JPS6081993A - Solid-state color image pickup device - Google Patents

Solid-state color image pickup device

Info

Publication number
JPS6081993A
JPS6081993A JP58190064A JP19006483A JPS6081993A JP S6081993 A JPS6081993 A JP S6081993A JP 58190064 A JP58190064 A JP 58190064A JP 19006483 A JP19006483 A JP 19006483A JP S6081993 A JPS6081993 A JP S6081993A
Authority
JP
Japan
Prior art keywords
signal
receiving element
light receiving
signals
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190064A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Shigehiro Miyatake
茂博 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58190064A priority Critical patent/JPS6081993A/en
Publication of JPS6081993A publication Critical patent/JPS6081993A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements

Abstract

PURPOSE:To enable to form correct luminance signals and chrominance signals at high resolution when driving a solid-state color image pickup element in field accumulation mode by using color filters arranged in prescribed manner. CONSTITUTION:W picture elements are arranged in every other element in each vertical row material eight picture elements, two picture elements in horizontal direction and four picture elements in vertical direction, a unit of repetition, and one element each of Ye picture element and Cy picture element exists in a repetition unit and separated by one horizontal row between. G picture elements are allotted at remaining positions. A solid-state image pickup element provided with color filters of such arrangement is driven in field accumulation mode, and forms a row of signal packets to which vertical two picture elements are added. The signal from the element 1 is branched, and one is led directly to sample and hold circuit 3-7 and another is led to the circuits through a delay circuit 2. Luminance signals Y of wide band are formed through a BPF8 and an LPF9. Further, R signals and B signals from which false signals are removed are obtained through a switching circuit 14.

Description

【発明の詳細な説明】 く技術分野〉 本発明は色分解機能を備えた固体カラー撮像装置に関し
、特にフィールド蓄積モードにて駆動する固体カラー撮
像装置に関するものである〇〈従来技術〉 2次元固体撮像素子を1枚用いてカラー映像信号を得る
には、通常色フィルタを撮像素子受光面に配性して被写
体像を各色成分毎に空間サンプリングする方法が採られ
ている○この場合、色フィルタの配列は得られるカラー
映倫の両@外+4/左右するが、一方では固体撮像素子
の構造や駆動法によっても配列は制約を受ける。従って
従来より固体撮像素子それぞれの特徴に合わせた種々の
色フィルタ配列が提唱されている。
[Detailed Description of the Invention] Technical Field The present invention relates to a solid-state color imaging device with a color separation function, and more particularly to a solid-state color imaging device driven in field accumulation mode. To obtain a color video signal using a single image sensor, a method is usually adopted in which a color filter is placed on the light-receiving surface of the image sensor and the subject image is spatially sampled for each color component. The arrangement depends on the color image quality obtained, but on the other hand, the arrangement is also limited by the structure and driving method of the solid-state image sensor. Therefore, various color filter arrays have been proposed that are tailored to the characteristics of each solid-state image sensor.

□固体撮像素子の駆動法のうちフィールド蓄積モードに
よる駆動法が最近特に注目されている。
□Among the driving methods for solid-state image sensors, field accumulation mode driving methods have recently attracted particular attention.

