JPS6087855A - Ruthenium tetroxide collecting agent - Google Patents

Ruthenium tetroxide collecting agent

Info

Publication number
JPS6087855A
JPS6087855A JP19473383A JP19473383A JPS6087855A JP S6087855 A JPS6087855 A JP S6087855A JP 19473383 A JP19473383 A JP 19473383A JP 19473383 A JP19473383 A JP 19473383A JP S6087855 A JPS6087855 A JP S6087855A
Authority
JP
Japan
Prior art keywords
ruthenium
rubber
ruthenium tetroxide
tetroxide
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19473383A
Other languages
Japanese (ja)
Other versions
JPS6361057B2 (en
Inventor
Yoshio Koda
甲田 善生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19473383A priority Critical patent/JPS6087855A/en
Publication of JPS6087855A publication Critical patent/JPS6087855A/en
Publication of JPS6361057B2 publication Critical patent/JPS6361057B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To collect easily and efficiently ruthenium tetroxide at ordinary temps. by using rubber. CONSTITUTION:The product of natural rubber, chloroprene rubber, silicone rubber, etc. is cut into particles of 1-2mm.<3> which are packed into a collecting tube. Ruthenuium tetroxide is collected by passing a substance contg. the ruthenium tetroxide through the collecting tube.

Description

【発明の詳細な説明】 本発明は揮発性をもつ四酸化ルテニウムと迅速に反応し
てこれを捕集し、四酸化ルテニウムが取扱い装置や施設
から外部へ流出することを防止する捕集剤に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a collection agent that rapidly reacts with volatile ruthenium tetroxide to collect it and prevents ruthenium tetroxide from flowing out from handling equipment or facilities. It is something.

白金属の金属であるルテニウムの化合物はきわめて特異
な性質を持ち、これを利用しようとして多くの工業上の
用途が精力的に開拓されつつある。
Compounds of ruthenium, a white metal, have extremely unique properties, and many industrial applications are being actively developed to take advantage of these properties.

この特異的な性質の1つとして、四酸化ルテニウムは重
金属の酸化物でありながら沸点が低く、常温でも揮発し
、人体には有毒であることが知られている。四酸化ルテ
ニウムの低沸点は他の多くの金属のそれと甚しく異なる
性質であるだめ、工業上ならびに分析化学において他金
属等との分離に繁用されている。そればかりでなく四酸
化ルテニウムは、多くのルテニウム化合物から各種の酸
化剤によって、あるいは酸化剤がなくても加熱時には空
気中でも生成するので、ルテニウムの化合物としてはき
わめてありふれた化合物になっている。
One of its unique properties is that although ruthenium tetroxide is a heavy metal oxide, it has a low boiling point, evaporates even at room temperature, and is known to be toxic to the human body. Since the low boiling point of ruthenium tetroxide is significantly different from that of many other metals, it is frequently used in industrial and analytical chemistry to separate it from other metals. In addition, ruthenium tetroxide is formed from many ruthenium compounds by various oxidizing agents, or even in the absence of oxidizing agents when heated in the air, making it an extremely common ruthenium compound.

まだウラン等の核分裂によって多量の放射性ルテニウム
が生成するが、この中には半減期がかなり長く、γ線や
強いβ線を出すものもある。ルテニウムの化学的性質は
上記したように特異であるとともに複雑でもあるので、
核燃料再処理や放射性廃莱物の処理・処分時に最も障害
になるものである。たまたまこれらの施設から放射性ル
テニウムが放出されると、環境や人体を汚染し、危険な
ことが知られている。
Nuclear fission of uranium and other materials still produces large amounts of radioactive ruthenium, but some of this has a fairly long half-life and emits gamma rays and strong beta rays. As mentioned above, the chemical properties of ruthenium are both unique and complex.
This is the biggest obstacle when reprocessing nuclear fuel and processing and disposing of radioactive waste. If radioactive ruthenium were accidentally released from these facilities, it is known to be dangerous and contaminate the environment and the human body.

