JPS6073085A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS6073085A
JPS6073085A JP18106083A JP18106083A JPS6073085A JP S6073085 A JPS6073085 A JP S6073085A JP 18106083 A JP18106083 A JP 18106083A JP 18106083 A JP18106083 A JP 18106083A JP S6073085 A JPS6073085 A JP S6073085A
Authority
JP
Japan
Prior art keywords
pressure chamber
valve member
vane
electromagnet
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18106083A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitayama
浩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP18106083A priority Critical patent/JPS6073085A/en
Publication of JPS6073085A publication Critical patent/JPS6073085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To make it possible to carry out the stepless control of capacity of a rotary compressor in accordance with the load thereof, by disposing an electrically operated valve member in a communication port provided in an upper or lower bearing in the sliding section of a vane and communicating between high and low pressure chambers, and by time-controlling the reciprocation of this valve member. CONSTITUTION:A communication port 22 communicating between a low pressure chamber 14 and a high pressure chamber 13 through a vane 10 is formed in an upper bearing 6 in the sliding position of the vane 10, and a valve member 23 which is actuated when an electromagnet 25 is energized. When the electromagnet 25 is eneregized, the valve member 23 is attracted to the electromagnet 25 overcoming the spring force of a valve member retaining spring 26 so that the comminication port 22 is opened to communicate between the low pressure chamber 14 and the high pressure chamber 13. Accordingly, no compressing operation is effected during energization of the electromagnet 25. With this arrangement the capacity of the compressor may be steplessly controlled in accordance with the load of the compressor only by time-controlling the opening frequency of the valve member 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ルームクーラー等の冷凍装置に使用されるロ
ータリーコンプレyすに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in a refrigeration device such as a room cooler.

従来例の構成とその問題点 従来、能力可変機能を有するロータリーコンプレッサに
は、第1図に示すようなものがあった。
Conventional Structure and Problems Conventionally, there has been a rotary compressor having a variable capacity function as shown in FIG.

第1図において、1は密閉容器であり、この密閉容器1
内には回転軸2によって連結された電動要素3と圧縮要
素4が収納されている。5はシリンダであり、その両端
には強固に上部軸受6と下部軸受7が取イ」けられてい
る。回転軸2の偏心部2aの外遠部には摺動自在にロー
ラ8が設けられており、シリンダ5には細溝9が配設さ
れ、との細溝9内には摺動自在にベーン10が収納され
ている。11はシリンダ5.上、下部軸受6.ア。
In FIG. 1, 1 is a closed container, and this closed container 1
An electric element 3 and a compression element 4 connected by a rotating shaft 2 are housed inside. Reference numeral 5 denotes a cylinder, and an upper bearing 6 and a lower bearing 7 are firmly attached to both ends of the cylinder. A roller 8 is slidably provided on the outermost part of the eccentric portion 2a of the rotating shaft 2, a narrow groove 9 is provided in the cylinder 5, and a vane is slidably provided in the narrow groove 9. 10 are stored. 11 is cylinder 5. Upper and lower bearings6. a.

ローラ8に画定される圧縮室であり、バネ12によって
ローラ8に押しつけられたベー710で高圧室13と低
圧室14とに仕切られている。そしてべ−710の両側
位置にあって低圧室14内には吸入孔15.高圧室13
内には吐出孔16が各々設けられている。
This is a compression chamber defined by the roller 8 and partitioned into a high pressure chamber 13 and a low pressure chamber 14 by a bay 710 pressed against the roller 8 by a spring 12. Suction holes 15 are located in the low pressure chamber 14 on both sides of the base 710. Hyperbaric chamber 13
A discharge hole 16 is provided inside each of them.

17は7リンダ6内壁に穿孔されたレリース孔であり、
電磁弁18を介して吸入孔16と連通している。
17 is a release hole bored in the inner wall of 7 cylinder 6;
It communicates with the suction hole 16 via a solenoid valve 18.

なお、19は吐出弁、20は弁押え、21は吐山背であ
る。
In addition, 19 is a discharge valve, 20 is a valve holder, and 21 is a discharge valve.