(1983年テレビジョン学会全国大会3−16.3−
17.4−9.4−10等)即ちフィールド蓄積モード
による駆動法では、垂直方向に隣接する2画素の信号を
加算して読み出すことにより、フィールド周期で映像信
号の蓄積と読み出しが可能となり、フレーム周期の蓄積
モードに比べ残像が少々く垂直方向でのモアレの発生が
少ないという特徴を持つ0 フィールド蓄積駆動法に適用可能な色フィルタ配列とし
て提唱されている手法は主に以下の2タイプに分類され
る。その1つは例えば第1図(a) K示す特開昭57
−3968/1号公報記載の配列のように、2つの色信
号そのものが1水平走査期間(I H)毎に交互に変調
成分として得られるものであり、他の1つは例えば第1
図(b)に示す特開昭5l−aa9Qo号公報記載の配
列のように、2つの色信号の和信号と差信号がI H毎
に交互に変調成分として得られるものである。ここで、
R:赤色、G:緑色、B:青色として、W= R+ G
 十Bは透明フィルタ、Ye=R十G は黄色フィルタ
、Cy=G+Bはンアン色フィルタを表わす。
(1983 Television Society National Conference 3-16.3-
17.4-9.4-10, etc.) In other words, in the field accumulation mode driving method, by adding and reading the signals of two vertically adjacent pixels, it is possible to accumulate and read out the video signal in the field period. Compared to the frame period accumulation mode, there is a slight afterimage and less moiré in the vertical direction.There are two main types of methods that have been proposed as color filter arrays that can be applied to the field accumulation drive method: being classified. One of them is, for example, Fig. 1(a) K shown in Japanese Unexamined Patent Application Publication No. 1989-57.
As in the arrangement described in Publication No. 3968/1, the two color signals themselves are obtained as modulation components alternately every horizontal scanning period (IH), and the other one is, for example, the first color signal.
As shown in the arrangement described in Japanese Patent Laid-open No. 51-aa9Qo shown in FIG. 5B, a sum signal and a difference signal of two color signals are obtained alternately as modulation components for each IH. here,
R: red, G: green, B: blue, W = R + G
10B represents a transparent filter, Ye=R1G represents a yellow filter, and Cy=G+B represents a negative color filter.

即ち、第1図(a)では奇数フィールド、偶数フィール
ドとも奇数ラインでは(W十Ye)−(Cy十G)=2
Rが変調成分として得られ、偶数ラインではいt/+C
y) −(Ye十G)=2Bが変調成分として得られる
。従ってIH遅延線を用いて同時化すれば常にR及びB
信号が得られる。一方、第1図(b)では奇数フィール
ド、(i−数フィールドとも奇数ラインでn(Cy+G
)−(Ye十G)=B−Rが変調成分として得られ、偶
数ラインでは(Cy十Ye)−(GyG)=B十Rが変
調成分として得られる。従って実時間信号とIH遅延信
号間で和を取ることにょ52B信号が、差を取ることに
より2R信号が得られる。
That is, in FIG. 1(a), (W0Ye)-(Cy1G)=2 in both the odd field and the even field on the odd line.
R is obtained as a modulation component, and on even lines t/+C
y) −(Ye+G)=2B is obtained as a modulation component. Therefore, if you synchronize using an IH delay line, R and B
I get a signal. On the other hand, in FIG. 1(b), both the odd field and the (i-number field) are n(Cy+G
)−(Ye×G)=BR is obtained as a modulation component, and for even lines, (Cy×Ye)−(GyG)=B×R is obtained as a modulation component. Therefore, a 52B signal is obtained by taking the sum between the real time signal and the IH delay signal, and a 2R signal is obtained by taking the difference.

なお、輝度信号は両タイプともに同様の手法でイクられ
る。即ち、全画素に輝度信号の大半を占めるG成分が含
まれていることから、垂直2画素で加算された全信号パ
ケット列をフィルタに通し、前記色調成分のみを除去す
ることによって広帯域の信号として得られる。
Note that the luminance signal is obtained using the same method for both types. In other words, since all pixels contain the G component that makes up the majority of the luminance signal, the entire signal packet sequence added by two vertical pixels is passed through a filter and only the tone component is removed, resulting in a broadband signal. can get.

以]二の2つのタイプの配列を比較すると、第1図(b
)では1つの色信号を得るのに水平・垂直両方向にわた
る4信号パケット間の演算で得なければならないのに対
し、第1図(a)では水平に隣接する2信号パケット間
の演算で得られるため、第1図(a)の方がより偽信号
の発生が少なく優れていると考えられる。
Comparing the two types of arrays shown in Figure 1 (b)
), one color signal must be obtained by calculations between four signal packets spanning both horizontal and vertical directions, whereas in Fig. 1(a), it is obtained by calculations between two horizontally adjacent signal packets. Therefore, it is considered that the method shown in FIG. 1(a) is superior in that it generates fewer false signals.

