JPS608656A - Solar heat collector - Google Patents

Solar heat collector

Info

Publication number
JPS608656A
JPS608656A JP58117934A JP11793483A JPS608656A JP S608656 A JPS608656 A JP S608656A JP 58117934 A JP58117934 A JP 58117934A JP 11793483 A JP11793483 A JP 11793483A JP S608656 A JPS608656 A JP S608656A
Authority
JP
Japan
Prior art keywords
heat
fluid passage
solar
solar heat
reflective surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117934A
Other languages
Japanese (ja)
Inventor
Yasuaki Kanayama
金山 泰昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58117934A priority Critical patent/JPS608656A/en
Publication of JPS608656A publication Critical patent/JPS608656A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To effectively utilize the heat of incident solar rays, by providing the secondary fluid passages in the position where the solar heat is converged by the reflective surface of a heat collection board, as well as to form a heat collection board, to which the primary fluid passages are fitted, on a reflective board in a solar heat collector. CONSTITUTION:The primary fluid passage 1 comprises copper pipes 5, 6, 7 and 8 of small diameter which are arranged in close contact with the back of a heat collection board 2. The secondary fluid passage 4 consists of five copper pipes 9, 11, 12, 13 and 14 of small diameter, coated with black painting, juxtaposed in the position of a space which is partitioned by an imaginary partition surface (a), at regular intervals between them. Out of these pipes, the pipe 9 is provided abutted on a reflective surface 3. With such an arrangement, the reflective heat that was conventionally disperesed in vain is actively converged and can be utilized for heating of the secondary fluid passages 4. In addition, most part of the solar heat reflected by the reflective surface 3 can be absorbed into any one of the pipes 9, 11, 12, 13 and 14, though the angle of incidence of the solar rays is changed by the change of season and time.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、主としてソーラー給湯システムにおける太陽
熱収集要素として使用される太陽熱集熱器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a solar heat collector mainly used as a solar heat collecting element in a solar water heating system.

(ロ)従来技術 近時、資源の有効利用を図る見地から自然エネルギの活
用が強く要請されており、その−環として太陽熱を利用
して温水を11iるようにしたいわゆるソーラー給湯シ
ステムが種々開発され広く普及するに到っている。
(b) Conventional technology Recently, there has been a strong demand for the use of natural energy from the standpoint of effective resource utilization, and as part of this, various so-called solar hot water systems have been developed that use solar heat to heat water at 11 liters. It has become widely popular.

ところで、この種のシステムに使用される太陽熱集熱器
としては、例えば、加熱すべき流体を流通さぜる流体通
路を、太陽熱を吸収する平板状の集熱板に添設してなる
ものが知られている。
By the way, solar heat collectors used in this type of system include, for example, those in which a fluid passage through which a fluid to be heated is circulated is attached to a flat heat collecting plate that absorbs solar heat. Are known.

ところが、このような構成のものでは、集熱板に入射し
た太陽エネルギの一部が反ル1等により該集熱板に吸収
されないまま棄てられてしまうものであり、また、吸収
された熱も伝導により前記流体通路内の流体に順次伝達
されることになる。
However, with such a configuration, a part of the solar energy incident on the heat collecting plate is discarded without being absorbed by the heat collecting plate due to the heat collecting plate 1, etc., and the absorbed heat is also discarded. It will then be transmitted to the fluid within the fluid passageway by conduction.

そのため、太陽熱を流体通路に高密度に集中させること
が不可能であり、流体の昇温に時間がかかるだけでなく
、冬場などには、流体の温度が低いレベルで頭打ちとな
り、高温の湯を得ることができないという問題がある。
Therefore, it is impossible to concentrate solar heat in a high density in the fluid passage, and not only does it take time to raise the temperature of the fluid, but also in winter, the fluid temperature reaches a ceiling at a low level, and hot water cannot be used. The problem is that you can't get it.

(ハ)発明の目的 本発明は、このような事情に着目してなされたもので、
入射した太陽熱を効果的に利用して流体を高い温度にま
で効率よく昇温させることができるようにした太陽熱集
熱器を提供することを目的とする。
(c) Purpose of the invention The present invention was made with attention to the above circumstances, and
An object of the present invention is to provide a solar heat collector that can efficiently raise the temperature of a fluid to a high temperature by effectively utilizing incident solar heat.

