JPS6081016A - Method for recovering soda from waste liquor from pulp manufacturing stage - Google Patents

Method for recovering soda from waste liquor from pulp manufacturing stage

Info

Publication number
JPS6081016A
JPS6081016A JP18957383A JP18957383A JPS6081016A JP S6081016 A JPS6081016 A JP S6081016A JP 18957383 A JP18957383 A JP 18957383A JP 18957383 A JP18957383 A JP 18957383A JP S6081016 A JPS6081016 A JP S6081016A
Authority
JP
Japan
Prior art keywords
baco3
barium
recovery boiler
soda
barium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18957383A
Other languages
Japanese (ja)
Inventor
Kikuo Tokunaga
徳永 喜久雄
Senichi Tsubakizaki
椿崎 仙市
Koji Iwasaki
岩崎 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18957383A priority Critical patent/JPS6081016A/en
Publication of JPS6081016A publication Critical patent/JPS6081016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To reduce considerably the cost of fuel required to recover soda by feeding waste liquor from a pulp manufacturing stage and BaCO3 powder to a recovery boiler, calcining them, introducing the calcined products into a soda dissolving tank, producing NaOH and BaCO3 with water, and reusing the BaCO3 in the recovery boiler. CONSTITUTION:Highly concd. alkali waste liquor from a pulp manufacturing stage is blown into the bottom part of a recovery boiler 10 from burners 12 in the form of fine particles, and at the same time, heated air fed from air feeding pipes 13, 14 to produce smelted matter by combustion at a high temp. BaCO3 powder is also blown into the bottom part of the boiler 10 from feeding inlets 15, and it is converted into BaO and allowed to flow down into a soda dissolving tank 16 together with the smelted matter. The tank 16 contains water fed from a feeding pipe 17, and the smelted matter is dissolved in the water to produce NaOH and BaCO3. The NaOH is taken out of an outlet 18 for taking out white liquor, and it is stored in a white liquor tank 19. The BaCO3 is taken out of an outlet 21 and fed to a drying means 24. The dried BaCO3 is fed to the boiler 10 from the inlets 15.

Description

【発明の詳細な説明】 特に回収薬品の苛性化プロセスの合理化対策に関する。[Detailed description of the invention] In particular, it concerns measures to streamline the causticization process for recovered chemicals.

第1図はアルカリパルプ製造工程を示す概略説明図であ
る。以下、第1図を参照して従来のアルカリパルプ製造
法について説明する。
FIG. 1 is a schematic diagram showing an alkali pulp manufacturing process. Hereinafter, a conventional method for producing alkaline pulp will be explained with reference to FIG.

第1図において、lはパルプ蒸解缶、2は7’−ルプ拐
のブロータンク、Pはパルプ、3は廃液を濃縮するだめ
のエバポレータ、4は薬品回収ボイラ(以下回収ボイラ
と呼ぶ)、5はスメルと溶解タンク、6は苛性化槽、7
はロークリキルン、8は白液タンク、9は電気簗胆機で
ある。
In Fig. 1, l is a pulp digester, 2 is a 7'-loop blow tank, P is pulp, 3 is an evaporator for concentrating waste liquid, 4 is a chemical recovery boiler (hereinafter referred to as recovery boiler), 5 is the sumeru and dissolution tank, 6 is the causticizing tank, and 7 is the causticizing tank.
8 is a white liquor tank, and 9 is an electrolyte machine.