第1図(a)の配列VC&′1、しかしながら、以下の
よう々欠点が存在する。まず垂直2画素加算信号列にお
けるG、 R,B各成分の周波数応答を調べると第2図
の如くなる。従って、輝度信号の低域成分はR+2G十
B となり、一般に撮像素子のB領域での応答が低いこ
とを考慮すると標準テレビジョン方式における輝度信号
成分の割合である0、3OR十0.59G十〇、] I
Bに近い値となって問題はない。一方、輝度信号の高域
成分1r、1:2G−t−Hの状態と20+Rの状態が
I H@[交互する。従って、成分が不完全である上に
1■毎に異なったアンバランスな信号となる。
The array VC&'1 in FIG. 1(a), however, has the following drawbacks. First, when examining the frequency response of each of the G, R, and B components in the vertical two-pixel addition signal string, the result is as shown in FIG. Therefore, the low frequency component of the luminance signal is R+2G10B, which is the ratio of the brightness signal component in the standard television system, which is 0.3OR100.59G10, considering that the response of the image sensor is generally low in the B region. , ] I
The value is close to B, so there is no problem. On the other hand, the high frequency component 1r of the luminance signal, the state of 1:2G-t-H and the state of 20+R are IH@[alternating. Therefore, not only the components are incomplete, but also an unbalanced signal that differs from one to the other becomes an unbalanced signal.

さらに色信号においても次のよう々問題点が存在する。Furthermore, the following problems exist in color signals as well.

色信号は第2図ではナイキスト限界周波数(fN)Kお
ける変調成分として取り出されるが、これを分解すると
次のような単位から成っている。
In FIG. 2, the color signal is extracted as a modulation component at the Nyquist limit frequency (fN)K, but when broken down, it consists of the following units.

即ちR信号はw−cyとYe−Gの加算平均、B信号U
W−YeとCy−Gの加算平均である。一方、実現可能
な色フィルタの分光透過特性は一般に第3図の如くであ
る。ここでGフィルタはYe フィルタとCyフィルタ
の重ねにより得た場合である。この分光特性に対し前記
演算を施すと一、 Ye Gy C3’−Gではほぼ純
粋なR及びB信号が得られるが、W−Cy、W−Yeで
に本来得るべきR,B信号に加えて他の色光の成分も混
入する。換言すれば、(W十Ye)−(Cy十G)では
R信号が、(w十cy ) −(Ye十G)でけB信号
がそれぞれ存在する場合のみ変調成分が現われるべきで
あるにもかかわらす、他の色光が存在する場合でも変調
成分が現われてしまうことを意味し、色再現上の誤りと
なる。
That is, the R signal is the average of w-cy and Ye-G, and the B signal U
This is the additive average of W-Ye and Cy-G. On the other hand, the spectral transmission characteristics of a color filter that can be realized are generally as shown in FIG. Here, the G filter is obtained by overlapping a Ye filter and a Cy filter. When the above calculation is applied to this spectral characteristic, almost pure R and B signals are obtained with Ye Gy C3'-G, but in addition to the R and B signals that should be obtained with W-Cy and W-Ye. Components of other colored lights are also mixed in. In other words, the modulation component should appear only when the R signal exists in (W 0 Ye) - (Cy 0 G) and the B signal exists in (w 0 cy) - (Ye 1 G). However, this means that modulation components will appear even when other colored lights are present, resulting in an error in color reproduction.

〈発明の目的〉 本発明は以上のような問題点に鑑みて考案されたもので
、輝度信号、色信号とも高い解像度を保った上で、輝度
信号では低域・高域とも常時一定の正しい成分比が得ら
れ、色再現性においても偽応答のない正しい信号が得ら
れる色フィルタ配列をもった固体カラー撮像装置を提供
するものである0 〈実施例〉 第4図(a)及び(b)は本発明における色フィルタ配
列の例を示したものである。これらはすべて水平方向2
画素、垂直方向4画素の8画素を繰返しの「11−位と
しており、このtit位内においてW画素は各垂直列内
で夏素子おきに配置されている。またYe画素とcy画
素は繰返し単位内で各1素子存在し、間VC+水平列お
いて隔てた位置を占めている。残りの位置には6画素が
あてがわれる。これらの配列を垂直方向に隣接する2画
素間で加算してフィールド蓄積モードにより駆動すると
、信号処理法や得られる信号は同等であり以下に示す優
れた特性を示す。
<Purpose of the Invention> The present invention was devised in view of the above-mentioned problems.The present invention maintains high resolution for both the luminance signal and the color signal, and the luminance signal always has constant correctness in both the low and high frequencies. The object of the present invention is to provide a solid-state color imaging device having a color filter array that can obtain a component ratio and a correct signal without false responses in terms of color reproducibility. ) shows an example of a color filter arrangement in the present invention. These are all horizontal 2
Pixels, 8 pixels (4 pixels in the vertical direction) are set as the 11-position of repetition, and within this tit position, W pixels are arranged every summer element in each vertical column.Ye pixels and cy pixels are the repetition unit. There is one element each in the array, occupying positions separated by an interval of VC + horizontal columns. Six pixels are assigned to the remaining positions. Adding these arrays between two vertically adjacent pixels When driven in field accumulation mode, the signal processing method and obtained signals are equivalent and exhibit the excellent characteristics shown below.

