JPS6090940A - Air-fuel ratio controlling apparatus - Google Patents

Air-fuel ratio controlling apparatus

Info

Publication number
JPS6090940A
JPS6090940A JP20024383A JP20024383A JPS6090940A JP S6090940 A JPS6090940 A JP S6090940A JP 20024383 A JP20024383 A JP 20024383A JP 20024383 A JP20024383 A JP 20024383A JP S6090940 A JPS6090940 A JP S6090940A
Authority
JP
Japan
Prior art keywords
air
temperature
fuel ratio
exhaust temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20024383A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20024383A priority Critical patent/JPS6090940A/en
Publication of JPS6090940A publication Critical patent/JPS6090940A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine

Abstract

PURPOSE:To raise the accuracy of air-fuel ratio control, by determining a target exhaust temperature on the basis of the intake temperature and the conditions of engine operation, and feed-back controlling the air-fuel ratio to keep the exhaust temperature of an engine at said target exhaust temperature. CONSTITUTION:In operation of an engine, a target base exhaust temperature TEMH is determined from the air-flow rate QA and the engine speed N in a taget-value determining means 21, and then a target exhaust temperature TEM is obtained by correcting the target base exhaust temperature TEMH on the basis of the cooling-water temperature TW and the intake temperature TA representing the conditions of engine operation. Thereafter, comparison is made between the target exhaust temperature TEM and the actual exhaust temperature TE in a comparing means 22, and a base pulse width TPO is calculated in a base pulse width calculating means 23 on the basis of the air-flow rate QA and the engine speed N. Further, a required pulse width TI is obtained by correcting the base pulse width TPO by use of a correction factor or the like that is determined by a correction factor determining means 25 according to the result of the above comparing means 22 and a control zone judging means 24 which judges whether fuel supply is interrupted.

Description

【発明の詳細な説明】 (技術分野) 本発明は機関の空燃比制御装置、特に、空燃比と排気温
度との相関関係を利用した空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an air-fuel ratio control device for an engine, and particularly to an air-fuel ratio control device that utilizes the correlation between the air-fuel ratio and the exhaust gas temperature.

(従来技術) 機関の吸入混合気の空燃比を精度よく制御する装置とし
ては、例えばr E CCS技術解説書・L系エンジン
」 (昭和54年6月日産自動車株式会社発行)に記載
されたものが知られている。この空燃比制御装置は、機
関の運転状態に基づいて演算した燃料供給量を理論空燃
比における排気中の酸素濃度を検出する酸素センサの出
力に基づいて補正して機関の吸入混合気の空燃比を理論
空燃比に制御している。
(Prior art) An example of a device that accurately controls the air-fuel ratio of the intake air-fuel mixture of an engine is the one described in "R E CCS Technical Manual - L Series Engine" (published by Nissan Motor Co., Ltd., June 1970). It has been known. This air-fuel ratio control device corrects the fuel supply amount calculated based on the operating state of the engine based on the output of an oxygen sensor that detects the oxygen concentration in the exhaust gas at the stoichiometric air-fuel ratio to adjust the air-fuel ratio of the engine intake mixture. is controlled to the stoichiometric air-fuel ratio.

しかしながら、このような空燃比制御装置にあっては、
理論空燃比にしか制御できず、近時要望されているリー
ン空燃比制御を行うことができない。
However, in such an air-fuel ratio control device,
The air-fuel ratio can only be controlled to the stoichiometric air-fuel ratio, and the lean air-fuel ratio control that has been desired in recent years cannot be performed.

そこで、本出願人は、先に、空燃比と排気温度との相関
関係を利用した空燃比制御装置(特開昭58−9863
7号公報参4)を提案した。この空燃比制御装置は、排
気温度と空燃比の相関関係をあらかじめめて各運転状態
(機関回転数と負4!Jで表示)での、制御目標排気温
度を記憶し、機関回転数と負荷に基づいてこの目標υ1
気温度を読み出して、実際に検出した排気温度と比較し
、この検出排気温度が目標排気温度となるように空燃比
をフィードバック制御している。
Therefore, the present applicant has previously developed an air-fuel ratio control device (Japanese Patent Laid-Open No. 58-9863) that uses the correlation between the air-fuel ratio and the exhaust temperature.
We proposed Publication No. 7 (see 4). This air-fuel ratio control device stores the correlation between exhaust temperature and air-fuel ratio in advance and stores the control target exhaust temperature in each operating state (indicated by the engine speed and negative 4!J), and stores the correlation between the engine speed and the load. This goal υ1 based on
The air temperature is read out and compared with the actually detected exhaust gas temperature, and the air-fuel ratio is feedback-controlled so that the detected exhaust gas temperature becomes the target exhaust temperature.

しかしながら、この空燃比制御装置にあっては、機関回
転数と負荷に基づいて目標排気温度を設定していたため
、吸気温度の変化の影響を受けて排気温度が変動し、空
燃比を正確に制御することができなくなるおそれがあっ
た。
However, since this air-fuel ratio control device sets the target exhaust temperature based on engine speed and load, the exhaust temperature fluctuates due to the influence of changes in intake air temperature, and the air-fuel ratio cannot be controlled accurately. There was a risk that they would not be able to do so.

(発明の目的) そこで、本発明は、機関の運転状態と吸気温度に基づい
て目標排気温度を設定し、機関排気温度がこの目標排気
温度となるように空燃比をフィードバック制御すること
により、空燃比制御の精度を向上させることを目的とし
ている。
(Purpose of the Invention) Therefore, the present invention sets a target exhaust temperature based on the operating state of the engine and the intake air temperature, and performs feedback control of the air-fuel ratio so that the engine exhaust temperature becomes the target exhaust temperature. The purpose is to improve the accuracy of fuel ratio control.

(発明の構成) 本発明の構成を第1図に示す全体構成図に基づいて説明
する。
(Configuration of the Invention) The configuration of the present invention will be explained based on the overall configuration diagram shown in FIG.

機関の運転状態を運転状態検出手段により検出し、機関
の吸気(吸入空気および吸入空気と燃料の混合気の両方
を含む)の温度を吸気温度検出手段7により検出する。
The operating state of the engine is detected by the operating state detection means, and the temperature of the intake air of the engine (including both intake air and a mixture of intake air and fuel) is detected by the intake air temperature detection means 7.