バルブ蒸解用の薬品は、蒸解缶1又は苛性化槽6に供給
され以下ブロータンク2、エバポレータ3、回収ボイラ
4、スメルト溶解タンク5、苛性化槽6、白液タンク8
の順にバルブ蒸解薬品循環系統PLを循環する。苛性化
槽6で生成した炭酸カル/ラムは、ロータリキルン7で
焼成1−て酸化カル/ラムとし苛性化槽6に循環利用さ
れる。又、薬品は上記回収ボイラ4において一部煙道か
らダストとなって飛散するが、そのほとんどは電気集塵
機9で回収されて黒液ラインに戻嘔れ上記回収ボイラ4
に送られ燃焼される。従来の方法において、アルカリパ
ルプ廃液は回収ボイラ4で燃焼する。ここで生成したス
メルトは、スメルト溶解檜5で水に溶解して炭酸ソーダ
水溶液をつくる。この炭酸ソーダは次に苛性化槽6で、
供給されるCa(ω1)2(又はCaOとH2O)と接
触泗せて次式のように蒸解薬品である苛性ソーダに苛性
化きれる。
Chemicals for bulb cooking are supplied to the digester 1 or the causticizing tank 6, which includes a blow tank 2, an evaporator 3, a recovery boiler 4, a smelt dissolving tank 5, a causticizing tank 6, and a white liquor tank 8.
The valves are circulated through the cooking chemical circulation system PL in this order. Cal/rum carbonate produced in the causticizing tank 6 is calcined in a rotary kiln 7 to become cal/rum oxide, which is recycled to the causticizing tank 6. In addition, some of the chemicals scatter as dust from the flue in the recovery boiler 4, but most of it is collected by the electrostatic precipitator 9 and returned to the black liquor line.
sent to and burned. In the conventional method, the alkaline pulp waste liquid is combusted in a recovery boiler 4. The smelt produced here is dissolved in water in a smelt dissolving hinoki 5 to produce a sodium carbonate aqueous solution. This carbonated soda is then sent to causticizing tank 6.
When it comes into contact with the supplied Ca(ω1)2 (or CaO and H2O), it is causticized into caustic soda, which is a cooking chemical, as shown in the following equation.

Na2COs−l−Ca(OH)2→2NaOH+Ca
CO3一方、苛性化槽6で生成したClIC0:lは、
ロークリキルン7で焼成してCaOとし、水で消和させ
てca(o+q)2を生成芒せて苛性化槽6に循環使用
する。
Na2COs-l-Ca(OH)2→2NaOH+Ca
On the other hand, ClIC0:l produced in the causticizing tank 6 is
CaO is calcined in a rotary kiln 7 and slaked with water to produce ca(o+q)2, which is circulated and used in a causticizing tank 6.

上記従来法の欠点は、苛性化槽6で生成したCaCO3
スラリをキルン焼成するときの燃料使用量が大きいこと
である。
The disadvantage of the above conventional method is that the CaCO3 generated in the causticizing tank 6
The problem is that the amount of fuel used when firing the slurry in a kiln is large.

本発明は苛性化槽6で生成するC a CO3スラリー
の焼成における省エネルギと回収薬品の苛性化プロセス
の合理化を図りうるパルプ廃液ソーダ回収方法を提供す
ることを目的とするものでおるが、同じ目的のために本
発明者等は先に回収ボイラのパルプ廃液燃焼部K Ca
CO3を主として含む粉末を供給して回収ボイラ炉内に
てCaOを得、同炉内で燃成されたCaOを回収ボイラ
下部のソーダ溶解槽へ導き、同ソーダ溶解槽内の苛性化
反応で生成するCaCO3スラリをボイラ煙道の排ガス
と接触σせて乾燥し、回収ボイラ炉内に投入するように
して、これにより従来使用していた苛性化装置内のCa
 CO3スラリの乾燥、焼成用ロータリキルンを排除す
る際の(acO3スラリの乾燥を、ボイラ排熱により有
効に行うことができるという方法を提案しているが(特
願昭57−149232号)、本発明はこれを更に改良
したもので上記方法におけるCaCO3を主として含む
粉末に代えて炭酸バリウム、又は炭酸バリウムと酸化鉄
を主として含む粉末を回収ボイラのパルプ廃液燃焼部に
供給すること罠より、焼成および苛性化率を高めだ点に
特徴を有するものである。
The purpose of the present invention is to provide a pulp waste soda recovery method that can save energy in the firing of the C a CO3 slurry produced in the causticizing tank 6 and streamline the causticizing process of the recovered chemicals. For this purpose, the present inventors first constructed a pulp waste liquid combustion section KCa of a recovery boiler.
Powder containing mainly CO3 is supplied to obtain CaO in the recovery boiler furnace, and the CaO burned in the furnace is led to the soda dissolution tank at the bottom of the recovery boiler, where it is generated by a causticizing reaction in the soda dissolution tank. The CaCO3 slurry is brought into contact with the exhaust gas of the boiler flue, dried, and then introduced into the recovery boiler furnace.
When eliminating the need for a rotary kiln for drying and firing CO3 slurry, a method has been proposed in which drying of acO3 slurry can be effectively carried out using boiler exhaust heat (Japanese Patent Application No. 149232/1982), but this paper The present invention further improves this by supplying barium carbonate or powder mainly containing barium carbonate and iron oxide to the pulp waste liquid combustion section of the recovery boiler instead of the powder mainly containing CaCO3 in the above method. It is characterized by a high causticization rate.