第4図(aL(b)の各配列において垂直2画素加算信
号の周波数応答をめると第5図のようになる。
The frequency response of the vertical two-pixel addition signal in each array of FIG. 4 (aL(b)) is as shown in FIG. 5.

これよりR信号及びB信号は周波数fNVCおける変調
成分としてIH毎に交互に得られ、輝度信号は色変調成
分のみを除去した広帯域信号として得られる。即ち、基
本的には第1図(a)の配列と同様の形で映像信号が得
られ、第1図(a)配列が持つ特徴である、色信号形成
に関与する画素が近接していることによる偽信号の少な
さ及び輝度信号の広帯域性を(ifiiえている。これ
に加え第4図の各配列はさらに第」図(a)配列の持つ
欠点をも完全に除いたものである。
From this, the R signal and the B signal are obtained alternately for each IH as a modulation component at the frequency fNVC, and the luminance signal is obtained as a wideband signal from which only the color modulation component is removed. That is, a video signal is basically obtained in the same format as the arrangement shown in FIG. 1(a), and the pixels involved in color signal formation are close to each other, which is a feature of the arrangement shown in FIG. 1(a). In addition, the arrays shown in FIG. 4 completely eliminate the drawbacks of the array shown in FIG. 4(a).

まず輝度信号について考える。本配列ではW十G=R+
2G十B信号が1信号パケットおきに常時得られるから
、この信号をサンプルホールドした信号をもって輝度信
号低域成分とする。この信号の帯域はfN/2まで存在
する。これにより輝度信号低域1l−tR9G、B各信
号成分比が妥当であることに加え常に一定した信号とな
る。また輝度信号高域成分として、2画素加算信号のう
ちから低域成分とfN近傍の色変調成分を除去した信号
を用いる。
First, consider the luminance signal. In this arrangement, W0G=R+
Since a 2G1B signal is always obtained every other signal packet, a signal obtained by sampling and holding this signal is used as a luminance signal low-frequency component. The band of this signal exists up to fN/2. As a result, the luminance signal low frequency 1l-tR9G and B signal component ratios are not only appropriate but also always constant. Further, as the luminance signal high-frequency component, a signal obtained by removing the low-frequency component and the color modulation component near fN from the two-pixel addition signal is used.

この信号は第5図から明らかなように常に一定したR+
20十B信号であり、前記低域信号とのマツチングも良
くほぼ理想的な輝度高域信号である。
As is clear from Fig. 5, this signal is always constant R+
It is a 200B signal, which matches well with the low frequency signal and is an almost ideal brightness high frequency signal.

次に色信号について考える。色信号は前述のようVCf
N近傍の変調成分として得られるが、これを分解して考
察するとR信号はYe−GVcより、B信号はCy−G
により得ていることが判る。ところで色フィルタの分光
特性は第3図の如くであるから、この場合のR信号及び
B信号はほぼ理想的な分光特性を示し、他の色光成分が
混入することはほとんどない。以上示すように第4図の
各配列は第1n(a)の配列の長所をそのまま受け継ぎ
、かつ欠点を除去したきわめて優れた配列であることが
判明する。
Next, let's consider color signals. The color signal is VCf as mentioned above.
It is obtained as a modulation component near N, but if you break it down and consider it, the R signal is from Ye-GVc, and the B signal is from Cy-G.
It can be seen that the result is obtained by By the way, since the spectral characteristics of the color filter are as shown in FIG. 3, the R signal and B signal in this case exhibit almost ideal spectral characteristics, and other color light components are hardly mixed. As shown above, each of the arrays shown in FIG. 4 is found to be an extremely excellent array that inherits the advantages of the 1n(a) array without any drawbacks.

