微鏡写真、第5図は、第1図
のスケール防止装置内を通過する流体の移動経路を示す
全体図、第6図は、伝熱性能測定装置の系統図、第7図
は、第6図の装置による実験結果 を示す熱通過率の線図である。 1・・・取水配管、2・・・ケーシング、3・・・反応
室、4・・・分離室、5・・・集塵室、6・・・排水管
、10・・・永久磁石、10a・・・磁路、11・・・
樋、13・・・遮蔽板。 15・・・犠牲陽極。
FIG. 1 is a block diagram of a scale prevention device according to an embodiment of the present invention, in which (a) is a sectional view of each component, and (b) is a
A vertical cross-sectional view of the device with its components assembled, (c)
(b) top view, (d). (b) is a bottom view, FIG. 2 is a detailed sectional view of the reaction chamber in FIG. 1, FIG. 3 is a detailed view of the separation chamber in FIG. 1, (a) is a longitudinal sectional view, and (b) is a top view of (a). (c) is a bottom view of (a), Figure 4 is a micrograph showing calcium carbonate adhering to the separation chamber, and Figure 5 shows the movement path of fluid passing through the scale prevention device in Figure 1. 6 is a system diagram of the heat transfer performance measuring device, and FIG. 7 is a diagram of heat transfer rate showing experimental results using the device of FIG. 6. 1... Water intake pipe, 2... Casing, 3... Reaction chamber, 4... Separation chamber, 5... Dust collection chamber, 6... Drain pipe, 10... Permanent magnet, 10a ...Magnetic path, 11...
Gutter, 13... Shielding board. 15...Sacrificial anode.

Claims (1)

【特許請求の範囲】 1、水溶液中に含まれるCa^2^+、Mg^2^+イ
オンなどのミネラル成分を取除き、スケール生成能のな
い水質を得るスケール防止装置であって、磁石の磁界中
に触媒活性化した樋状の衝突部材を設け、前記水溶液中
のCa^2^+、Mg^2^+イオンなどのミネラル成
分を当該衝突部材に衝突させてこれらの化合物析出を促
進させる反応室と、熱可塑性樹脂で形成されたその室内
に、表面に多数の微細孔を有する遮蔽部材を設けて、前
記反応室で生成した析出物を前記遮断部材の微細孔に付
着させて析出物を分離する分離室と、前記析出物の微粒
子を捕集する集塵室とを備えたことを特徴とするスケー
ル防止装置。 2、特許請求の範囲第1項記載のものにおいて、反応室
の触媒活性化した衝突部材を、当該反応室を包囲するケ
ーシングに接触した犠牲陽極を介してカソード分極を保
持するようにしたものであるスケール防止装置。
[Claims] 1. A scale prevention device that removes mineral components such as Ca^2^+ and Mg^2^+ ions contained in an aqueous solution and obtains water quality free of scale generation ability, which A catalytically activated trough-like collision member is provided in the magnetic field, and mineral components such as Ca^2^+ and Mg^2^+ ions in the aqueous solution collide with the collision member to promote precipitation of these compounds. A reaction chamber and a shielding member having a large number of micropores on its surface are provided in the chamber made of thermoplastic resin, and the precipitates generated in the reaction chamber are allowed to adhere to the micropores of the shielding member. 1. A scale prevention device comprising: a separation chamber that separates the precipitates; and a dust collection chamber that collects the fine particles of the precipitate. 2. In the product described in claim 1, the cathode polarization of the catalytically activated collision member of the reaction chamber is maintained through a sacrificial anode that is in contact with a casing surrounding the reaction chamber. An anti-scaling device.
JP24595784A 1984-11-22 1984-11-22 Device for preventing scale formation Pending JPS61125496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24595784A JPS61125496A (en) 1984-11-22 1984-11-22 Device for preventing scale formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24595784A JPS61125496A (en) 1984-11-22 1984-11-22 Device for preventing scale formation

Publications (1)

Publication Number Publication Date
JPS61125496A true JPS61125496A (en) 1986-06-13

Family

ID=17141361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24595784A Pending JPS61125496A (en) 1984-11-22 1984-11-22 Device for preventing scale formation

Country Status (1)

Country Link
JP (1) JPS61125496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8221112B2 (en) 2005-04-12 2012-07-17 Abbott Cardiovascular Systems, Inc. Method for retaining a vascular stent on a catheter

Similar Documents

Publication Publication Date Title
TW201840485A (en) Water treatment and desalination
Kansara et al. Wastewater treatment by ion exchange method: a review of past and recent researches
US6871014B2 (en) Water treatment system and water heater with cathodic protection and method
JPS61125496A (en) Device for preventing scale formation
CN209397043U (en) A kind of industrial circulating water dirt purification device
CA2963529A1 (en) Electrolytic water softener
US3418214A (en) Integral make-up deaerator for flash evaporator
JP2016501716A (en) Water treatment apparatus and water treatment method by substitution mainly using fluctuating electric field
CN206173053U (en) Combine electrochemistry of cation permselective membrane to remove hardness and disinfect water treatment facilities
CN102030419A (en) Automatic scale separator
CN108609748A (en) Ion film electrodeposition device and deposition method for recirculated cooling water sofening treatment
CN202030588U (en) Frequency conversion descaling instrument
CN203625137U (en) Cooling circulating water treatment system
JP2001129593A (en) Water treatment material, water treatment method and its device
CN210595362U (en) System for freezing concentration treatment magnesium method desulfurization waste water
CN219117297U (en) Water quality softening system for circulating water of submerged arc furnace
CN109231600A (en) A kind of industrial circulating water dirt purification device and its descaling method
CN216890334U (en) Descaling equipment for industrial circulating cooling water
CN2368836Y (en) High performance electrostatic water treating apparatus
CN218145931U (en) Direct contact type evaporator for landfill leachate membrane concentrated solution
RU37085U1 (en) ELECTROCHEMICAL WATER TREATMENT MACHINE
SU1740322A1 (en) Method for process water treatment in closed-circuit water systems
JP2002361288A (en) Scale preventing method for cooling water system
JP3989059B2 (en) Waste water treatment equipment containing phosphate ions
JP2003260495A (en) Method for preventing adhesion of scale