次に作用について述べる。Next, we will discuss the effect.

全負荷運転の場合、電磁弁18は閉路し、吸入孔15か
ら流入した圧縮室11容積相当の冷媒ガスがローラ8の
回転運動にともなって圧縮され、吐出孔16を介してい
ったん密閉容器1内に開放された後、吐出管21を介し
て凝縮器A、減圧器B、蒸発器C7吸入孔15と順に流
れ、冷凍サイクルを構成する。
In the case of full-load operation, the solenoid valve 18 is closed, and the refrigerant gas equivalent to the volume of the compression chamber 11 that has flowed in from the suction hole 15 is compressed by the rotational movement of the roller 8, and once inside the closed container 1 through the discharge hole 16. After being opened to the air, the air flows through the discharge pipe 21 to the condenser A, the pressure reducer B, and the evaporator C7 suction hole 15 in this order, forming a refrigeration cycle.

次に負荷を低下させてコンプレッサの能力を減少させて
運転する場合、電磁弁18は閉路し、圧縮室11に吸込
まれた冷媒ガスの一部は、レリース孔17を通って吸入
孔15にバイパスされ、低能力運転が行なわれる。
Next, when the load is lowered to reduce the capacity of the compressor and the compressor is operated, the solenoid valve 18 is closed, and a part of the refrigerant gas sucked into the compression chamber 11 passes through the release hole 17 and is bypassed to the suction hole 15. and low capacity operation is performed.

しかしながら、かかる構成においては、能力可変機能は
段階制御となり、負荷に応じた能力を得ることが出来な
い。
However, in such a configuration, the capacity variable function is a stepwise control, and it is not possible to obtain the capacity according to the load.

また無段階制御方式としてはインバータ方式が知られて
いるが、この方法ではインバータが必要となり、高価な
ものとなっていた。
Furthermore, an inverter method is known as a stepless control method, but this method requires an inverter and is expensive.

発明の目的 本発明は上記点に鑑みなされたもので、負荷に応じて無
段階制御出来る安価なロータリーコンプレッサを提供す
るものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide an inexpensive rotary compressor that can be controlled steplessly according to the load.

発明の構成 本発明は上記目的を達成するために、上部又は下部軸受
のベーン摺動位置に、低圧室と高圧室とが連通ずる連絡
口を設け、この連絡口内に電気的又は機械的に作動する
弁体を設けて、負荷に応じて無段階制御出来るようにす
るものである。
Structure of the Invention In order to achieve the above object, the present invention provides a communication port through which a low pressure chamber and a high pressure chamber communicate with each other at the vane sliding position of the upper or lower bearing, and an electrically or mechanically actuated device is provided in the communication port. A valve body is provided to enable stepless control depending on the load.

実施例の説明 以下に本発明の一実施例について第3図〜第6図を用い
て説明する。尚、従来と同様の部分には重複をさけるた
めに同一番号を付し説明を省略する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 to 6. Incidentally, to avoid duplication, the same parts as in the prior art are given the same numbers and their explanations will be omitted.

上部軸受6のベーン10の摺動軸線上には、ベー710
の幅より大きい直径を有する連絡口22が、ベーン摺動
面に開口しておりベーン10ヲ介して低圧室14と高圧
室13が連通ずるように設けられている。そしてこの連
絡口22内には、弁体23が摺動自在に収納されている
。弁体23はリード線24を通して通電させる上部軸受
6に固定された電磁石25により引吸可能で、電磁石2
5の非励時は弁体押えバネ26によりシリンダ内表面と
同一面となるように押付けられる。
On the sliding axis of the vane 10 of the upper bearing 6, there is a vane 710.
A communication port 22 having a diameter larger than the width of the vane is opened to the vane sliding surface and is provided so that the low pressure chamber 14 and the high pressure chamber 13 communicate with each other through the vane 10. A valve body 23 is slidably housed within this communication port 22. The valve body 23 can be attracted by an electromagnet 25 fixed to the upper bearing 6 which is energized through a lead wire 24.
5, when the valve body is not energized, the valve body presser spring 26 presses the valve body so that it is flush with the inner surface of the cylinder.