(ニ) 発明の措成 本発明は、かかる目的を達成するために、第1の流体通
路を添設した集熱板を反射板形に成形するとともに、そ
の集熱板の反射面によって太陽熱が集められる位置に第
2の流体通路を設けたことを特徴とするものである。
(d) Construction of the invention In order to achieve the above object, the present invention forms a heat collecting plate attached with a first fluid passage into the shape of a reflecting plate, and collects solar heat by the reflective surface of the heat collecting plate. The present invention is characterized in that a second fluid passage is provided at a position where the fluid is moved.

(ホ)実施例 以下、本発明の一実施例を図面を参照して説明する。(e) Examples Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1の流体通路1を集熱板2に添設するとともに、この
集熱板2を反射板形に成形し、該集熱板2の反射面3に
よって太陽熱が集められる位置に第2の流体通路4を設
けている。
A first fluid passage 1 is attached to a heat collecting plate 2, and the heat collecting plate 2 is formed into a reflector shape, and a second fluid is provided at a position where solar heat is collected by the reflective surface 3 of the heat collecting plate 2. A passage 4 is provided.

第1の流体通路1は、集熱板2の裏面に密着させて配設
した銅製の小径なパイプ5.6.7.8からなるもので
あり、これら各パイプのうちパイプ5、パイプ8はそれ
ぞれ附接する集熱板2の裏面にも密着している。
The first fluid passage 1 consists of small diameter copper pipes 5, 6, 7, and 8 disposed in close contact with the back surface of the heat collecting plate 2. Of these pipes, the pipe 5 and the pipe 8 are They are also in close contact with the back surfaces of the respective attached heat collecting plates 2.

集熱板2は、ステンレス鋼製で樋状の比較的小形なもの
である。
The heat collecting plate 2 is made of stainless steel and has a relatively small gutter shape.

また、反射面3は、中心線または曲率半径の異なる4つ
の而3a、3b、3C13dからなり面3aは中心線O
1を中心とした曲率半径R1の彎曲面、面3bは中心線
02を中心とした曲率半径R2の彎曲面、面3Cは該反
射面3を左右対称に2分割する仮想分割面aを中心とし
て中心線02と対称な位置にある中心線08を中心とし
た曲率半径R2の彎曲面、そして面3dは、仮想分割面
aを中心として中心線O1と対称な位置にある中心線0
4を中心とした曲率半径R1のa)曲面である。
The reflective surface 3 is composed of four surfaces 3a, 3b, and 3C13d with different center lines or radii of curvature, and the surface 3a has a center line O.
1, the surface 3b is a curved surface with a radius of curvature R2 centered on the center line 02, and the surface 3C is centered on a virtual dividing surface a that symmetrically divides the reflective surface 3 into two. A curved surface with a radius of curvature R2 centered on the center line 08 which is symmetrical to the center line 02, and the surface 3d is the center line 0 which is symmetrical to the center line O1 with the virtual dividing plane a as the center.
a) Curved surface with a radius of curvature R1 centered at 4.

また、第2の流体通路4は、前記仮想分割面aが空間を
仕切る位置に少しずつ間隔をあけて並列に並べて配設し
た、黒色塗装を施した5本の小径な銅製のパイプ9.1
1.12.13.14からなるものであり、このうちパ
イプ9は反射面3に当接させて設けている。
The second fluid passage 4 is made up of five small-diameter copper pipes 9.1 painted black and arranged in parallel at little intervals at the positions where the virtual dividing plane a partitions the space.
1.12.13.14, of which the pipe 9 is provided in contact with the reflective surface 3.