そして、目標値設定手段21は機関の運転状態と吸気温
度Gこ基づいて空燃比と相関関係のある目標排気温度を
設定する。機関の排気温度を排気温度検出手段9により
検出し、この機関排気温度が前記目標排気温度となるよ
うに空燃比制御手段27により空燃比を制御する。
Then, the target value setting means 21 sets a target exhaust temperature that has a correlation with the air-fuel ratio based on the operating state of the engine and the intake air temperature G. The exhaust temperature of the engine is detected by the exhaust temperature detection means 9, and the air-fuel ratio is controlled by the air-fuel ratio control means 27 so that the engine exhaust temperature becomes the target exhaust temperature.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2〜10図は本発明の一実施例を示す図であり、本実
施例は減速、停車特等機関駆動力を必要としないときに
ツユエルカ・ノドを行う車両に適用したものである。
2 to 10 are diagrams showing one embodiment of the present invention, and this embodiment is applied to a vehicle that performs a swerving motion when no special engine driving force is required for deceleration or stopping.

まず、構成を説明すると、第2図において、Iは機関本
体であり、機関本体1には吸気管2および排気管3が取
り付けられている。吸気管2にはエアクリ−す4、エア
フロメータ5、スロットルバルブ6、吸気温度センサ7
および燃料噴射弁8が取りイ」けられており、エアクリ
ーナ4により清浄にされた空気が吸気管2を通して機関
本体1に導入される。エアフロメータ5ばスロットルバ
ルブ6により規制される空気流IQAを検出し、吸気温
度センサ(吸気温度検出手段)7は機関に導入される空
気(吸気)の温度′I″八を検出している。この吸入空
気には燃料噴射弁乏3より燃料が噴射され、機関本体1
には混合気として導入される。なお、上記吸気温度セン
サ7は燃料噴射弁8より下流側に設けて混合気の温度を
検出するようにしてもよく、この場合吸気は混合気を表
示する。一方、排気管3には排気の温度′I″I3を検
出する排気温度センサ(排気温度検出手段)9が取り付
けられている。そして、1);1記空気流IQAを表示
するエアフロメータ5の出力信号、吸気温度TAを表示
する吸気温度センサ7の出力信号および排気温度TEを
表示する排気温度センサ9の出力信号はコントロールユ
ニットIOに入力されており、コントロールユニット1
0には、さらに、図示しない機関回転数Nを検出する回
転数検出手段からの信号、機関1の冷却水の温度TWを
検出する水温検出手段からの信号、バッテリの端子電圧
VBを表示する信号等が入力されている。
First, to explain the configuration, in FIG. 2, I is an engine body, and an intake pipe 2 and an exhaust pipe 3 are attached to the engine body 1. The intake pipe 2 includes an air cleaner 4, an air flow meter 5, a throttle valve 6, and an intake air temperature sensor 7.
A fuel injection valve 8 is also removed, and air purified by an air cleaner 4 is introduced into the engine body 1 through the intake pipe 2. The air flow meter 5 detects the air flow IQA regulated by the throttle valve 6, and the intake air temperature sensor (intake air temperature detection means) 7 detects the temperature 'I'' of the air (intake air) introduced into the engine. Fuel is injected into this intake air from the fuel injection valve 3, and the engine body 1
is introduced as a mixture. Note that the intake air temperature sensor 7 may be provided downstream of the fuel injection valve 8 to detect the temperature of the air-fuel mixture, and in this case, the intake air indicates the air-fuel mixture. On the other hand, an exhaust temperature sensor (exhaust temperature detection means) 9 is attached to the exhaust pipe 3 to detect the exhaust temperature 'I''I3. The output signal, the output signal of the intake air temperature sensor 7 that displays the intake air temperature TA, and the output signal of the exhaust temperature sensor 9 that displays the exhaust air temperature TE are input to the control unit IO,
0 further includes a signal from a rotation speed detection means (not shown) for detecting the engine rotation speed N, a signal from a water temperature detection means for detecting the temperature TW of the cooling water of the engine 1, and a signal indicating the terminal voltage VB of the battery. etc. are entered.

コントロールユニット】0は、A/D変換器[11、I
10ポート12、M P U 13、ROM14、RA
M15および噴射弁駆動回路16より構成されており、
コントロールユニット10に入力される信号のうちアナ
ログ値で入力される信号はA/D変換器11でディジタ
ル値に変換されてI10ボート12に入力され、ディジ
タル値で入力される信号は直接I10ボート12に入力
される。MPU]3ばROMI4に書き込まれたプログ
ラムに従ってI10ボート12より必要とされる外部デ
ータを取り込んだり、また、RA M 15との間でデ
−タの授受を行ったりしながら演算処理し、必要に応し
て処理したデータをI10ボート12へ出力する。噴射
弁駆動回路16は110ボート12からの信号に基づい
て燃料噴射弁8を駆動する駆動パルスを出力する。
Control unit] 0 is an A/D converter [11, I
10 ports 12, MPU 13, ROM 14, RA
Consists of M15 and injection valve drive circuit 16,
Of the signals input to the control unit 10, signals input as analog values are converted to digital values by the A/D converter 11 and input to the I10 port 12, and signals input as digital values are directly input to the I10 port 12. is input. MPU] 3 reads necessary external data from the I10 board 12 according to the program written in the ROMI 4, performs arithmetic processing while exchanging data with the RAM 15, and executes calculations as necessary. The correspondingly processed data is output to the I10 boat 12. The injection valve drive circuit 16 outputs a drive pulse for driving the fuel injection valve 8 based on the signal from the 110 boat 12.

次に、作用を説明する。Next, the effect will be explained.

空燃比A/Fは、一定の運転状態において、機関の運転
安定性S、燃料消費率Fおよび排気温度TEと密接な相
関関係を有している。第3図は、吸入空気量、機関回転
数を共に一定とした場合のこれらの関係を示すものであ
る。したがって、排気温度′1゛Eと空燃比A / ]
”のあらゆる運転lIk、態での相関関係を明確化して
おくことにより、排気温度゛1゛Eに基づいて空燃比A
/Fを制御することができる。
The air-fuel ratio A/F has a close correlation with the engine operating stability S, fuel consumption rate F, and exhaust temperature TE in a certain operating state. FIG. 3 shows these relationships when both the intake air amount and engine speed are constant. Therefore, exhaust temperature '1゛E and air-fuel ratio A/ ]
By clarifying the correlation in all operating conditions, the air-fuel ratio A can be determined based on the exhaust temperature ゛1゛E.
/F can be controlled.

