JPS606744Y2 - Fourier transform spectrometer - Google Patents

Fourier transform spectrometer

Info

Publication number
JPS606744Y2
JPS606744Y2 JP8466176U JP8466176U JPS606744Y2 JP S606744 Y2 JPS606744 Y2 JP S606744Y2 JP 8466176 U JP8466176 U JP 8466176U JP 8466176 U JP8466176 U JP 8466176U JP S606744 Y2 JPS606744 Y2 JP S606744Y2
Authority
JP
Japan
Prior art keywords
mirror
fourier transform
gas
half mirror
gas cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8466176U
Other languages
Japanese (ja)
Other versions
JPS533533U (en
Inventor
雅志 尾関
邦紀 北原
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP8466176U priority Critical patent/JPS606744Y2/en
Publication of JPS533533U publication Critical patent/JPS533533U/ja
Application granted granted Critical
Publication of JPS606744Y2 publication Critical patent/JPS606744Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【考案の詳細な説明】 本考案はフーリエ変換型分光器の改良に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to an improvement of a Fourier transform spectrometer.

第1図はマイケルソンの干渉計を用いた従来のフーリエ
変換型分光器を示すもので、1は光源、2はハーフミラ
−13は固定ミラー 4は可動ミラー 5は検知器で、
光源1の光は一方でハーフミラ−2を通って固定ミラー
3で反射され、さらにハーフミラ−2で反射されて検知
器5に至り、他方、ハーフミラ−2で反射された光源1
の光は可動ミラー4で反射されハーフミラ−2を通って
検知器5に送られるが、前記可動ミラー4をねじ機構等
の機械的手段によって図の矢印方向に移動させて、前記
検知器5に送られる二つの光に光路差を与えてフーリエ
変換分光を行なうようになっている。
Figure 1 shows a conventional Fourier transform spectrometer using a Michelson interferometer, where 1 is a light source, 2 is a half mirror, 13 is a fixed mirror, 4 is a movable mirror, and 5 is a detector.
The light from the light source 1 passes through the half mirror 2 and is reflected by the fixed mirror 3, and is further reflected by the half mirror 2 to reach the detector 5. On the other hand, the light from the light source 1 that is reflected by the half mirror 2
The light is reflected by the movable mirror 4 and sent to the detector 5 through the half mirror 2.The movable mirror 4 is moved in the direction of the arrow in the figure by mechanical means such as a screw mechanism, and the light is transmitted to the detector 5 through the half mirror 2. Fourier transform spectroscopy is performed by giving an optical path difference to the two transmitted lights.

このように従来のフーリエ変換型分光器においては光路
長の変化をつけるために可動ミラーを機械的手段によっ
て移動させるため、1μ肌程度の短かい波長の光に対し
て可動ミラーの移動を高精度に行なうことが困難で、回
折格子、プリズムを用いる分光器に比して、波長精度、
分解能の点で劣り、実用に適さないという問題があった
In this way, in conventional Fourier transform spectrometers, the movable mirror is moved by mechanical means to change the optical path length, so the movable mirror can be moved with high precision for light with a short wavelength of about 1 μm. wavelength accuracy, compared to spectrometers that use diffraction gratings and prisms.
The problem was that it had poor resolution and was not suitable for practical use.

本考案はこのような問題点を解決するためのもので、1
μ肌程度の波長をもった光の分光に適用できるフーリエ
変換型分光路を提供することを目的としたものである。
The purpose of this invention is to solve these problems.
The purpose of this invention is to provide a Fourier transform type spectral path that can be applied to the spectroscopy of light having a wavelength comparable to μ skin.

以下、第2図及び第3図に関連して本考案の実施例を説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、光源1、ハーフミラ−2、固定ミラー
3、検知器5は第1図に示す従来のものと同様であるが
、ミラー4′は固定されている。
In FIG. 2, a light source 1, a half mirror 2, a fixed mirror 3, and a detector 5 are the same as the conventional one shown in FIG. 1, but the mirror 4' is fixed.

6は固定ミラー4′とハーフミラ−2との間に設けられ
た、石英等の材料よりなるガスセルで、該ガスセル6内
には、ニードルバルブ7を介シて炭酸ガス、チッソガス
等の気体を封入できるようになっている。
Reference numeral 6 denotes a gas cell made of a material such as quartz, which is provided between the fixed mirror 4' and the half mirror 2. Gas such as carbon dioxide gas or nitrogen gas is sealed in the gas cell 6 via a needle valve 7. It is now possible to do so.