第6図は以上に示した本発明の色フィルタ配列における
信号処理を実際に行なうための回路ブロック図の例を示
したものである。第4図(a)ないしくb)の配列の色
フィルタを備えた固体撮像素子1けフィールド蓄積モー
ドで駆動され垂直2画素が加算された信号パケット列を
形成する。素子夏からの信号は分岐され、一方は直接、
他方はIH遅延回路2を介して、サンプルホールド回路
3.4.5゜6.7へ導かれる。回路3では全信号パケ
ットがサンプルホールドされ、帯域通過フィルタ8へ導
かれる。回路4でuW+G信号パケットのみがサンフル
ホールドされ、低域通過フィルタ9へ導カれる。フィル
タ8では基底周波数成分及び楡近傍の周波数成分が除去
され、高域の輝度信号成分が形成される。フィルタ9で
1dfN/2以下の低周波成分のみが通され低域輝度信
号成分が形成される。フィルタ8及び9からの信号は加
算され広帯域の輝度信号Yが形成される。
FIG. 6 shows an example of a circuit block diagram for actually carrying out signal processing in the color filter array of the present invention shown above. A solid-state image sensing device equipped with color filters arranged as shown in FIGS. 4(a) and 4(b) is driven in a single field accumulation mode to form a signal packet string in which two vertical pixels are added. The signal from Motoko is branched, one is directly,
The other one is guided through the IH delay circuit 2 to the sample and hold circuit 3.4.5°6.7. In circuit 3, all signal packets are sampled and held and guided to bandpass filter 8. Only the uW+G signal packet is sample-held in the circuit 4 and guided to the low-pass filter 9. The filter 8 removes the base frequency component and frequency components near the elm to form a high-frequency luminance signal component. A filter 9 passes only low frequency components of 1 dfN/2 or less to form a low frequency luminance signal component. The signals from filters 8 and 9 are summed to form a broadband luminance signal Y.

一方、回路5でHW+Yeないしv+cy信号がサンプ
ルホールドされるから、回路5の出力より回路4の出力
が減算され、IH毎に交互するRないしB信号IOが得
られスイッチ回路14へ導かれる。同様にして、回路6
ではw十cyないしW+Ye信号がサンプルホールドさ
れ、回路7TfdW十G信号がサンプルホールドされる
から、回路6の出力より回路7の出方が減算され、I1
1毎に交互するBないしR信号IIが得られる。
On the other hand, since the HW+Ye to v+cy signals are sampled and held in the circuit 5, the output of the circuit 4 is subtracted from the output of the circuit 5, and R or B signals IO which alternate for each IH are obtained and guided to the switch circuit 14. Similarly, circuit 6
Then, the w+cy or W+Ye signal is sampled and held, and the circuit 7TfdW+G signal is sampled and held, so the output of circuit 7 is subtracted from the output of circuit 6, and I1
B to R signals II alternating every 1 are obtained.

ここでI H毎に交互する色信号を] H遅延信号で同
時化した場合、次のような偽色信号が発生する。即ち垂
直方向に輝度変化の大きい光像に対してはその変化点近
傍で色信号が偽応答する現象が生しる。これは例えば特
開昭58−90884号公報に記載の手法で解決可能で
ある。即ち、輝度の垂直輪郭信号を] H遅延した色信
号に加算すれば色信号の偽応答成分が除去される訳であ
る。この手法を以下のようにしてここで用いることが可
能である。ます回路4の出力から回路7の出力を減算す
ると輝度の垂直輪郭信号12が得られる。従って信号1
2′fr:適当な大きさにした後信号11に加算すれば
上記偽色信号力積T消されたIH遅延信号13が得られ
、スイッチ回路14へ導かれる。スイッチ回路14では
IH毎に切換動作が行なわれ、同時化されかつ偽信号の
除去されたR信号及びB信号が出力される。
Here, when the color signals that alternate every IH are synchronized with the H delay signal, the following false color signal is generated. That is, for an optical image with a large change in luminance in the vertical direction, a phenomenon occurs in which the color signal falsely responds near the point of change. This problem can be solved, for example, by the method described in Japanese Patent Application Laid-Open No. 58-90884. That is, by adding the luminance vertical contour signal to the chrominance signal delayed by ]H, the false response component of the chrominance signal is removed. This technique can be used here as follows. By subtracting the output of the circuit 7 from the output of the square circuit 4, a luminance vertical contour signal 12 is obtained. Therefore signal 1
2'fr: By adding it to the signal 11 after adjusting it to an appropriate magnitude, the IH delay signal 13 in which the false color signal impulse T has been canceled is obtained, and is guided to the switch circuit 14. The switch circuit 14 performs a switching operation for each IH, and outputs R and B signals that are synchronized and have false signals removed.