そこで、本実施例は、運転状態を表示するファクタとし
て、主に、吸気流量QAと機関回転数Nを採用している
うそして、コントロールユニソNOにおい”ζ運転状態
に基づいて目標排気温度′I″IEMを設定し、実際の
排気温度TEが目標排気温度TEMとなるように燃料噴
射量を制御して空燃比A/Fを制御している。
Therefore, in this embodiment, the intake air flow rate QA and the engine speed N are mainly used as factors for displaying the operating state. I''IEM is set, and the air-fuel ratio A/F is controlled by controlling the fuel injection amount so that the actual exhaust gas temperature TE becomes the target exhaust gas temperature TEM.

このコントロールユニ・ノドIOでの信号処理をブロッ
ク図で表示すると、第4図に示すようになる。すなわち
、まず、目標値設定手段2Iにおいて空気流量QAと機
関回転数Nにより基本目標排気温度TEMHをめ、この
基本目標排気温度TEMHに機関の運転状態を表示する
冷却水温度TWおよび吸気温度TAに基づく補正を行っ
て目標排気温度TEMを設定する。次に、この目標排気
温度TEMを比較手段22で実際の機関の排気温度TE
と比較する。一方、基本パルス幅演算手段23において
、空気流量QAと機関回転数Nに基づいて燃料噴射弁8
に出力する駆動パルスの基本パルス幅”I’ P Oを
めており、制御ゾーン判別手段24はフユエルカソト中
であるか、またはアクセル全開補正中であるかを判別し
ている。そして、補正係数設定手段5は前記比較手段2
2や制御ゾーン判別手段Uの結果に基づいて、排気温度
TEに基づくフィードハック制御を行うか否かを決定す
るとともに、補正係数を演算しており、パルス幅演算手
段26において前記基本パルス幅TPOに前記補正係数
設定手段25により設定された補正係数を乗算するとと
もに冷却水温その他に基づく補正係数を乗算し、さらに
燃料噴射弁8の作動遅れ分を補正して駆動パルスのパル
ス幅TIを演算している。
A block diagram of signal processing in this control unit node IO is shown in FIG. 4. That is, first, the target value setting means 2I determines the basic target exhaust temperature TEMH based on the air flow rate QA and the engine speed N, and then sets the basic target exhaust temperature TEMH to the cooling water temperature TW and the intake air temperature TA, which indicate the operating state of the engine. The target exhaust gas temperature TEM is set by performing correction based on the above. Next, this target exhaust temperature TEM is compared with the actual engine exhaust temperature TE by the comparing means 22.
Compare with. On the other hand, in the basic pulse width calculation means 23, the fuel injection valve 8 is
The basic pulse width "I'PO" of the drive pulse outputted to the control zone is set, and the control zone determining means 24 determines whether the fuel is being adjusted or the accelerator is being fully opened.Then, the correction coefficient is set. Means 5 is the comparison means 2
2 and the results of the control zone discriminating means U, it is determined whether or not to perform feed hack control based on the exhaust gas temperature TE, and a correction coefficient is calculated. is multiplied by the correction coefficient set by the correction coefficient setting means 25 and also by a correction coefficient based on the cooling water temperature, etc., and further corrects the operation delay of the fuel injection valve 8 to calculate the pulse width TI of the drive pulse. ing.

なお、上記比較手段22、基本パルス演算手段詔、制御
ゾーン判別手段24、補正係数設定手段茄およびパルス
幅演算手段26は機関の排気温度TEが目標排気温度T
EMとなるように空燃比を制御する空3B比制御手段2
7を構成している。
The comparison means 22, the basic pulse calculation means, the control zone discrimination means 24, the correction coefficient setting means and the pulse width calculation means 26 are used to determine whether the engine exhaust temperature TE is the target exhaust temperature T.
Air-3B ratio control means 2 that controls the air-fuel ratio to achieve EM
7.

次に、コントロールユニット10内における信号処理を
、第5〜7図に示すフローチャートに基づいてさらに詳
しく説明する。
Next, the signal processing within the control unit 10 will be explained in more detail based on the flowcharts shown in FIGS. 5-7.

まず、目標排気温度TEMの設定および目標排気温度T
 E Mと検出した機関の排気温度TEとの比較につい
て第5図のフローチャートに基づいて説明する。なお、
第5図中S、〜Sobはフローの各ステップを示し、こ
のフローは、例えば10 (ms)毎に流れる。ステッ
プS1において、I10ポート12に入力された空気流
量QA、[1関回転数N、吸気温度TA、冷却水温TW
および排気温度TEを読み取り、ステップS2において
空気流量QAと機関回転数Nに基づいてあらかじめRO
M 14に記憶されているデータテーブルより基本目標
排気温度TEMHをルックアップする。このデータテー
ブルは、例えば第3図に制御目標空燃比として掲げてい
るA/F=22との場合、第8図のように与えられ、運
転状態として空気流MQAと機関回転数Nが与えられる
と、基本目標排気温度TEMHが決定される。この基本
目標排気温度TEMHは該運転状態における制御目標空
燃比(第3図、第8図の場合A/F=22)に対応して
いる。次に、ステップS3において、吸気温度TAに基
づいて、あらかじめROM14に記憶されているデータ
テーブルより吸気温度補正係数KTAをルックアップし
、ステップS’4において、次式により第2基本目標排
気温度TEMH2を演算する。
First, the setting of the target exhaust temperature TEM and the target exhaust temperature T
A comparison between EM and the detected engine exhaust temperature TE will be explained based on the flowchart of FIG. In addition,
In FIG. 5, S and ~Sob indicate each step of the flow, and this flow runs, for example, every 10 (ms). In step S1, the air flow rate QA input to the I10 port 12, [1 rotation speed N, intake air temperature TA, cooling water temperature TW]
and exhaust temperature TE, and in step S2, RO is adjusted in advance based on the air flow rate QA and engine speed N.
Look up the basic target exhaust temperature TEMH from the data table stored in M14. For example, in the case of A/F = 22 listed as the control target air-fuel ratio in Fig. 3, this data table is given as shown in Fig. 8, and the air flow MQA and engine speed N are given as the operating state. Then, the basic target exhaust gas temperature TEMH is determined. This basic target exhaust gas temperature TEMH corresponds to the control target air-fuel ratio (A/F=22 in the case of FIGS. 3 and 8) in the operating state. Next, in step S3, an intake air temperature correction coefficient KTA is looked up from a data table stored in advance in the ROM 14 based on the intake air temperature TA, and in step S'4, the second basic target exhaust temperature TEMH2 is determined by the following equation. Calculate.