次に作用について述べる。Next, we will discuss the effect.

全負荷運転を行う場合、電磁石25は消磁しておく。す
ると弁体23は弁体押えバネ26のばね力によって下方
に移動しシリンダ5の端面(内表面)に接し、第5図に
示す状態となる。従って低圧室14と高圧室13は連絡
口22が閉路するためガスの連通はなく、通常のロータ
リーコンプレッサの作用が行われる。
When performing full load operation, the electromagnet 25 is demagnetized. Then, the valve body 23 is moved downward by the spring force of the valve body pressing spring 26 and comes into contact with the end surface (inner surface) of the cylinder 5, resulting in the state shown in FIG. Therefore, since the communication port 22 is closed between the low pressure chamber 14 and the high pressure chamber 13, there is no gas communication, and the normal operation of a rotary compressor is performed.

次にコンプレッサの能力を減少させて運転する場合につ
いて述べる。
Next, a case will be described in which the compressor is operated with reduced capacity.

電磁石25に通電すると弁体23は、弁体押えバネ26
のばね力に打ち勝って第6図に示すように吸引され、連
絡口22は開路状態となって低圧室14と高圧室13は
連通ずる。従って電磁石26が通電されている間は圧縮
動作が行われなくなる。
When the electromagnet 25 is energized, the valve body 23 is moved by the valve body pressing spring 26.
It overcomes the spring force and is attracted as shown in FIG. 6, and the communication port 22 becomes open, and the low pressure chamber 14 and the high pressure chamber 13 communicate with each other. Therefore, no compression operation is performed while the electromagnet 26 is energized.

従って負荷に応じた能力を得るためには、圧縮。Therefore, in order to obtain the capacity according to the load, compression is necessary.

非圧縮状態を繰り返す、即ち電磁石25に通電する時間
を制御すればよく、単位時間内の開放頻度を上げれば能
力を低減し、逆に頻度を下げれば能力が上昇する。
It is sufficient to repeat the uncompressed state, that is, to control the time during which the electromagnet 25 is energized.Increasing the opening frequency within a unit time reduces the capacity, and conversely, decreasing the frequency increases the capacity.

発明の効果 以上のように本発明は、上部又は下部軸受のベーン摺動
位置に、低圧室と高圧室とがベーンを介して連通ずる連
絡口を設け、この連絡口内に電気的又は機械的に作動す
る弁体を設けたので、この弁体の往復運動を時間的に制
御するだけで、負荷に応じた能力の無段階制御が可能な
ロータリーコンプレッサを得ることができ、1だ単一の
連絡口により高低圧室間を側路できるため、構成が簡素
で、かつシール面精度が得やすいものである。
Effects of the Invention As described above, the present invention provides a communication port through which the low pressure chamber and the high pressure chamber communicate through the vane at the vane sliding position of the upper or lower bearing, and electrically or mechanically connects the low pressure chamber and the high pressure chamber through the vane. Since we have provided a valve body that operates, by simply controlling the reciprocating motion of this valve body over time, we can obtain a rotary compressor that allows stepless control of the capacity according to the load. Since the opening allows a bypass between the high and low pressure chambers, the configuration is simple and sealing surface accuracy is easy to obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示すロータリーコンプレッサの断面図
、第2図は第1図のn−n ’線における断面図、第3
図は本発明の一実施例を示すロータリーコンプレッサの
断面図、第4図は第3図の■−IV’線における断面図
、第5図および第6図は要部拡大図であり、それぞれ圧
縮状態および非圧縮状態を表わす。 2・・・・・・回転軸、5・・・・・・シリンダ、6・
・・・・・上部軸受、7・・・・・下部軸受、8・・・
・・・ローラ、10・・・・・・ベーン、11・・・・
・・圧縮室、13・・・・・・高圧室、14・・・・・
・低圧室、22・・・・・・連絡口、23・・・・・・
弁体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名゛第
1図 第2図 3
Fig. 1 is a sectional view of a conventional rotary compressor, Fig. 2 is a sectional view taken along line n-n' in Fig. 1, and Fig.
The figure is a sectional view of a rotary compressor showing an embodiment of the present invention, FIG. 4 is a sectional view taken along the line ■-IV' in FIG. state and uncompressed state. 2...Rotating shaft, 5...Cylinder, 6...
...Upper bearing, 7...Lower bearing, 8...
...Roller, 10...Vane, 11...
...Compression chamber, 13...High pressure chamber, 14...
・Low pressure room, 22... Communication port, 23...
Valve body. Name of agent: Patent attorney Toshio Nakao and one other person (Figure 1, Figure 2, Figure 3)