〈効果〉 以上示したように、本発明によれば固体カラー撮像素子
をフィールド蓄積モードで駆動する場合困難であった、
偽応答のない正しい輝度信号及び色信号を高い解像度で
形成することが可能となる。
<Effects> As shown above, according to the present invention, it is difficult to drive a solid-state color image sensor in field accumulation mode.
It becomes possible to form correct luminance signals and color signals with high resolution without false responses.

また、使用色フィルタは全画素の1/2が透明0v)フ
ィルタであシ、光の利用効率が高く高感度が得られる利
点をも合わせ備えている。
In addition, the color filter used is a 0V) filter in which 1/2 of all pixels are transparent, which also has the advantage of high light utilization efficiency and high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)はフィールド蓄積モードにおい
て従来用いられている色フィルタ配列の例を示す図、第
2図は第1図(a)の場合の出力信号における各成分毎
の周波数応答を示す図、第3図は通常用いられる色フィ
ルタの分光透過特性を示す図、第4図(a)及び(b)
は本発明による色フィルタの配列を示す図、m5図は第
4図(a)及び(b)の場合の出力信号における各成分
毎の周波数応答を示す図、第6図は本発明全実現するた
めの回路ブロック図である0 1:固体撮像素子、2:IH遅延回路、3,4゜5、6
.7 :サンプルホールド回路、8:帯域通過フィルタ
、9:低域通過フィルタ、14:スイッチ回路。 代理人 弁理士 福 士 愛 彦 (他2名)第1図 第2図 第314 (1) (1)) 第4図 0 1朕 fs 第5図 第6図
Figures 1(a) and (b) are diagrams showing examples of color filter arrays conventionally used in field accumulation mode, and Figure 2 is the frequency of each component in the output signal in the case of Figure 1(a). Figure 3 is a diagram showing the response, Figure 3 is a diagram showing the spectral transmission characteristics of commonly used color filters, Figure 4 (a) and (b)
is a diagram showing the arrangement of color filters according to the present invention, Figure m5 is a diagram showing the frequency response of each component in the output signal in the case of Figures 4 (a) and (b), and Figure 6 is a diagram showing the arrangement of color filters according to the present invention. This is a circuit block diagram for 0 1: solid-state image sensor, 2: IH delay circuit, 3, 4° 5, 6
.. 7: Sample and hold circuit, 8: Band pass filter, 9: Low pass filter, 14: Switch circuit. Agent Patent attorney Aihiko Fuku (2 others) Figure 1 Figure 2 Figure 314 (1) (1)) Figure 4 0 1 fs Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (1)水平・垂直方向に配列された受光素子群からなる
撮像装置において、各受光素子は第1スペクトル帯域に
感応する第1の受光素子、第1スペクトル帯域と第2ス
ペクトル帯域に感応する第2の受光素子、第」スペクト
ル帯域と第3スペクトル帯域に感応する第3の受光素子
、前記第11第2、第3の全スペクトル帯域に感応する
第4の受光素子のいずれかによシ構成されており、前記
第4の受光素子は1水平列おきに水平列全素子位FJヲ
占め、残余の水平列の間で前記第1の受光素子と第2の
受光素子が1素子毎に交互する水平列と前記第1の受光
素子と第3の受光素子が1素子毎に交互する水平列とが
交互して繰返し配列されて々す、上記受光素子群から得
られた信号に基いて色信号を形成するこJ−ルn曳m 
J−=ト入臼hζ力 丹、剰〜4b円大争7−(2、特
許請求の範囲第1項記載の固体カラー撮像装置において
、垂直方向に隣接する2画素の信号を加算して読み出す
ことを特徴とする固体カラー撮像装置。 (3)特許請求の範囲第2項記載の固体カラー撮像装置
において、第1の受光素子の信号と第4の受光素子の信
号とを加算した信号をサンプリングした信号により輝度
信号低域成分を形成することを特徴とする固体カラー撮
像装置。
[Scope of Claims] (1) In an imaging device consisting of a group of light receiving elements arranged in horizontal and vertical directions, each light receiving element is a first light receiving element sensitive to a first spectral band, a first light receiving element sensitive to a first spectral band, a second spectral band, and a second spectral band. a second light receiving element sensitive to a spectral band, a third light receiving element sensitive to a third spectral band, and a fourth light receiving element sensitive to all of the second and third spectral bands. The fourth light-receiving element occupies all the horizontal elements FJ every other horizontal row, and the first light-receiving element and the second light-receiving element are arranged between the remaining horizontal rows. obtained from the light receiving element group, wherein horizontal rows in which the first light receiving element and the third light receiving element alternate in each element and horizontal rows in which the first light receiving element and the third light receiving element alternate in each element are repeatedly arranged. A method for forming color signals based on signals obtained by
J-=To input hζ force Tan, remainder ~ 4b yen great dispute 7-(2. In the solid-state color imaging device according to claim 1, the signals of two pixels adjacent in the vertical direction are added and read out. (3) In the solid-state color imaging device according to claim 2, a signal obtained by adding the signal of the first light receiving element and the signal of the fourth light receiving element is sampled. A solid-state color imaging device characterized in that a low-frequency component of a luminance signal is formed from a signal obtained by applying a luminance signal.
JP58190064A 1983-10-11 1983-10-11 Solid-state color image pickup device Pending JPS6081993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190064A JPS6081993A (en) 1983-10-11 1983-10-11 Solid-state color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190064A JPS6081993A (en) 1983-10-11 1983-10-11 Solid-state color image pickup device