TEMH2=−1”EMHxKTA−−−−−(11こ
の吸気温度補正係数KTAを与えるデータテーブルは、
例えば、第9図のように与えられ、ρ気温度補正係数K
 i’ Aは、約40℃を境として、吸気温度TAが低
くなるに従って小さくなり、高くなるに従って大きくな
る。したがって、第2基本目標排気温度TEMH2は、
吸気温度TAが約40℃より低くなるほど基本目標排気
温度i” E M Hより低い温度に設定され、吸気温
度TAが約40℃より高くなるほど基本目標排気温度”
FE M IIより高い温度に設定される。そして、第
2基本目標排気温度T E M H2が基本目標排気温
度i’ E M IIより低い温度に設定されるという
ことは、第3図の空燃比A / Fと排気温度TEとの
関係より明らかなように、制御目標空燃比よりリーン側
の空燃比における排気温度TEに設定されることを意味
し、第2基本目標排気温度T IJ M H2が基本目
標排気温度TEMHより高い温度に設定されるというこ
とは、制御目標空燃比よりリンチ側の空燃比における排
気温度TEに設定さることを意味する。その結果、吸気
温度TAの変化による直接の排気温度の変化分、および
吸気温度TAの変化により吸気密度が変化して空燃比A
/Fが変化することにより生ずる排気温度TEの変化分
を補正することができる。次に、ステップs5において
、冷却水温TWに基づいて、あらかじめROM14に記
憶されているデータテーブルより水温補正係数KTWを
ルックアップし、ステップs9において、次式により目
標排気温度TEMを演算する。
TEMH2=-1"EMHxKTA----(11) The data table that gives this intake air temperature correction coefficient KTA is
For example, given as shown in Fig. 9, ρ temperature correction coefficient K
i' A becomes smaller as the intake air temperature TA becomes lower, and becomes larger as the intake air temperature TA becomes higher, starting from about 40°C. Therefore, the second basic target exhaust temperature TEMH2 is:
The lower the intake air temperature TA is than about 40°C, the basic target exhaust temperature i" E M H is set lower, and the higher the intake air temperature TA is above about 40°C, the basic target exhaust temperature is set.
The temperature is set higher than FE M II. The fact that the second basic target exhaust temperature T E M H2 is set lower than the basic target exhaust temperature i' E M II is based on the relationship between the air-fuel ratio A/F and the exhaust temperature TE in Fig. 3. As is clear, this means that the exhaust temperature TE is set at an air-fuel ratio on the leaner side than the control target air-fuel ratio, and the second basic target exhaust temperature T IJ M H2 is set to a temperature higher than the basic target exhaust temperature TEMH. This means that the exhaust temperature TE is set at an air-fuel ratio that is closer to the control target air-fuel ratio. As a result, the intake air density changes due to the direct change in the exhaust temperature due to the change in the intake air temperature TA, and the air-fuel ratio A
It is possible to correct the change in exhaust gas temperature TE caused by the change in /F. Next, in step s5, a water temperature correction coefficient KTW is looked up from a data table stored in advance in the ROM 14 based on the cooling water temperature TW, and in step s9, a target exhaust gas temperature TEM is calculated using the following equation.

TEM=TEMH2xKTW甲川(2用この水温補正係
数KTWを与えるデータテーブルは、例えば、第1θ図
のように与えられ、水温補正係数KTWは冷却水の温度
変化による排気温度TEの変化を補正して空燃比A/F
を一定にするものであり、約80 ”Cを境として、冷
却水温TWが低(なるに従って小さくなり、高くなるに
従って大きくなる。しかし、水温補正係数KTWは、冷
却水温TWが約90 ℃よりも高くなり、また、40℃
よりも低くなると、空燃比A/Fを一定に補正する値(
第1O図中破線で表示)よりも大きい116に設定され
る。したがって、冷却水/1!!]゛Wが低いときゃ、
高いときには空燃比A/Fが目標空燃LLよりもリンチ
側に制jα11され、機関の安定性が向上する。そして
、ステップS・?において、目標排気温度TEMと排気
温度センサ9により検出した機関の排気温度TEとを1
し較し、′T’ E M < i” Eのときには、ス
テy 7” S8でフラッグi” F L Gを立て(
TFLG=1)、1’ E M≧i’ Eのときには、
ステップs9でフラッグT I=’ L Gを下げる(
TFLG=0)、7ラソグ′f’ F L Gは7J1
4気温度TEが目標排気温度TEMより高いが、低いが
、ずなゎち、空燃比Al1パが目標空燃比よりリンチが
、リーンがを表示するフラッグであり、T F L G
 = 1は空燃比A/Fが目標空燃Ll;よりリンチで
あることを表示し、”「F L G = 0はリーンで
あることを表示している。
TEM = TEMH2 Fuel ratio A/F
When the cooling water temperature TW is lower than approximately 80"C, it becomes smaller, and as it becomes higher, it becomes larger. However, the water temperature correction coefficient KTW The temperature will rise to 40℃ again.
When the value becomes lower than , the value for correcting the air-fuel ratio A/F to a constant value (
(indicated by a broken line in FIG. 1O) is set to 116, which is larger than Therefore, cooling water/1! ! ] ゛When W is low,
When it is high, the air-fuel ratio A/F is controlled to the Lynch side compared to the target air-fuel ratio LL, and the stability of the engine is improved. And step S? , the target exhaust temperature TEM and the engine exhaust temperature TE detected by the exhaust temperature sensor 9 are set to 1.
By comparison, when 'T' E M <i" E, the flag i" F L G is set at stay 7" S8 (
TFLG=1), 1' E M≧i' When E,
In step s9, lower the flag T I='L G (
TFLG=0), 7 rasog 'f' F L G is 7J1
4 Air temperature TE is higher than the target exhaust temperature TEM, but it is lower than the target exhaust temperature TEM.
= 1 indicates that the air-fuel ratio A/F is leaner than the target air-fuel ratio Ll, and "F L G = 0 indicates that it is leaner."