この中でも放射性の四酸化ルテニウムは、核燃料再処理
等が普通硝酸溶液として行なわれ、廃巣物の処理・処分
に高温を用いることが多いので、各段階で発生し、この
ものが漏洩すると軽気的に人体汚染を起すので、特に危
険性が大きく、十分な防護が必要であるとされている。
Among these, radioactive ruthenium tetroxide is generated at each stage because nuclear fuel reprocessing is usually carried out as a nitric acid solution, and high temperatures are often used to treat and dispose of waste, and if it leaks, it will cause a light nuisance. It is said to be especially dangerous because it can cause contamination of the human body, and requires sufficient protection.

従来、この対策が十分でなくて施設や実験室の放射能汚
染を起したり、ヒトの汚染剖1故などが知られている。
In the past, it has been known that these countermeasures have not been sufficient, resulting in radioactive contamination of facilities and laboratories, as well as accidents involving humans due to contamination.

本発明は四酸化ルテニウムが金属の酸化物であるにかか
わらず、水よシ四塩化炭素などの有機溶剤にとけやすく
、共有結合性が強いので、イオン結合性が小さく、共有
結合性が勝ったゴム類とよく反応し、これを不揮発性化
合物として迅速にかつ完全に固定することを発見し、こ
れに基きゴム類の捕集剤としての用途を見出したもので
ある。
In the present invention, although ruthenium tetroxide is a metal oxide, it is easily dissolved in water and organic solvents such as carbon tetrachloride, and has strong covalent bonding properties, so its ionic bonding properties are small and its covalent bonding properties are superior. It was discovered that it reacts well with rubber and quickly and completely fixes it as a non-volatile compound, and based on this discovery, it was found to be useful as a rubber scavenger.

四酸化ルテニウムがゴム類と反応して黒色の物質を沈積
させることはすでに知られ、ゴム類の微細組織を光学々
らびに電子顕微鏡によって検鏡する際に利用できること
が報告されているが、この場合は気中に存在する四酸化
ルテニウムの一部と時間をかけて反応させて利用するに
止まり、大部分の四酸化ルテニウムの行方については関
心が払われてい々い。従って本発明の内容とは異にるも
のである。
It is already known that ruthenium tetroxide reacts with rubber to deposit a black substance, and it has been reported that it can be used to examine the microstructure of rubber using optical and electron microscopy. In this case, only a portion of the ruthenium tetroxide present in the air is used by reacting with it over time, and there is much interest in what happens to most of the ruthenium tetroxide. Therefore, this is different from the content of the present invention.

揮発した放射性の四酸化ルテニウムを工業的に捕集する
方法としては、600℃程度に加熱した酸化鉄を含む耐
火レンガ等にその蒸気を通じR,u04 −+ RuO
2↓」−〇2↑の反応を行なわせて捕集する。捕集剤に
酸化鉄を含むシリカゲルやその他のシリカゲルを用いる
と反応温度を下げることができるとされている。
As a method for industrially collecting the volatilized radioactive ruthenium tetroxide, the vapor is passed through a refractory brick containing iron oxide heated to about 600°C to collect R,u04 −+ RuO
2↓”-〇2↑ reaction is performed and collected. It is said that the reaction temperature can be lowered by using silica gel containing iron oxide or other silica gel as a scavenger.

これらの捕集方法では、何れにせよ捕集剤をある温度範
囲に加熱する必要があるので、熱量の損失はもちろんで
あるが、装置がどうしても大がかりになり、小規模の装
置や実験装置等には用いにくい。
In any case, these collection methods require heating the collection agent to a certain temperature range, which not only causes a loss of heat, but also requires a large-scale device, making it difficult to use for small-scale devices or experimental equipment. is difficult to use.