そして、これら1組の第1の流体通路1、集熱板2およ
び第2の流体通路4を復数組並列に密に配設したものを
ステンレスR4Mの外枠15およびガラス板16を有す
る受熱箱17内に収容するとともに、この受熱箱17の
内部から外部へ延出させて図示しないポンプから前記第
1の流体通路1および第2の流体通路4へ低温の水を導
く往管18と、前記第1の流体通路1および第2の流体
通路4において昇温した水を図示しない熱交換器を介し
て前記ポンプへ戻す戻り管19とを設け、前記第1の流
体通路1の各パイプ5.6.7.8および第2の流体通
路4の各パイプ9.11.1213.14の各始端を往
管18に、各終端を戻り管19にそれぞれ接続している
。なお、21はグラスウール製の放熱防止用の断熱材で
ある。
A heat-receiving device having a stainless steel R4M outer frame 15 and a glass plate 16, in which several sets of the first fluid passage 1, the heat collecting plate 2, and the second fluid passage 4 are closely arranged in parallel is used. an outgoing pipe 18 housed in the box 17 and extending from the inside of the heat receiving box 17 to the outside to guide low-temperature water from a pump (not shown) to the first fluid passage 1 and the second fluid passage 4; A return pipe 19 is provided to return the water heated in the first fluid passage 1 and the second fluid passage 4 to the pump via a heat exchanger (not shown), and each pipe 5 of the first fluid passage 1 is The starting ends of the pipes 9.11.1213.14 of . Note that 21 is a heat insulating material made of glass wool for preventing heat radiation.

そして、このような構成の太陽熱集熱器を、反射面3を
所定の方向に向けて屋根の上等に固定している。
The solar heat collector having such a configuration is fixed on a roof or the like with the reflective surface 3 facing in a predetermined direction.

このようなものであれば、太陽熱が反射面3に入射する
と、該太陽熱の一部は集熱板2に吸収され、第1の流体
通路1に仏心されて、該流体通路1の各パイプ5.6.
7.8内の水を加熱し昇温させる。また、前記太陽熱の
うち吸収されなかった部分は、反射面3により反射して
所定の位置に集熱して第2の流体通路4内の水を加熱し
昇温させる。こうして昇温した水は図示しないポンプに
吸引されて戻り管19を介して該ポンプへと流動してい
(。この流動の途中、図示しない熱交換器を通過する際
に、該熱交換器において熱交換が行なわれ、前記第1の
流体通路1および第2の流体通路4において加熱された
水がその有する熱を加熱対象に伝達し蓄熱する。一方、
前記第1の流体通路1および第2の流体通路4へは、加
熱され熱交換された水が低温となり、前記ポンプから往
管18を介して供給されてくる。
With such a structure, when solar heat is incident on the reflective surface 3, a part of the solar heat is absorbed by the heat collecting plate 2, is reflected in the first fluid passage 1, and is transmitted to each pipe 5 of the fluid passage 1. .6.
7.Heat the water in 8 to raise its temperature. Further, the unabsorbed portion of the solar heat is reflected by the reflective surface 3 and concentrated at a predetermined position, thereby heating the water in the second fluid passage 4 and raising its temperature. The water heated in this manner is sucked into a pump (not shown) and flows to the pump via the return pipe 19 (during this flow, when passing through a heat exchanger (not shown), heat is generated in the heat exchanger (not shown). The exchange is performed, and the water heated in the first fluid passage 1 and the second fluid passage 4 transfers its heat to the heating target and stores the heat.On the other hand,
The heated and heat-exchanged water is supplied to the first fluid passage 1 and the second fluid passage 4 at a low temperature from the pump via the outgoing pipe 18.

このようにして水を循環させながら加熱対象を暖めてい
くものであるが、本実施例にあっては集熱板2を反射板
形に成形するとともに、従来の第1の流体通路1の他に
、仮想分割面aが空間を仕切る位置に並列に配設した5
°本の小径なパイプ9.11.12.13.14からな
る第2の流体通路4を設けているので、次のような効果
を奏する。
In this way, the object to be heated is heated while circulating the water. In this embodiment, the heat collecting plate 2 is formed in the shape of a reflecting plate, and in addition to the conventional first fluid passage 1. 5 arranged in parallel at the position where the virtual dividing plane a partitions the space.
Since the second fluid passage 4 is provided with the small-diameter pipes 9, 11, 12, 13, and 14, the following effects are achieved.

まず、従来はムダに放散されていた反射熱を積穏的に集
中させて第2の流体通路4の加熱に利用することができ
るので、それだけ集熱効率が高まり、水をより高温まで
昇温させることができる。
First, the reflected heat, which was conventionally wasted, can be concentrated and used to heat the second fluid passage 4, which increases the heat collection efficiency and raises the temperature of the water to a higher temperature. be able to.