以上により目標排気温度TBMの設定および目標排気温
度T E Mと実際の排気温度TEの比較の作用は完了
するが、本実施例では、さらに、実際の排気温度TEが
急激に低下する場合の許容値を設定し、排気温度TEの
急低下がこの許容値の範囲内であるが否かを判別して後
の空燃比制御の方法を変えている。すなわち、第5図の
フローチャートのステップsxlにおいて、実際の排気
温度TEの変動許容値MDTBを機関回転数Nと吸気流
量QAに基づいて、゛あらがじめROM14に記憶され
ているデータテーブルからルックアップし、ステップS
itにおいて、排気温度TEの旧データを平滑化した値
(旧排気温度)TEOと今回の処理における排気温度T
Eとから排気温度の急低下の変化1DTEを次式により
演算する。
As described above, the setting of the target exhaust gas temperature TBM and the comparison of the target exhaust gas temperature TEM and the actual exhaust gas temperature TE are completed. A value is set, and it is determined whether or not the sudden drop in exhaust gas temperature TE is within this allowable value range, and the subsequent air-fuel ratio control method is changed. That is, in step sxl of the flowchart in FIG. 5, the allowable fluctuation value MDTB of the actual exhaust gas temperature TE is looked up from the data table previously stored in the ROM 14 based on the engine speed N and the intake air flow rate QA. up, step S
In it, the value obtained by smoothing the old data of exhaust gas temperature TE (old exhaust temperature) TEO and the exhaust temperature T in this process
From E, the change 1DTE of the sudden drop in exhaust gas temperature is calculated using the following equation.

DTE=TEO−TE〜−−−−−(31この排気温度
TEの急低下の変動許容値MDTEは、例えば、第3図
中斜線で表示するような値として与えられる。そして、
ステップ312において、変化量DTEを変動許容値M
DTEと比較し、DTE>MDTEのとき、ステンプS
+3において排温急変フラッグDTFLGを立てて(1
)TFI−G=1) 、l)’rEs;Ml)TEのと
き、ステップS14.において排温急変フラッグD1”
 FL Gを1・げて(DTFLG=0)ステップS、
!−に進む。排温急変フラッグD T F L Gは排
気温度1゛Eが急激に低下したか否かを表示するフラッ
グであり、DTFLG=1は排気温度1゛Eが急激に低
下したことを表示し、DTFLC;−〇は排気温度1゛
Eの低下が急激でないことを表示している。ステップS
tqにおいて、前記ステップS11で変化1] D T
Eを演算するのに使用する11」排気温度T E Oを
前回処理時の旧排気温度TEOBと現排気温度TF、に
基づいて次式に従って演算し、ステップS/6において
演算結果の旧排気温度T fE OをRAM15に記憶
する。
DTE=TEO-TE~------(31) The permissible fluctuation value MDTE for the sudden drop in exhaust gas temperature TE is given, for example, as a value indicated by diagonal lines in FIG. 3.And,
In step 312, the amount of change DTE is set to the allowable variation value M
Compared with DTE, when DTE>MDTE, temp S
Set the exhaust temperature sudden change flag DTFLG at +3 (1
) TFI-G=1), l)'rEs; Ml) TE, step S14. Sudden exhaust temperature change flag D1”
Increase FL G by 1 (DTFLG=0) Step S,
! Proceed to −. The exhaust temperature sudden change flag DTFLG is a flag that indicates whether or not the exhaust temperature 1゛E has suddenly decreased. DTFLG=1 indicates that the exhaust temperature 1゛E has suddenly decreased, and DTFLC ;-〇 indicates that the exhaust temperature decrease of 1゛E is not rapid. Step S
tq, change 1 in step S11] D T
The exhaust gas temperature TE used to calculate E is calculated according to the following formula based on the old exhaust temperature TEOB from the previous process and the current exhaust temperature TF. Store T fE O in the RAM 15.

T IE O= ”f’ IE OB x 7 / 8
 + T E x l / 8−−−−−− (41ず
なわら、この11」排気温度TEOは前回処理時の旧排
気温度1’ IE 0 +3と現在の排気温度TEから
重みづけ演算したものである。
T I E O = “f’ IE O B x 7 / 8
+ T Ex l / 8 ------- (41 Zunawara, this 11'' exhaust temperature TEO is a weighted calculation from the old exhaust temperature 1' IE 0 +3 from the previous processing and the current exhaust temperature TE) It is.

次に、niJ記目標排気温度T E Mと実際の排気温
度TEとの比較結果および変動許容値MDTEと変化量
DTEとの比較結果に基づいて空燃比をフィードハック
制御する補正係数の演算処理について、第6図のフロー
チャートに基づいて説明する。このフローは機関lのク
ランク軸1回転当り1回行われ、第6図中2S□〜2S
7はフローの各ステップを示している。まず、ステップ
2S、において、フィードハック制御を行うか否かを、
フユエルカソト中であるか否か、またはアクセル全開補
正係数KMRが正であるか否かにより判別し、フユエル
カソト中またはKMR>0のときは、機関lへの燃料の
供給が遮断されているか、アクセル全開時の燃料増量補
正が行われているときであるので、フィードパンク制御
を行わない。フユエルカソトが行われておらず、かつK
MR=0のときは、フィードハック制御を行うために次
のステップ2S2に進む。ステップ2S2において、排
温急変フラッグDTFLGが立っている(DTFLG−
1)か否か(DTFLG=0)を判別し、1) T F
L G = 1のときは、ステップ233において、1
)11回処理時のフィードバンク補正係数に!・” B
 13に基づいて次式によりフィードハック?di止係
数KF13を演算してステップ2S3に進み、D T 
F L G = Oのときにはそのままステップ2S4
に進む。
Next, we will discuss the calculation process of the correction coefficient for feed-hack control of the air-fuel ratio based on the comparison results between the target exhaust temperature TEM and the actual exhaust temperature TE and the comparison results between the permissible fluctuation value MDTE and the amount of change DTE. , will be explained based on the flowchart of FIG. This flow is performed once per crankshaft rotation of the engine l, and is performed from 2S□ to 2S in Fig. 6.
7 shows each step of the flow. First, in step 2S, it is determined whether or not to perform feed hack control.
This is determined by whether or not the fuel is in a full-open position, or whether the accelerator is fully opened. Since this is the time when fuel increase correction is being performed, feed puncture control is not performed. Fuercasoto has not been performed and K
When MR=0, the process advances to the next step 2S2 to perform feedhack control. In step 2S2, the exhaust temperature sudden change flag DTFLG is set (DTFLG-
1) or not (DTFLG=0), and 1) T F
When L G = 1, in step 233, 1
) to the feedbank correction coefficient for 11th processing!・"B
Feed hack by the following formula based on 13? Calculate the di stop coefficient KF13 and proceed to step 2S3, D T
When F L G = O, proceed directly to step 2S4.
Proceed to.