Publications (1)

Publication Number Publication Date
JPS6081993A true JPS6081993A (en) 1985-05-10

Family

ID=16251740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190064A Pending JPS6081993A (en) 1983-10-11 1983-10-11 Solid-state color image pickup device

Country Status (1)

Country Link
JP (1) JPS6081993A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205992A (en) * 1990-10-26 1991-09-09 Hitachi Ltd Solid-state color camera
US5121192A (en) * 1989-10-19 1992-06-09 Sanyo Electric Co., Ltd. Solid-state color imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121192A (en) * 1989-10-19 1992-06-09 Sanyo Electric Co., Ltd. Solid-state color imaging device
JPH03205992A (en) * 1990-10-26 1991-09-09 Hitachi Ltd Solid-state color camera

Similar Documents

Publication Publication Date Title
US4479143A (en) Color imaging array and color imaging device
EP0472299B1 (en) Image detection apparatus
CA1151287A (en) Color filter
US4131913A (en) Solid state television camera
KR100841895B1 (en) Camera with color filter
US4200883A (en) Solid state color television camera
JPS6081993A (en) Solid-state color image pickup device
JP2000316168A (en) Color image pickup element and device
JPH0378388A (en) Color solid state image pickup element
JP3079839B2 (en) Solid-state imaging device
JPS6351437B2 (en)
JP3483732B2 (en) Color imaging device
JPH0523114B2 (en)
JP3507110B2 (en) Video signal processing device
JPS58182978A (en) Color solid-state image pickup device
JP2000316166A (en) Color image pickup element and device
JPH0488785A (en) Color image pickup element and signal processing device
JPS63222594A (en) Solid-state image pickup device
JPH0712218B2 (en) Color solid-state imaging device
JP2655436B2 (en) Color solid-state imaging device
JPS5918909B2 (en) color imaging device
JP2000299872A (en) Color image pickup unit
JPS62104290A (en) Image pickup device
JPH07107496A (en) Solid state image pickup device
JPH05244611A (en) Solid-state color image pickup device