さらに、本実施例によれば、季節や時間によって太陽光
の入射角度が変わっても、反射面3によって反射した太
陽熱はその大部分がパイプ9.11.12.13.14
のいずれかに吸収されるので、反射熱を逃がしてしまう
ことが少なく、従来の反射板形の太@熱集熱器よりも集
熱効率が良い。例えば、朝、夕の太陽の高度が低く太陽
光の入射角度が大であるときは、太陽熱はパイプ131
4に吸収され(第5図)、それより少し太陽の高度が高
くなると入射角度が小さくなって太陽熱は主としてパイ
プ13に吸収され(第6図)、さらに太陽の高度が高(
なるにつれて集熱位置が変化していき、太陽の南中時に
は°入射角度がゼロになって太陽熱は主としてパイプ1
1に吸収される(第7図)、というように、反射した太
陽熱の大部分がいずれかのパイプ1本又は2本に集光さ
れ吸収されるので常に高い集熱効率が得られるものであ
る。なお、パイプ9は集熱板2からの伝導熱によっても
加熱され、又太陽光の直接あたるパイプは平板形と同程
度太陽光を吸収する。さらに、もし反射面3の精度が良
くなくて該反射面3にひずみが生じたり、あるいは集熱
板2が経年変化によって変形したりしても、前記と同様
、反射面3により反射した太陽熱の大部分がいずれがの
パイプに集光、吸収されるので、集熱性能が著しく悪化
するといまた不都合も生じない。
Furthermore, according to this embodiment, even if the angle of incidence of sunlight changes depending on the season or time, most of the solar heat reflected by the reflecting surface 3 is transferred to the pipe 9.11.12.13.14.
Since the reflected heat is absorbed by either of the above, there is less chance of the reflected heat escaping, and the heat collection efficiency is better than that of conventional thick reflector type heat collectors. For example, when the altitude of the sun is low in the morning or evening and the angle of incidence of sunlight is large, solar heat is transferred to the pipe 131.
4 (Figure 5), and when the altitude of the sun is a little higher than that, the angle of incidence becomes smaller and solar heat is mainly absorbed by the pipe 13 (Figure 6).
As the temperature rises, the heat collection position changes, and when the sun is at its mid-south point, the angle of incidence becomes zero, and solar heat is mainly transferred to pipe 1.
1 (Figure 7), most of the reflected solar heat is focused on and absorbed by one or two pipes, so a high heat collection efficiency can always be obtained. The pipe 9 is also heated by conductive heat from the heat collecting plate 2, and a pipe that is directly exposed to sunlight absorbs sunlight to the same extent as a flat pipe. Furthermore, if the accuracy of the reflective surface 3 is not good and distortion occurs in the reflective surface 3, or if the heat collecting plate 2 is deformed due to aging, the solar heat reflected by the reflective surface 3 will be reduced as described above. Since most of the light is collected and absorbed by either pipe, there is no problem that the heat collection performance will deteriorate significantly.

しかも、いったんいずれがのパイプに吸収された熱は放
熱してもその大部分が再び他の隣接するパイプに吸収さ
れるので、外部に放散される熱が少なく、したがって、
従来の反射板形のもののように放熱防止用のガラス管に
よってパイプを囲繞する必要がな(、それだけ製作に要
するコストを低くすることができる。
Moreover, even if the heat absorbed by one of the pipes is radiated, most of it is absorbed again by other adjacent pipes, so less heat is radiated to the outside.
There is no need to surround the pipe with a glass tube to prevent heat radiation, as is the case with conventional reflector type pipes (this can reduce manufacturing costs accordingly).

加えて、集熱板2を従来の反射板形のそれよりも小形化
することができるので、集熱板2および第2の流体通路
4を高密度に配設でき、それだけ集熱効率を高めること
ができるとともに集熱器をコンパクト化することが可能
である。
In addition, since the heat collecting plate 2 can be made smaller than that of a conventional reflector plate, the heat collecting plate 2 and the second fluid passage 4 can be arranged with high density, and the heat collection efficiency can be increased accordingly. At the same time, it is possible to make the heat collector more compact.