KFB=KFBB+KFBBxO,03・−−−(5)
ずなわら、機関1の排気温度TEが変動許容値M I)
 ”r E以」二に急激に低下したときには、フィー1
−ハック袖正係数KFBを前回処理時のフィードハック
補正係数KFBBの3%大きな値に設定して空燃比をリ
ンチにし、機関の安定性を向」二さセている。すなわち
2S−4において、フラッグi” F L Gが立って
いるか否かTFLG=1を1′り別し、T FL G 
= 1のときには、ステップ2S、において、弐〇に従
ってフィードバンク補正係数K F Bを演算し、1”
 F L G = Oのときには、ステップ23Gにお
いて、式(7)に従ってフィードバック補正係数KFB
を演算してステップ2S・?に進む。
KFB=KFBB+KFBBxO, 03・---(5)
Of course, the exhaust gas temperature TE of engine 1 is within the permissible fluctuation value M I)
“r E” When the fee decreases rapidly to 2, the fee 1
- The hack feed correction coefficient KFB is set to a value 3% larger than the feed hack correction coefficient KFBB used in the previous processing to lynch the air-fuel ratio and improve the stability of the engine. That is, in 2S-4, it is determined whether the flag i"FLG is set or not by 1', and TFLG=1 is determined by 1'.
When = 1, in step 2S, the feed bank correction coefficient K F B is calculated according to 2〇, and 1''
When F L G = O, in step 23G, the feedback correction coefficient KFB is calculated according to equation (7).
Calculate Step 2S・? Proceed to.

KFB=KFBB−KFBBXO,0L−−−−−(6
1KFB=KFBB+KFBBxO,01−−−−17
1すなわち、TFLG=1のときは実際の排気温度TE
が目標排気温度TEMより高いとき(空燃比A/Fが目
標空燃比よりリンチであるとき)であるから、フィード
バンク補正係数KFBを前回処理時のフィードバンク補
正係数KFEBより1%小さい値に設定して空燃比A/
Fをリーン側に補正し、TFLG=0のときは逆に空燃
比A/Fが目標空燃比よりリーンであるときであるから
、フィードバック補正係数KFBを前回処理時のフィー
ドバンク補正係数KFEBより1%大きい値に設定して
空燃比A/Fをリンチ側に補正する。そして、ステップ
2S。
KFB=KFBB-KFBBXO,0L----(6
1KFB=KFBB+KFBBxO, 01---17
1, that is, when TFLG=1, the actual exhaust gas temperature TE
is higher than the target exhaust temperature TEM (when the air-fuel ratio A/F is closer to the target air-fuel ratio), so the feed bank correction coefficient KFB is set to a value 1% smaller than the feed bank correction coefficient KFEB used in the previous process. and air fuel ratio A/
F is corrected to the lean side, and when TFLG=0, conversely, it means that the air-fuel ratio A/F is leaner than the target air-fuel ratio, so the feedback correction coefficient KFB is set to 1 from the feed bank correction coefficient KFEB used in the previous process. % to a larger value to correct the air-fuel ratio A/F to the Lynch side. And step 2S.

において、上記処理において演算したフィードバック補
正係数KFBをRAMl5に記憶し、フィードバンク補
正係数KFBの演算処理が終了する。
In this step, the feedback correction coefficient KFB calculated in the above process is stored in RAM15, and the calculation process of the feedbank correction coefficient KFB is completed.

次に、前述の処理により演算されたフィードハック補正
係数KFBに基づいて燃料噴射弁8に出力される駆動パ
ルスのパルス幅の演算処理について、第7図のフローチ
ャートに基づいて説明する。このフローは、例えば10
m5毎に行われ、第7図中33.〜3SGはフローの各
ステップを示している。まず、ステップ33.において
は、基本パルス幅TPOを空気流量QAと機関回転数N
とから次式により演算してステップ3S2に進む。
Next, the calculation process of the pulse width of the drive pulse output to the fuel injection valve 8 based on the feed hack correction coefficient KFB calculated by the above-described process will be explained based on the flowchart of FIG. 7. This flow is, for example, 10
It is performed every m5, and 33. in Figure 7. ~3SG indicates each step of the flow. First, step 33. , the basic pulse width TPO is the air flow rate QA and the engine speed N
From this, calculation is performed using the following equation, and the process proceeds to step 3S2.

T P O= K (QA/N) −[81但し、I(
:定数 ステップ3S2においてアクセル全開補正係数KMRが
正であるか否かを判別し、KMR=0のときには、ステ
ップ3S3で第2基本パルス幅T P O2を式(田で
演算した後ステップ3S−4で噴射パルス幅TPを式α
O)により演算し、KMR=1のときにはステップ3S
sにおいて式(11)により噴射パルス幅TPを演算し
てステップ33Qに進む。
T P O= K (QA/N) - [81 However, I(
: In constant step 3S2, it is determined whether the accelerator full-open correction coefficient KMR is positive or not. When KMR=0, in step 3S3, the second basic pulse width TPO2 is calculated using the formula (2), and then in step 3S-4 The injection pulse width TP is expressed by the formula α
O), and when KMR=1, step 3S
In step s, the injection pulse width TP is calculated using equation (11), and the process proceeds to step 33Q.