本発明は、ソーダ回収ボイラでパルプ廃液を噴霧燃焼す
る際に、回収ボイラのパルプ廃液燃焼部に炭酸バリウム
、又は炭酸バリウムと酸化鉄を主として含む粉末を供給
して回収ボイラ炉内にて酸化バリウム又は鉄酸バリウム
に焼成し、同炉内で焼成された酸化バリウム又は鉄酸バ
リウムを回収ボイラ下部のソーダ、バリウム、鉄分を回
収するソーダ溶解槽へ導き、同ソーダ溶解槽内の苛性化
反応で生成する炭酸バリウム又は炭酸バリウムと酸化鉄
スラリを回収ボイラの後部煙道排ガス中に接触させて乾
燥した炭酸バリウム及び酸化鉄粉末を回収ボイラ炉内に
供給することを特徴とするものである。
The present invention provides a method for spraying and burning pulp waste liquid in a soda recovery boiler, by supplying barium carbonate or powder mainly containing barium carbonate and iron oxide to the pulp waste liquid combustion section of the recovery boiler, and converting barium oxide in the recovery boiler furnace. Alternatively, the barium oxide or barium ferrate is calcined into barium ferrate, and the barium oxide or barium ferrate calcined in the same furnace is led to the soda dissolving tank at the bottom of the recovery boiler where soda, barium, and iron are recovered, and the causticizing reaction in the soda dissolving tank is carried out. This method is characterized in that barium carbonate or barium carbonate and iron oxide slurry produced are brought into contact with the exhaust flue gas at the rear of the recovery boiler to supply the dried barium carbonate and iron oxide powder into the recovery boiler furnace.

本発明の方法は、エネルギ多消費型産業であろ紙バルプ
工場のパルプ蒸解薬品回収ボイラに適用して有効である
The method of the present invention is effective when applied to a pulp cooking chemical recovery boiler of a filter paper pulp mill, which is an energy-intensive industry.

以下、第2図を参照して本発明を説明する。The present invention will be explained below with reference to FIG.