本発明ではこれらの点を改良し、手近かな製品であるゴ
ムあるいはその組成物を用いて、常温で簡易かつ完全に
四酸化ルテニウムを捕集するものである。常温で反応が
行なわれることから、本発明は同様にして、水溶液中の
四酸化ルテニウムの捕集除去にも用いることができる。
The present invention improves these points and uses rubber or its composition, which is a readily available product, to easily and completely collect ruthenium tetroxide at room temperature. Since the reaction is carried out at room temperature, the present invention can be similarly used for collecting and removing ruthenium tetroxide in an aqueous solution.

なお、ゴム類はすべて固体であるため、取扱いが容易で
ある。
Note that since all rubbers are solid, they are easy to handle.

次に実施例によシ、本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 天然ゴムの製品を細切し、1〜2−の粒子を作シ、一端
に通気性の細かい目の金網等をつめた内径811111
1のゴム管に200111Nの高さに充し、捕集管とす
る。
Example 1 A natural rubber product was cut into small pieces to produce 1-2-sized particles, and one end was filled with a fine-mesh breathable wire mesh, etc., with an inner diameter of 811111.
Fill the rubber tube of No. 1 to a height of 200111N and use it as a collection tube.

ルテニウム化合物は定石が困那であシ、とくに捕集剤中
に固定されたものについてはよい分析法がないので、放
射性ルテニウム(ルテニウム−103)を用いて実験を
行々い、そのγ線によって定量した。
Ruthenium compounds are difficult to standardize, and there is no good analytical method for those fixed in collection agents, so we conducted experiments using radioactive ruthenium (Ruthenium-103), and its gamma rays Quantitated.

実験装置としては、空気のろ過装置に続いてガラス製の
反応容器を置き、この中で酸化剤を用いて四酸化ルテニ
ウムを発生させる。反応容器は水浴によって一定温度に
加温することができるようになっている。次に上記捕集
管を置き、捕集管の後部には第二の捕集装置を連結し、
第二の捕集装置の後方は第三の捕集管に連結され、その
後部は空気を一定速度で吸気する装置につながれている
The experimental equipment consists of an air filtration device followed by a glass reaction vessel, in which an oxidizing agent is used to generate ruthenium tetroxide. The reaction vessel can be heated to a constant temperature using a water bath. Next, place the collection tube, connect the second collection device to the rear of the collection tube,
The rear part of the second collection device is connected to a third collection pipe, and the rear part thereof is connected to a device for sucking air at a constant speed.

第三の捕集管までの各連結器にはガラス製の共通すり合
せ器が用いられ、気密に接続される。
A common glass joint is used for each connector up to the third collection tube, and the connections are airtight.

実験に当っては、まず反応容器中に一定量の希塩酸にと
かした放射性ルテニウムを入れ、これに酸化剤と希硫酸
を加えて放射性の四酸化ルテニウムを発生させる。この
とき同時に、後方の吸気装置を働かせて発生した四酸化
ルテニウムを空気とともに捕集管に送シ、ここで放射性
ルテニウムを反応捕集させる。
In the experiment, first a certain amount of radioactive ruthenium dissolved in dilute hydrochloric acid is placed in a reaction vessel, and an oxidizing agent and dilute sulfuric acid are added to generate radioactive ruthenium tetroxide. At the same time, the rear suction device is operated to send the generated ruthenium tetroxide together with air to the collection tube, where the radioactive ruthenium is collected by reaction.