なお、本発明はO1j記実施例に限られないのは勿論で
あり、流体の循環方式はポンプによる強制循環方式のも
のに限られず、流体の対流を利用して該流体を自然に循
環させる自然循環方式のものであってもよい。
Note that the present invention is of course not limited to the embodiment described in O1j, and the fluid circulation method is not limited to a forced circulation method using a pump, but a natural method that uses fluid convection to naturally circulate the fluid. It may also be of a circulation type.

また第1の流体通路のパイプは4本に限られず、第2の
゛流体通路のパイプも5本に限られない。
Further, the number of pipes in the first fluid passage is not limited to four, and the number of pipes in the second fluid passage is not limited to five.

また、パイプは銅製のものに限られず、熱伝導性の良好
な材料からなるものであればよい。
Further, the pipe is not limited to being made of copper, but may be made of a material with good thermal conductivity.

また、反射面の曲面形状は前記実施例のものに限られな
い。
Furthermore, the curved shape of the reflective surface is not limited to that of the embodiment described above.

また、集熱板はステンレス01Hのものに限られず、例
えば銅板の表面1こ鏡状のメッキ処理を施したものでも
よい。
Further, the heat collecting plate is not limited to stainless steel 01H, and may be a copper plate with one surface mirror-plated, for example.

マタ、パイプの形状は、断面円形のものに限られす、例
えば断面軸円状、断面三角形状等のものであってもよい
The shape of the pipe is limited to a circular cross section; for example, the pipe may have a circular cross section, a triangular cross section, or the like.

また、第2の流体通路のパイプの配設位置は仮想分割面
が空間を仕切る位置に限られず、反射面によって反射し
た太陽熱が略集熱する位置に配設したものであればよい
Further, the arrangement position of the pipe of the second fluid passage is not limited to the position where the virtual dividing plane partitions the space, but may be arranged at a position where the solar heat reflected by the reflective surface is substantially concentrated.

また、パイプ内に流通させる流体は水のみならず、フロ
ンガス等の冷媒であってもよい。
Furthermore, the fluid to be circulated within the pipe is not limited to water, but may also be a refrigerant such as chlorofluorocarbon gas.

(へ)発明の効果 以上、詳述したように、本発明によれば、集熱板に吸収
された太陽熱で該集熱板に添設した第1の流体通路内の
流体を加熱するようにしているだけでなく、前記集熱板
を反射板形に成形して該集熱板の表面で反射する太陽熱
を積極的に集中させ、その集中熱で第2の流体通路内の
流体を加熱するようにしているので、入射した太陽熱エ
ネルギの大部分を流体の昇温に有効利用できる。しかも
、第2の流体通路には、□太陽熱が高密度に集められる
ため、該通路内の流体を高い効率で迅速に加熱すること
ができる。したがって、前記流体を高い温度にまで効率
よく昇温させることが可能であり、冬場などでも十分に
実用に供し得る太陽熱集熱器を提供できるものである。
(F) Effects of the Invention As detailed above, according to the present invention, the fluid in the first fluid passage attached to the heat collecting plate is heated by the solar heat absorbed by the heat collecting plate. In addition, the heat collecting plate is formed into a reflector shape to actively concentrate solar heat reflected on the surface of the heat collecting plate, and the concentrated heat heats the fluid in the second fluid passage. As a result, most of the incident solar thermal energy can be effectively used to raise the temperature of the fluid. Moreover, since solar heat is concentrated in the second fluid passage at a high density, the fluid in the passage can be quickly heated with high efficiency. Therefore, it is possible to efficiently raise the temperature of the fluid to a high temperature, and it is possible to provide a solar heat collector that can be put to practical use even in winter.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は平面図、第2
図は第1図におけるト」線断面図、第3図は第1図にお
ける1ft−ffl線断面図、第4図は第1図における
III −It’線拡線断大断面図5図〜第7図は作用
説明図である。 l・・・第1の流体通路 2・・・集熱板3・・・反射
面 4・・・第2の流体通路5.6.7.8・・・パイ
プ 9.11.12.13.14・・・パイプa・・・仮想
分割面 代理人 弁理士 赤澤−博 第1図 ■コ 第2図 5 ノ 第3図 第4図 第6図 第7図
The drawings show one embodiment of the present invention, with FIG. 1 being a plan view and FIG.
The figure is a sectional view taken along the line T'' in FIG. 1, FIG. 3 is a sectional view taken along the 1ft-ffl line in FIG. 1, and FIG. FIG. 7 is an explanatory diagram of the action. 1...First fluid passage 2...Heat collecting plate 3...Reflecting surface 4...Second fluid passage 5.6.7.8...Pipe 9.11.12.13. 14... Pipe a... Virtual split plane agent Patent attorney Hiroshi Akazawa Figure 1 ■ Figure 2 Figure 5 Figure 3 Figure 4 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)第1の流体通路を添設した集熱板を反射板形に成
形し、そのガS熱板の反射面によって太陽熱が集められ
る位置に第2の流体通路を設けたことを特徴とする太陽
熱集熱器。
(1) The heat collecting plate with the first fluid passage attached thereto is formed into the shape of a reflecting plate, and the second fluid passage is provided at a position where solar heat is collected by the reflective surface of the gas S heating plate. solar heat collector.
(2)前記第2の流体通路を、前記集熱板の反射面を対
称に2分割する仮想分割面に略沿った位置に並列に並べ
て配設した復数本の小径なパイプからなるものとしたこ
とを特徴とする特許請求の範囲第1項記載の太陽熱集熱
器。
(2) The second fluid passage is made up of several small diameter pipes arranged in parallel at positions substantially along a virtual dividing plane that symmetrically divides the reflective surface of the heat collecting plate into two. A solar heat collector according to claim 1, characterized in that:
JP58117934A 1983-06-28 1983-06-28 Solar heat collector Pending JPS608656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117934A JPS608656A (en) 1983-06-28 1983-06-28 Solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117934A JPS608656A (en) 1983-06-28 1983-06-28 Solar heat collector