図において、10は回収ボイラ本体であり、下部は漏斗
状に傾斜しておシスメルトが流下しやすいように形成さ
れている。11は煙道に連がるボイラバンク部、12は
パルプ廃液バーナ、13及び14はそれぞれ1次及び2
次空気供給口、15は炭酸バリウム又は、炭酸バリウム
と酸化鉄を主として含む粉末の供給口である。酸化鉄と
してはFed、 Fe2O3,Fear4が用いられる
。炭酸バリウム、酸化鉄はスメルトに対しほぼ当量でよ
い。なお、上記粉末はパルプ廃液供給系統に添加しても
よい。16は上記回収ボイラ10の下部に配設されたソ
ーダ溶解槽、17は同ソーダ溶解槽16の上部に開口す
るととく配設でれた用水供給口、18は上記ソーダ溶解
槽16に開口するととく配設きれた白液取出し管、19
は同白液取出し管18が接続された白液クンク、20は
同白液タンク19に接続されだ白液供給管、21は上記
ソーダ溶解槽16の下底に接続された炭酸バリウム、又
は、炭酸バリウムと酸化鉄スラリ取出し管である。22
はボイラバック後部煙道に配設されたダスト捕集装置で
マルチクロン又は高温電気集じん機等が使用できる。2
3は上記ダスト捕集装置22に一側が接続され、他側が
ソーダ溶解槽16に開口する捕集ダスト移送管、24は
後部煙道に配設式れた炭酸バリウム、又は炭酸バリウム
と酸化鉄スラリの乾燥手段でボイラ排ガスに接触乾燥さ
せるようにしたものである。この場合、炭酸バリウム、
又は炭酸バリウムと酸化鉄を含むスラリは場合によって
は予備脱水後、脱水ケーキを乾燥するようにしてもよい
。24Δは上記炭酸バリウム又は炭酸バリウムと酸化鉄
の乾燥手段24の上部に配設されたスラリ供給手段で、
例えばスプレィノズル、ベルトコンベア等が使用できる
。25は上記炭酸バリウム又は、炭酸バリウムと酸化鉄
のスラリ増出管21に一側が接続きれ、他側か上記スラ
リ供給手段24Aに接続されたスラリ移送管、26は上
記炭酸バリウム又は炭酸バリウムと酸化鉄スラリの乾燥
手段24の下部に一側が接続きれ他側が炭酸バリウム又
は、炭酸バリウムき酸化鉄を主として含む粉末の供給口
15に接続式れだ、乾燥された炭酸バリウム又は、炭酸
バリウムと酸化鉄粉末の移送管である。
In the figure, 10 is a recovery boiler main body, the lower part of which is sloped in a funnel shape so that the sysmelt can easily flow down. 11 is a boiler bank connected to the flue, 12 is a pulp waste liquid burner, and 13 and 14 are primary and secondary, respectively.
The secondary air supply port 15 is a supply port for barium carbonate or a powder mainly containing barium carbonate and iron oxide. Fed, Fe2O3, and Fear4 are used as iron oxides. Barium carbonate and iron oxide may be used in approximately equivalent amounts to the amount of smelt. Note that the above powder may be added to the pulp waste liquid supply system. 16 is a soda dissolving tank disposed at the bottom of the recovery boiler 10, 17 is a water supply port which is specially arranged to open at the top of the soda dissolving tank 16, and 18 is a water supply port which is opened to the soda dissolving tank 16. Completely installed white liquid outlet pipe, 19
20 is a white liquor supply pipe connected to the white liquor tank 19; 21 is barium carbonate connected to the bottom of the soda dissolving tank 16; or, This is a barium carbonate and iron oxide slurry extraction pipe. 22
is a dust collection device installed in the flue at the rear of the boiler back, and a multi-clone or high-temperature electrostatic precipitator can be used. 2
3 is a collected dust transfer pipe connected to the dust collecting device 22 on one side and opened to the soda dissolving tank 16 on the other side, and 24 is a barium carbonate or barium carbonate and iron oxide slurry disposed in the rear flue. This drying method is used to dry the boiler by contacting with the boiler exhaust gas. In this case, barium carbonate,
Alternatively, the slurry containing barium carbonate and iron oxide may be pre-dehydrated as the case may be, and then the dehydrated cake may be dried. 24Δ is a slurry supply means disposed above the barium carbonate or barium carbonate and iron oxide drying means 24,
For example, a spray nozzle, a belt conveyor, etc. can be used. 25 is a slurry transfer pipe whose one side is connected to the slurry increase pipe 21 of the barium carbonate or barium carbonate and iron oxide, and the other side is connected to the slurry supply means 24A, and 26 is the barium carbonate or barium carbonate and iron oxide slurry transfer pipe. One side is connected to the lower part of the drying means 24 for iron slurry, and the other side is connected to the feed port 15 for powder mainly containing barium carbonate or barium carbonate and iron oxide, and dried barium carbonate or barium carbonate and iron oxide. This is a powder transfer tube.