一定時間後、捕集管を外していくつかの定められた長さ
に切断し、切口を接着剤等で封じ、放射能の測定試料と
する。この測定試料を周囲を鉛レンガで囲んだ、リチウ
ムを拡散させたゲルマニウム半導体検出器の上の一定距
離の位置に置き、波高分析器によって放射能を測定する
。この場合は一定の測定時間で得られる497keVの
エネルギーのピークの大きさからルテニウム−103の
放射能値、すなわち捕集されたルテニウムの量を定量す
ることができる。
After a certain period of time, the collection tube is removed and cut into several predetermined lengths, the cut ends are sealed with adhesive, etc., and used as samples for radioactivity measurement. This measurement sample is placed at a certain distance above a germanium semiconductor detector with lithium diffused in it, surrounded by lead bricks, and the radioactivity is measured using a pulse height analyzer. In this case, the radioactivity value of ruthenium-103, that is, the amount of collected ruthenium can be determined from the magnitude of the 497 keV energy peak obtained in a fixed measurement time.

第1図はこの測定結果を捕集管の長さ0ctnのとイ直 ころまで外挿し、この身を105カウント/100秒・
副として標準化してグラフ化したものであ4゜このよう
な反応捕集装置では、装置の温度が一定の場合には、捕
集能率は通過する空気の速度によって決まることが知ら
れている。本実験の場合も空気の速度が50CC/分の
場合(曲線1)と、100CC/分の場合(曲線2)で
は、後者の捕集曲線はや!寝てくるが、何れも2〜3c
rnの層で99%以上が、10c1nの層では99.9
99%以」−のルテニウムが捕集されることを示してい
る。なお、第二、第三の捕集装置からはルテニウムの放
射能はほとんど検出されなかった。
Figure 1 shows this measurement result by extrapolating this measurement result to the point where the length of the collection tube is 0ctn.
As a side note, it is standardized and graphed. 4゜It is known that in such a reaction trapping device, if the temperature of the device is constant, the trapping efficiency is determined by the speed of the air passing through it. In this experiment, when the air velocity was 50 cc/min (curve 1) and when it was 100 cc/min (curve 2), the latter collection curve was much lower! They come to bed, but they are all 2-3c.
More than 99% in the rn layer, 99.9 in the 10c1n layer
This shows that more than 99% of ruthenium is collected. In addition, almost no ruthenium radioactivity was detected from the second and third collection devices.

このように天然ゴムを捕集剤に用いると、常温で四酸化
ルテニウムを効率よく捕集することができるC 実施例2 クロロプレンゴムの製品を細切して実施例1と同様な粒
子とし、同じ装置につめ、同量のルテニウム−103を
用い、空気の流速を50CC/分として、他は実施例1
と同条件で実験を行った。放射能の測定値から第11の
1と2の曲線の中間のよい捕集曲線が得られた。
When natural rubber is used as a collecting agent in this way, ruthenium tetroxide can be efficiently collected at room temperature. The same amount of ruthenium-103 was used, the air flow rate was 50 CC/min, and the other conditions were as in Example 1.
The experiment was conducted under the same conditions. A good collection curve between the 11th curves 1 and 2 was obtained from the radioactivity measurements.

実施例3 シリコンゴムの製品を細切し、実施例2と同一条件で実
験を行った。捕集剤の放射能の測定値から、第1図の1
の曲線とほぼ同じよい捕集曲線が得られた。
Example 3 A silicone rubber product was cut into pieces and an experiment was conducted under the same conditions as in Example 2. From the measured radioactivity of the collection agent, 1 in Figure 1.
A good collection curve was obtained, which was almost the same as the curve of .

実施例4 二)IJ/レブタジエンゴムの製品を細切し、実施例2
と同一条件で実験を行った。捕集剤の放射能の測定値か
ら、第1図の1と2の曲線の中間のよい捕集曲線が得ら
れた。
Example 4 2) Cut the IJ/levtadiene rubber product into pieces, Example 2
The experiment was conducted under the same conditions. From the measured values of the radioactivity of the scavenger, a good scavenging curve between curves 1 and 2 in FIG. 1 was obtained.