Publications (1)

Publication Number Publication Date
JPS608656A true JPS608656A (en) 1985-01-17

Family

ID=14723821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117934A Pending JPS608656A (en) 1983-06-28 1983-06-28 Solar heat collector

Country Status (1)

Country Link
JP (1) JPS608656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135590U (en) * 1986-02-18 1987-08-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105640A (en) * 1975-03-13 1976-09-18 Inoue Japax Res
JPS56110840A (en) * 1980-02-04 1981-09-02 Masahiro Sano Reflection light-receiving type heat-collector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105640A (en) * 1975-03-13 1976-09-18 Inoue Japax Res
JPS56110840A (en) * 1980-02-04 1981-09-02 Masahiro Sano Reflection light-receiving type heat-collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135590U (en) * 1986-02-18 1987-08-26

Similar Documents

Publication Publication Date Title
US4007729A (en) Means of increasing efficiency of CPC solar energy collector
US4026273A (en) Solar fluid heater with electromagnetic radiation trap
US4723535A (en) Solar trap
USRE30027E (en) Solar radiation collector and concentrator
US4030477A (en) Solar collector with conical elements
US4043315A (en) Solar heat collector
US4117831A (en) Energy collector for collecting solar energy and the like
US3974824A (en) Solar heating device
CA1057609A (en) Solar collector with improved thermal concentration
US4092979A (en) Combined solar energy conversion and structural and mechanical beam and structures built therefrom
US4003366A (en) Solar heat collector module
US4427838A (en) Direct and diffused solar radiation collector
US4079724A (en) Radiant energy collector panel and system
CN103370581B (en) Solar heat concentrator apparatus, system and method
US4892593A (en) Solar trap
US4132219A (en) Extra-focal, convective suppressing solar collector
US3951128A (en) Combined flat plate - focal point solar heat collector
US3929122A (en) Solar energy collector
US4142510A (en) Solar heater
US4566434A (en) Solar energy collector
JPS6361579B2 (en)
USRE30407E (en) Solar heat collector module
Norton et al. Symmetric and asymmetric linear compound parabolic concentrating solar energy collectors: the state-of-the-art in optical and thermo-physical analysis
JPS608656A (en) Solar heat collector
EP0002374A1 (en) Radiation collector