このような構成において、本発明の作用について説明す
る。回収ボイラ10のバルブ廃液燃焼部である炉底部に
は高濃度に濃縮てれたアルカリバルブ廃液がバーナ12
から微粒状で噴霧芒れ炉底部に供給される1次及び2次
空気供給管13゜14から供給される加熱空気で高温燃
焼されスメルト(主としてNa2COx )を生成する
。この際、図のように炉底部を漏斗状に傾斜させておき
スメルトの流れを良好にする。
In such a configuration, the operation of the present invention will be explained. At the bottom of the furnace, which is the valve waste liquid combustion section of the recovery boiler 10, highly concentrated alkaline valve waste liquid is burned in the burner 12.
The heated air supplied from the primary and secondary air supply pipes 13 and 14 is supplied to the bottom of the furnace in the form of fine particles, and is combusted at high temperature to produce smelt (mainly Na2COx). At this time, the bottom of the furnace is tilted like a funnel as shown in the figure to improve the flow of the smelt.

をらに、炉底部に炭酸バリウム又は、炭酸バリウムと酸
化鉄を主として含む粉末を供給口15から炉内に噴霧す
る。炉門で焼成(13a C03−B a 0−+−c
o2 、又はBaCO3−1−Fe20a→BaO*F
e20z+COz )されたB a O又はB aO−
F e20’a の大部分を炉壁を流下するスノルトに
乗せて下部のソーダ溶解槽16に流下させる。ソーダ溶
解槽16内では、用水供給管17からあらかじめ供給し
である水にスメルト(NazCOa 、 BaO、又は
BaO1’ezO,+ )が溶解して下記反応を生ずる
Furthermore, barium carbonate or a powder mainly containing barium carbonate and iron oxide is sprayed into the furnace from the supply port 15 at the bottom of the furnace. Firing at the furnace gate (13a C03-B a 0-+-c
o2, or BaCO3-1-Fe20a→BaO*F
e20z+COz) BaO or BaO-
Most of the Fe20'a is carried by the snort flowing down the furnace wall and is caused to flow down into the soda dissolving tank 16 at the bottom. In the soda dissolving tank 16, smelt (NazCOa, BaO, or BaO1'ezO,+) is dissolved in the water previously supplied from the water supply pipe 17, and the following reaction occurs.

Na2COa +BaO−1−820−2Na01−1
 + BaC0+ −(1)又はNa2COa+Ba0
Fe20s+1(20−2NaQ(+BaC0a+Fe
20a −(21このようにして蒸解薬品であるNaO
Hを作る。
Na2COa +BaO-1-820-2Na01-1
+ BaC0+ -(1) or Na2COa+Ba0
Fe20s+1(20-2NaQ(+BaC0a+Fe
20a - (21 In this way, the cooking chemical NaO
Make H.

一方、ソーダ溶解槽16で生成しだN a Ollは白
液取出口18から白液タンク19へ導かれ、白液供給管
20から以降第1図に示すようなバルブ蒸解薬品循環系
統P Lへ送られる。又、ソーダ溶解槽16で生成した
BaCO3又は、B acO3,F C203は、炭酸
バリウム又は、炭酸バリウム、酸化鉄スラリ取出口21
から取出σれ、このスラリーは前記のように後部煙道の
乾燥手段24に送り、乾燥物は、回収ボイラ供給口15
から供給する。
On the other hand, NaOll generated in the soda dissolving tank 16 is led from the white liquor outlet 18 to the white liquor tank 19, and then from the white liquor supply pipe 20 to the valve cooking chemical circulation system PL as shown in FIG. Sent. In addition, BaCO3 or BacO3, F C203 generated in the soda dissolving tank 16 is transferred to the barium carbonate, barium carbonate, or iron oxide slurry outlet 21.
This slurry is sent to the drying means 24 in the rear flue as described above, and the dried material is sent to the recovery boiler supply port 15.
Supplied from.

本発明において次のような効果が奏される。The present invention provides the following effects.

(ト) 本発明方法はバルブ廃液を噴霧燃焼するソーダ
回収ボイラにおいて、回収ボイラのバルブ廃液燃焼部に
炭酸バリウム又は、炭酸バリウムと酸化鉄を主として含
む粉末を供給して回収ボイラ炉内にて酸化バリウム又は
、鉄酸バリウムを焼成させるようにしたので、従来の方
法に比べ燃料消費量が大きかったロータリーキルンによ
る加熱が必要でなく、従って燃料費を大幅に節減できる
利点がある。
(g) In a soda recovery boiler that spray-combusts valve waste liquid, the method of the present invention is to supply barium carbonate or a powder mainly containing barium carbonate and iron oxide to the valve waste liquid combustion section of the recovery boiler and oxidize it in the recovery boiler furnace. Since barium or barium ferrate is calcined, there is no need for heating in a rotary kiln, which consumes a large amount of fuel, compared to conventional methods, and this has the advantage of significantly reducing fuel costs.