実施例5 少量沸点測定装置(山口誠太部著、薬学雑誌434号、
252頁、1918年)を用いて四酸化ルテニウム(非
放射性)の沸点を測定すると、加熱が進むにしたかつて
あたりに四酸化ルテニウム特有のオゾン臭がただよい、
さらに長時間経過するとイ」近の器物を黒化させるよう
になる。
Example 5 Small volume boiling point measuring device (written by Seitabe Yamaguchi, Pharmaceutical Magazine No. 434,
When the boiling point of ruthenium tetroxide (non-radioactive) was measured using ruthenium tetroxide (p. 252, 1918), as the heating progressed, the ozone odor characteristic of ruthenium tetroxide was present.
If a longer period of time passes, the objects near you will begin to turn black.

このような不快で不衛生な状態を改善するため、同装置
の開口部に内径5mm、長さ300間の天然ゴムからな
る通称アメゴムを接続して実験を行ったところ、ゴム管
のつけ根から数センチの内部が黒くなっただけで、外部
では全くオゾン臭を感じず、イ」近の器具が黒ずむよう
なことは起らなかった。
In order to improve this unpleasant and unsanitary situation, we conducted an experiment by connecting a piece of natural rubber (commonly known as Ame-rubber) made of natural rubber with an inner diameter of 5 mm and a length of 300 mm to the opening of the device. Only the inside of the centimeter turned black; there was no ozone odor outside, and the instruments near the centimeter did not darken.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、放射性の四酸化ルテニウムの天然ゴム粒によ
る捕集曲線で、縦軸は捕集管の長さICn1当り、10
0秒間の放射能の計数値を対数目盛で表わし、横軸は捕
集剤の先頭端からの距離を真数目盛によってmで表わし
たものである。図中の曲線1(黒丸)は空気の流速を5
0CC/分としたもの、曲線2(白丸)は同じ(100
cc/分とした場合の結果である。 第 五 閏
Figure 1 shows the collection curve of radioactive ruthenium tetroxide using natural rubber particles, and the vertical axis is 10
The count value of radioactivity for 0 seconds is expressed on a logarithmic scale, and the horizontal axis is the distance from the leading end of the collecting agent expressed in m on a diagonal scale. Curve 1 (black circle) in the figure indicates the air flow rate of 5
Curve 2 (white circle) is the same (100 CC/min).
This is the result when it is set as cc/min. Fifth Leap

Claims (1)

【特許請求の範囲】 ■、四酸化ルテニウムの捕集剤としてのゴムならびにそ
の組成物。 2、 ゴム々らびに組成物が天然ゴムからなるもの。 3、ゴムならびに組成物がクロロプレンゴムからなるも
の。 4、ゴムならびに組成物がシリコンゴムからなるもの。 5、コムならびに組成物がニトリルブタジェンゴムから
なるもの。
[Claims] (1) Rubber as a scavenger for ruthenium tetroxide and its composition. 2. Rubbers and compositions made of natural rubber. 3. Rubber and composition made of chloroprene rubber. 4. Rubber and composition made of silicone rubber. 5. Comb and composition made of nitrile butadiene rubber.
JP19473383A 1983-10-18 1983-10-18 Ruthenium tetroxide collecting agent Granted JPS6087855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19473383A JPS6087855A (en) 1983-10-18 1983-10-18 Ruthenium tetroxide collecting agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19473383A JPS6087855A (en) 1983-10-18 1983-10-18 Ruthenium tetroxide collecting agent

Publications (2)

Publication Number Publication Date
JPS6087855A true JPS6087855A (en) 1985-05-17
JPS6361057B2 JPS6361057B2 (en) 1988-11-28

Family

ID=16329325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19473383A Granted JPS6087855A (en) 1983-10-18 1983-10-18 Ruthenium tetroxide collecting agent

Country Status (1)