Claims (1)

【特許請求の範囲】[Claims] シリンダ、上部および下部軸受2回転軸とともに回転す
るローラによって画定される圧縮室と、この圧縮室内を
低圧室と高圧室に仕切るだめの、前記ローラに当接しな
がら往復運動するベーンとを備え、前記上部又は下部軸
受の前記ベーンの摺動部分に前記低圧室と前記高圧室と
が連通する単一の連絡口を設け、前記連絡口内に電気的
又は機械的に作動する弁体を設けたロータリーコンプレ
ッサ。
A compression chamber defined by a roller that rotates together with a cylinder, two rotation shafts of upper and lower bearings, and a vane that reciprocates while abutting the roller and partitions the compression chamber into a low pressure chamber and a high pressure chamber; A rotary compressor, wherein a single communication port through which the low pressure chamber and the high pressure chamber communicate with each other is provided in the sliding portion of the vane of the upper or lower bearing, and an electrically or mechanically actuated valve body is provided in the communication port. .
JP18106083A 1983-09-28 1983-09-28 Rotary compressor Pending JPS6073085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18106083A JPS6073085A (en) 1983-09-28 1983-09-28 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18106083A JPS6073085A (en) 1983-09-28 1983-09-28 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS6073085A true JPS6073085A (en) 1985-04-25

Family

ID=16094078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18106083A Pending JPS6073085A (en) 1983-09-28 1983-09-28 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS6073085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487769A (en) * 1982-06-04 1984-12-11 Bristol-Myers Company Amidines
US4567256A (en) * 1983-05-09 1986-01-28 Bristol-Myers Company Amidine process
US4579737A (en) * 1983-05-09 1986-04-01 Bristol-Myers Company Bis-amidines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487769A (en) * 1982-06-04 1984-12-11 Bristol-Myers Company Amidines
US4567256A (en) * 1983-05-09 1986-01-28 Bristol-Myers Company Amidine process
US4579737A (en) * 1983-05-09 1986-04-01 Bristol-Myers Company Bis-amidines

Similar Documents

Publication Publication Date Title
US4726739A (en) Multiple cylinder rotary compressor
JPH06117365A (en) Reciprocating compressor
US7891957B2 (en) Capacity variable type rotary compressor and driving method thereof
JPH06117366A (en) Reciprocating compressor
JPH0972280A (en) Sealed compressor
JPH05256286A (en) Multicylinder rotary compressor
JPH06117367A (en) Reciprocating compressor
JPS6073085A (en) Rotary compressor
JP3490557B2 (en) Capacity control device for variable capacity compressor
JPS63140885A (en) Enclosed type rotary compressor
JPH0494495A (en) Rotary compressor
JPH01253583A (en) Low-pressure type rotary compressor
JP3133999B2 (en) Scroll compressor
JPH01106987A (en) Scroll compressor
JPH01232191A (en) Rotary compressor
JPH01294986A (en) Multi-cylinder type rotary compressor
JPH04219488A (en) Closed rotary compressor
JPS6229789A (en) Rotary compressor
JP2005344683A (en) Hermetic compressor
JPS62218671A (en) Compressor
JPS59585A (en) Rotary compressor
KR100479495B1 (en) Rotary compressor
JPS6161997A (en) Rotary compressor
JPH06307364A (en) Two cylinder rotary compressor
JPH02271093A (en) Variable displacement type scroll compressor