(イ) 第1表はカルシウム、バリウムの炭酸塩及び水
酸化物の水への溶解度を示しだものである。この表にお
いて、カルシウムとバリウムの溶解度はバリウムの方が
不埒<、水酸化物の溶解度はバリウムの方が大きい。一
方前述の苛性化の反応式(1)の詳細は次式の如くであ
り、 BaO→−)120− Ba(OH)z ・・f31N
a 2C○3 + Ba(OH)2−2NaOH+Ba
CO3−f41水酸化物の溶解度が大きく、炭酸塩の溶
解度が小さい程、反応は進み易く、苛性化率が高くなる
。従ってカルシウムを用いる方法(特願昭57−142
138 )に比してバリウムを用いる本発明方法の方が
高い苛性化率が得られる。
(a) Table 1 shows the solubility of calcium and barium carbonates and hydroxides in water. In this table, the solubility of calcium and barium is greater for barium, and the solubility of hydroxide is greater for barium. On the other hand, the details of the above-mentioned causticizing reaction formula (1) are as shown in the following formula, BaO→-)120- Ba(OH)z...f31N
a2C○3 + Ba(OH)2-2NaOH+Ba
The greater the solubility of CO3-f41 hydroxide and the lower the solubility of carbonate, the easier the reaction will proceed and the higher the causticization rate will be. Therefore, a method using calcium (Japanese Patent Application No. 57-142)
138), the method of the present invention using barium provides a higher causticizing rate.

第1表 (つ) 第3図は各温度における109Kp(反応の平
衡定数の対数)をプロットしたものであり、10gKp
が大きい程、反応が進み易いことを示している。図にお
いて、曲線Aは、MgCO3−MgO+CO2゜曲線B
はMgCO3+Fe2O3→MgO−Fc203+CO
22曲線Cは、CaCO3−+ CaO+ CO21曲
線りはCaCO3+Feze3−+ CaO−Fe2O
3+ CO2、曲線EはB a CO3= 13aO−
1−CO2についてそれぞれj’ogKpの温度依存性
をめたものである。
Table 1 (T) Figure 3 is a plot of 109Kp (logarithm of the equilibrium constant of the reaction) at each temperature, and 10gKp
The larger the value, the easier the reaction progresses. In the figure, curve A is MgCO3-MgO+CO2° curve B
is MgCO3+Fe2O3→MgO-Fc203+CO
22 curve C is CaCO3-+ CaO+ CO21 curve is CaCO3+Feze3-+ CaO-Fe2O
3+ CO2, curve E is B a CO3 = 13aO-
The temperature dependence of j'ogKp for 1-CO2 is determined.

このようにアルカリ土類金属(Mg、Ca、Baなど)
の炭酸塩の熱分解においては、その単独塩の熱分解(曲
線A、C)よりも酸化鉄との混合物の熱分解(曲線B、
D)の方が10gKpが大きく、反応面で優位である。
In this way, alkaline earth metals (Mg, Ca, Ba, etc.)
In the thermal decomposition of the carbonate, the thermal decomposition of the mixture with iron oxide (curves B, C,
D) has a larger 10 gKp and is superior in terms of reaction.

このことは炭酸バリウムの熱分解(曲線E)についても
同様な事が考えられ、炭酸バリウムに酸化鉄を加えると
、反応が進み易くなり、高い苛性化率が得られる。
The same can be said for the thermal decomposition of barium carbonate (curve E); when iron oxide is added to barium carbonate, the reaction progresses more easily and a high causticization rate can be obtained.