Country Link
JP (1) JPS6087855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243232A (en) * 1987-03-31 1988-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method for recovering ruthenium from radioactive waste
FR2850878A1 (en) * 2003-02-10 2004-08-13 Cogema Use of aqueous solution or paste containing alkylene glycol (co)polymers for trapping ruthenium in gaseous effluents, especially from nuclear fuel reprocessing plants
US7906175B2 (en) 2007-02-21 2011-03-15 Air Liquide Electronics U.S. Lp Methods for forming a ruthenium-based film on a substrate
US8859047B2 (en) 2010-02-23 2014-10-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Use of ruthenium tetroxide as a precursor and reactant for thin film depositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243232A (en) * 1987-03-31 1988-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method for recovering ruthenium from radioactive waste
FR2850878A1 (en) * 2003-02-10 2004-08-13 Cogema Use of aqueous solution or paste containing alkylene glycol (co)polymers for trapping ruthenium in gaseous effluents, especially from nuclear fuel reprocessing plants
WO2004071640A3 (en) * 2003-02-10 2004-10-21 Cogema Method and device for capturing ruthenium present in a gaseous effluent
CN100349641C (en) * 2003-02-10 2007-11-21 核燃料公司 Method and device for trapping ruthenium in gaseous effluents
US7300641B2 (en) 2003-02-10 2007-11-27 Compagnie Generale Des Matieres Nucleaires Method and device for capturing ruthenium present in a gaseous effluent
KR101017658B1 (en) 2003-02-10 2011-02-25 꼼빠니 제네랄 데 마띠에르 뉘끌레르 Method and device for capturing ruthenium present in a gaseous effluent
US7906175B2 (en) 2007-02-21 2011-03-15 Air Liquide Electronics U.S. Lp Methods for forming a ruthenium-based film on a substrate
US8435428B2 (en) 2007-02-21 2013-05-07 Air Liquide Electronics U.S. Lp Methods for forming a ruthenium-based film on a substrate
US8859047B2 (en) 2010-02-23 2014-10-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Use of ruthenium tetroxide as a precursor and reactant for thin film depositions

Also Published As

Publication number Publication date
JPS6361057B2 (en) 1988-11-28

Similar Documents

Publication Publication Date Title
US3986835A (en) Ventilation hood for use in the preparation of labelled compounds
Boyd et al. Determination of stoichiometry of the iodometric method for ozone analysis at pH 7.0
Pepkowitz et al. Determination of Sodium Monoxide in Sodium
JPS6087855A (en) Ruthenium tetroxide collecting agent
Greendale et al. Rapid Radiochemical Procedure for Antimony and Arsenic.
Elving et al. Determination of fluorine and other halogens in organic compounds
JPH0446178B2 (en)
Lindh et al. Biological monitoring of methylhexahydrophthalic anhydride by determination of methylhexahydrophthalic acid in urine and plasma from exposed workers
Lee et al. Pyrohydrolytic separation and spectrophotometric titration of fluorides in radioactive samples
US3914372A (en) Process for the preparation of labelled compounds
Christie et al. Field methods for determining certain organomercurial vapours in air
McFarlane Fission product tellurium chemistry from fuel to containment
Solel Vapour phase action of some foliar fungicides
Tölg Limits of elemental chemical analysis with small samples
Straube et al. Biological Studies with Arsenic76. I. Preparation of Arsenic76 by Pile Irradiation of Gacodylic Acid
Cripps et al. Further assessment of the chemical modelling of iodine in IMPAIR 3 code using ACE/RTF data
JPH0626665B2 (en) Radioactive material collection material
Campbell et al. Determination of carbon monoxide in metal carbonyl complexes
RU2090945C1 (en) Compound for iodine long storage
Ashmore et al. Measurements of the radiolytic oxidation of aqueous CsI using a sparging apparatus
Poletiko et al. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations
Benson et al. Interactions of fission product vapours with aerosols
Evans et al. Iodine volatilization from irradiated CsI solutions
Dutton et al. Iodine behaviour in severe accidents
Stein et al. Development of a radiochemical method for analyzing radon gas in uranium mine atmospheres: covering the period February 3, 1975--March 31, 1976