T P O2= T P Ox K F B −−−−
−(9)TP=TPO2XCOEF−−−−−QlTP
=TPOXCOEFX (KMR+1.0)−・−(1
1) 但し、C0EFは冷却水温に基づいて補正や始動補正等
の各種の補正を行う補正係数である。
T P O2= T P Ox K F B -----
-(9)TP=TPO2XCOEF---QlTP
=TPOXCOEFX (KMR+1.0)−・−(1
1) However, C0EF is a correction coefficient that performs various corrections such as correction and starting correction based on the cooling water temperature.

ずなわち、KMR=0のときは、アクセル全開補正を行
わないときであり、前述のフィードバンク補正係数KF
Bに基づいて空燃比A/Fが目標空燃比となるように噴
射パルス幅TPを演算している。KMR=1のときは、
アクセル全開補正により燃料噴射量を増量するときであ
り、アクセル全開補正係数KMHに基づいて空燃比A/
Fが目標空燃比よりリッチとなるように噴射パルス幅T
Pを演算している。そして、ステップ38Gにおいて、
次式に示すように、噴射パルス幅TPに電圧補正パルス
幅TSを加算してパルス幅TIをめる。
That is, when KMR=0, the full throttle correction is not performed, and the above-mentioned feed bank correction coefficient KF
The injection pulse width TP is calculated based on B so that the air-fuel ratio A/F becomes the target air-fuel ratio. When KMR=1,
This is when the fuel injection amount is increased by full throttle correction, and the air-fuel ratio A/F is adjusted based on the full throttle correction coefficient KMH.
The injection pulse width T is set so that F is richer than the target air-fuel ratio.
Calculating P. Then, in step 38G,
As shown in the following equation, the voltage correction pulse width TS is added to the injection pulse width TP to obtain the pulse width TI.

T I =T’P +TS−−−−− (12)この電
圧補正パルス幅TSは燃料噴射弁8の駆動パルスに対す
る作動遅れを補正するためのパルス幅であり、燃料噴射
弁8にかかるノ\・ノテリ電圧に基づいて設定される。
T I = T'P + TS ------- (12) This voltage correction pulse width TS is a pulse width for correcting the operation delay with respect to the drive pulse of the fuel injection valve 8, and the voltage applied to the fuel injection valve 8 is・Set based on note voltage.

すなわち、電圧補正パルス幅T”Sは駆動パルスに対す
る燃料噴射弁8の有効開弁時間が変化するのを補正する
ものであり、燃料噴射弁8は噴射パルス幅TPの時間だ
け燃料を吸気管2内に噴射する。
That is, the voltage correction pulse width T''S is used to correct changes in the effective valve opening time of the fuel injection valve 8 with respect to the drive pulse, and the fuel injection valve 8 injects fuel into the intake pipe 2 for a period of the injection pulse width TP. Inject inside.

このように、機関1の運転状態と吸気温度TAに基づい
て目標排気温度TEMを設定し、実際の排気温度TEが
この目標排気温度TEMより高いか、低いかにより空燃
比がリッチか、リーンかを判断して機関1に導入される
混合気の空燃比をフィードバンク制御することができる
ので、吸気温度TAの変動による影響を受けることなく
精度よく空燃比A/Fを目標空燃比に制御することがで
きる。爽な、排気温度TEが所定値M D TE以上に
急激に低下した場合には、空燃比A/Fをリッチ側に補
正することができるので、機関1の安定性を向上させる
ことができる。
In this way, the target exhaust temperature TEM is set based on the operating state of the engine 1 and the intake air temperature TA, and the air-fuel ratio is determined to be rich or lean depending on whether the actual exhaust gas temperature TE is higher or lower than the target exhaust temperature TEM. Since the air-fuel ratio of the air-fuel mixture introduced into the engine 1 can be controlled by feedbank by determining the air-fuel ratio, the air-fuel ratio A/F can be precisely controlled to the target air-fuel ratio without being affected by fluctuations in the intake air temperature TA. be able to. When the exhaust gas temperature TE suddenly drops to a predetermined value M D TE or more, the air-fuel ratio A/F can be corrected to the rich side, so the stability of the engine 1 can be improved.

(発明の効果〉 本発明によれば、目標排気温度を機関の運転状態と吸気
温度に基づいて設定し、吸気温度の排気温度に与える影
響を補正することができるので、空燃比を広範囲に亘っ
て精度よく目標空燃比に制御することができる。
(Effects of the Invention) According to the present invention, the target exhaust temperature can be set based on the operating state of the engine and the intake air temperature, and the influence of the intake air temperature on the exhaust temperature can be corrected, so the air-fuel ratio can be adjusted over a wide range. The air-fuel ratio can be precisely controlled to the target air-fuel ratio.

また、上記実施例においては、排気温度が急激に低下し
たときに、空燃比をリッチ空燃比に制御することができ
るので、機関の安定性を向上させることができる。
Further, in the above embodiment, when the exhaust gas temperature suddenly decreases, the air-fuel ratio can be controlled to a rich air-fuel ratio, so the stability of the engine can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図であり、第2〜10図は本
発明の空燃比制御装置の一実施例を示す図であり、第2
図はその全体概略図、第3図は、空燃比と機関運転安定
性、排気温度、燃料消費率との関係を示す図、第4図は
その作用を示すブロック図、第5.6.7図はその作用
を示すフローチャート、第8図はその機関回転数と空気
流量により与えられる目標排気温度の一例を示す図、第
9図は吸気温度と吸気温度補正係数との関係を示す図、
第10図は冷却水温と冷却水温補正係数との関係を示す
図である。 7−−−吸気温度検出手段、 9−−−排気温度検出手段、 21 1」標値設定手段、 27−−−−空燃比制御手段。 特許出願人 日産自動車株式会社 代理人弁理士 有我軍一部 第5図 S12 叩ヤDTFE)t’1DTE D丁じ≦、MD丁e S14 ClTl:1Le−=(7C+rFL%=I 
5135 7 丁eo−タ下eof3 ND
FIG. 1 is an overall configuration diagram of the present invention, and FIGS. 2 to 10 are diagrams showing one embodiment of the air-fuel ratio control device of the present invention.
The figure is an overall schematic diagram, Figure 3 is a diagram showing the relationship between air-fuel ratio, engine operation stability, exhaust temperature, and fuel consumption rate, Figure 4 is a block diagram showing its effect, and Figure 5.6.7 Figure 8 is a flowchart showing the effect, Figure 8 is a diagram showing an example of the target exhaust temperature given by the engine speed and air flow rate, Figure 9 is a diagram showing the relationship between intake air temperature and intake air temperature correction coefficient,
FIG. 10 is a diagram showing the relationship between cooling water temperature and cooling water temperature correction coefficient. 7---Intake air temperature detection means, 9---Exhaust temperature detection means, 211'' target value setting means, 27---Air-fuel ratio control means. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Arigagun Part 5 Figure 5 S12 Hitya DTFE) t'1DTE D-choji≦, MD-choe S14 ClTl:1Le-=(7C+rFL%=I
5135 7 eof3 ND