(1) 乾燥した炭酸バリウム又は炭酸バリウムと酸化
鉄を炉内に供給するので炉内で乾燥でせる場合に比べ、
炉内温度の低下がなく、BaO1又はBaO・Fe2O
3の焼成がより容易となる。
(1) Since dry barium carbonate or barium carbonate and iron oxide are fed into the furnace, compared to drying in the furnace,
No decrease in furnace temperature, BaO1 or BaO・Fe2O
3. Firing becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアルカリパルプ製造工程を示すフローノ
ート、第2図は本発明の方法が適用できる装置を示す概
略図、第3図は熱力学データを用いて31檜しだj’o
gKpの温度依存性を示すグラフである。 第1図 笛2図
Figure 1 is a flow note showing the conventional alkali pulp manufacturing process, Figure 2 is a schematic diagram showing an apparatus to which the method of the present invention can be applied, and Figure 3 is a flow note showing the conventional alkali pulp manufacturing process.
It is a graph showing the temperature dependence of gKp. Figure 1 Flute Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) ソーダ回収ボイラでパルプ廃液を噴霧燃焼する
際に、回収ボイラのパルプ廃液燃焼部に炭酸バリウム、
又は炭酸バリウムと酸化鉄を主とl〜で含む粉末を供給
して回収ボイラ炉内にて酸化バリウム、又は鉄酸バリウ
ムに焼成し、同炉内で焼成された酸化バリウム、又は鉄
酸バリウムを回収ボイラ下部のソーダ溶解槽へ導きソー
ダ、バリウム、鉄分を回収すると共Vこ、同ソーダ溶解
槽内の苛性化反応で生成する炭酸バリウムスラリ又は炭
酸バリウムスラリと酸化鉄スラリを回収ボイラの後部煙
道排ガスに接触させて乾燥したのち、乾燥した炭酸バリ
ウム又は、炭酸バリウムと酸化鉄粉末を回収ボイラ炉内
に供給することを特徴とするパルプ廃液ソーダ回収方法
(1) When spraying and burning pulp waste liquid in a soda recovery boiler, barium carbonate,
Alternatively, a powder containing mainly barium carbonate and iron oxide in l ~ is supplied and fired into barium oxide or barium ferrate in a recovery boiler furnace, and the barium oxide or barium ferrate fired in the same furnace is converted into barium oxide or barium ferrate. The barium carbonate slurry or barium carbonate slurry and iron oxide slurry produced by the causticizing reaction in the soda dissolving tank are collected as smoke at the rear of the recovery boiler. A method for recovering soda from pulp waste liquid, characterized by supplying dried barium carbonate or barium carbonate and iron oxide powder into a recovery boiler furnace after drying by contacting with road exhaust gas.
JP18957383A 1983-10-11 1983-10-11 Method for recovering soda from waste liquor from pulp manufacturing stage Pending JPS6081016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18957383A JPS6081016A (en) 1983-10-11 1983-10-11 Method for recovering soda from waste liquor from pulp manufacturing stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18957383A JPS6081016A (en) 1983-10-11 1983-10-11 Method for recovering soda from waste liquor from pulp manufacturing stage

Publications (1)

Publication Number Publication Date
JPS6081016A true JPS6081016A (en) 1985-05-09

Family

ID=16243588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18957383A Pending JPS6081016A (en) 1983-10-11 1983-10-11 Method for recovering soda from waste liquor from pulp manufacturing stage

Country Status (1)

Country Link
JP (1) JPS6081016A (en)

Similar Documents

Publication Publication Date Title
CN106396432B (en) A kind of method of pulping and paper-making white clay recycling active lime
EA002327B1 (en) Process for producing highly reactive lime in a furnace
JPS5936793A (en) Method and apparatus for recovering soda from pulp waste liquor
JPS6081016A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59164625A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146936A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146937A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59164622A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146930A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS5954621A (en) Method and apparatus for recovering soda from waste liquid of pulp
JPS6081018A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS6081019A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59164627A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59164626A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS6081017A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146931A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146935A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS6081020A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS5950020A (en) Apparatus for recovering soda from pulp spent liquor
JPS59164621A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146927A (en) Method for recovering soda from waste liquor from pulp manufactring stage
JPS59146928A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146926A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146934A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS59146933A (en) Method for recovering soda from waste liquor from pulp manufacturing stage