Claims (2)

【特許請求の範囲】[Claims] (1)機関の運転状態を検出する運転状態検出手段と、
機関の吸気温度を検出する吸気温度検出手段と、機関の
排気温度を検出する排気温度検出手段と、機関の運転状
態と吸気温度に基づいて目標排気温度を設定する目標値
設定手段と、機関のJJ[気温度が目標排気温度となる
ように空燃比を制御する空燃比制御手段と、を備えたこ
とを特徴とする空燃比制御装置。
(1) Operating state detection means for detecting the operating state of the engine;
an intake air temperature detection means for detecting the intake air temperature of the engine; an exhaust temperature detection means for detecting the exhaust gas temperature of the engine; a target value setting means for setting a target exhaust temperature based on the operating state of the engine and the intake air temperature; JJ[An air-fuel ratio control device characterized by comprising: an air-fuel ratio control means for controlling an air-fuel ratio so that the air temperature becomes a target exhaust gas temperature.
(2) 特許請求の範囲第1項記載の空燃比制御装置に
おいて、前記空燃比制御手段が、機関の排気温度の急低
下を許容する変動許容値を設定し、排気温度が該変動許
容値を超えて急低下すると、空燃比をリンチ側に制御す
ることを特徴とする空燃比制御装置。
(2) In the air-fuel ratio control device according to claim 1, the air-fuel ratio control means sets an allowable variation value that allows a sudden drop in exhaust gas temperature of the engine, and the exhaust temperature exceeds the allowable variation value. An air-fuel ratio control device that controls the air-fuel ratio to the Lynch side when the air-fuel ratio suddenly decreases.
JP20024383A 1983-10-25 1983-10-25 Air-fuel ratio controlling apparatus Pending JPS6090940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20024383A JPS6090940A (en) 1983-10-25 1983-10-25 Air-fuel ratio controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20024383A JPS6090940A (en) 1983-10-25 1983-10-25 Air-fuel ratio controlling apparatus

Publications (1)

Publication Number Publication Date
JPS6090940A true JPS6090940A (en) 1985-05-22

Family

ID=16421172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20024383A Pending JPS6090940A (en) 1983-10-25 1983-10-25 Air-fuel ratio controlling apparatus

Country Status (1)

Country Link
JP (1) JPS6090940A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345444A (en) * 1986-08-12 1988-02-26 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
EP0735257A2 (en) * 1995-03-31 1996-10-02 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pulsation control system for an internal combustion engine
US6212884B1 (en) * 1999-03-09 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US6363312B1 (en) * 1999-06-29 2002-03-26 Heraeus Electro-Nite International N.V. Method and apparatus for determining the A/F ratio of an internal combustion engine
FR2851615A1 (en) * 2003-02-21 2004-08-27 Renault Sa Diesel engine fuel injection capacity regulating device, has exhaust gas temperature sensor at inlet of compressor turbine, and temperature feedback system with regulator to supply corrected value of fuel injected capacity to engine
EP1574694A1 (en) * 2004-02-24 2005-09-14 Renault s.a.s. Apparatus and method controlling metering of injected fuel in a diesel engine
JP2015190371A (en) * 2014-03-28 2015-11-02 三菱重工業株式会社 Internal combustion engine control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345444A (en) * 1986-08-12 1988-02-26 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
EP0735257A2 (en) * 1995-03-31 1996-10-02 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pulsation control system for an internal combustion engine
EP0735257A3 (en) * 1995-03-31 1997-08-20 Yamaha Motor Co Ltd Exhaust pulsation control system for an internal combustion engine
EP0735257B1 (en) * 1995-03-31 2001-10-31 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pulsation control system for an internal combustion engine
US6212884B1 (en) * 1999-03-09 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US6513322B2 (en) 1999-03-09 2003-02-04 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US6363312B1 (en) * 1999-06-29 2002-03-26 Heraeus Electro-Nite International N.V. Method and apparatus for determining the A/F ratio of an internal combustion engine
FR2851615A1 (en) * 2003-02-21 2004-08-27 Renault Sa Diesel engine fuel injection capacity regulating device, has exhaust gas temperature sensor at inlet of compressor turbine, and temperature feedback system with regulator to supply corrected value of fuel injected capacity to engine
EP1574694A1 (en) * 2004-02-24 2005-09-14 Renault s.a.s. Apparatus and method controlling metering of injected fuel in a diesel engine
JP2015190371A (en) * 2014-03-28 2015-11-02 三菱重工業株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JPH0734934A (en) Air-fuel ratio controller of internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPS582444A (en) Air-fuel ratio control
JPS6090940A (en) Air-fuel ratio controlling apparatus
JPS6093150A (en) Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPS6375327A (en) Fuel feed control device for internal combustion engine
JPS63205443A (en) Air-fuel ratio controller for internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2856062B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JPS63105256A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS63113157A (en) Engine controller
JPH08291738A (en) Air-fuel ratio feedback control device for engine
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPH0417750A (en) Air-fuel ratio control system of internal combustion engine
JPH0417749A (en) Air-fuel ratio control system of internal combustion engine
JPS6053642A (en) Air-fuel ratio control method in electronically controlled fuel injection type internal- combustion engine
JPS6338632A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0431643A (en) Fuel supply device of internal combustion engine
JPH06272595A (en) Air-fuel ratio learning control device for internal combustion engine
JPH0211853A (en) Duty solenoid control unit
JPS6388238A (en) Electronically controlled fuel injection device for internal combustion engine
JPS6270641A (en) Learning control device for internal combustion engine