8は圧力計である。ガスセル6内の気体の屈折率は圧力
の増加に伴ない増加するが、これはガスセル6の光学長
が圧力の増加に伴ない長(なることを意味している。
8 is a pressure gauge. The refractive index of the gas in the gas cell 6 increases as the pressure increases, which means that the optical length of the gas cell 6 increases as the pressure increases.

したがってガスセル6内の圧力を上げることによつてガ
スセル6内の光学長を変化させることができる。
Therefore, by increasing the pressure within the gas cell 6, the optical length within the gas cell 6 can be changed.

すなわちガスセル6内の気体の圧力を圧力計8によって
モニターし、光学長に換算することができる。
That is, the pressure of the gas in the gas cell 6 can be monitored by the pressure gauge 8 and converted into an optical length.

このガス圧力と光学長変化に関する実験結果を表わすグ
ラフを第3図に示す。
A graph showing the experimental results regarding the gas pressure and optical length change is shown in FIG.

本実験は、ガスセル長1.0cm、光源波長0.68μ
肌について行ったもので、線AはKr (クリプトン)
、線BはAr(アルゴン)線CはNe (ネオン)を封
入ガスとした場合の測定値をそれぞれ示している。
In this experiment, the gas cell length was 1.0 cm, and the light source wavelength was 0.68μ.
Line A is Kr (krypton) for the skin.
, line B shows the measured values when Ar (argon) is used, and line C shows the measured values when Ne (neon) is used as the filler gas.

本図に明らかなように、ガスセル内のガス圧を10−2
〜]Torr程度まで変化させることにより、光学長は
10−1〜30A程度まで変化する。
As is clear from this figure, the gas pressure inside the gas cell is 10-2
~ ] By changing the optical length to about Torr, the optical length changes from about 10-1 to about 30A.

この場合の圧力領域は、ニードルバルブ、圧力計を用い
て精度良<容易にコントロールすることが可能で、0.
1Aの分解能を可視近赤外領域で得ることができる。
In this case, the pressure range can be easily controlled with good accuracy using a needle valve and a pressure gauge, and can be controlled at 0.
A resolution of 1A can be obtained in the visible and near-infrared region.

以上、説明したように本考案によると光路差の変化に機
械的手段を用いることなく、ガスセル内の気体の圧力を
変化させることによって光学長を変化させるようにして
いるため、微小の光学長を精度よく変化でき、可視光領
域のフーリエ変換分光に威力を発揮することができる。
As explained above, according to the present invention, the optical length is changed by changing the pressure of the gas in the gas cell without using mechanical means to change the optical path difference. It can be changed with high precision and is effective for Fourier transform spectroscopy in the visible light region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフーリエ変換型分光器の説明図、第2図
は本考案に係るフーリエ変換型分光器の実施例の説明図
、第3図は同ガスセル内のガス圧力と光学長の変化との
関係を示すグラフである。 図中、1は光源、2はハーフミラ−13,4′は固定ミ
ラー、5は検知器、6はガスセル、7はニードルバルブ
、8は圧力計である。
Figure 1 is an explanatory diagram of a conventional Fourier transform spectrometer, Figure 2 is an explanatory diagram of an embodiment of the Fourier transform spectrometer according to the present invention, and Figure 3 is a diagram showing changes in gas pressure and optical length within the gas cell. It is a graph showing the relationship between In the figure, 1 is a light source, 2 is a half mirror 13, 4' is a fixed mirror, 5 is a detector, 6 is a gas cell, 7 is a needle valve, and 8 is a pressure gauge.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハーフミラ−を通った光源の光を一方のミラーおよび前
記ハーフミラ−で反射させて検知器に送るとともに、前
記ハーフミラ−で反射した光源の方を他方のミラーで反
射させ前記ハーフミラ−を通して検知器に送り、前記二
つの光に光路差を与えてフーリエ変換分光を行なう分光
器において、前記一方のミラーおよび他方のミラーをい
ずれも固定ミラーとし、そのいずれか一方の固定ミラー
と前記ハーフミラ−との間に気体を封入するガスセルを
設け、前記ガスセル内の気体の圧力を変化させて前記光
路差を変化させるようにしたことを特徴とするフーリエ
変換型分光器。
The light from the light source that has passed through the half mirror is reflected by one mirror and the half mirror and sent to the detector, and the light source reflected by the half mirror is reflected by the other mirror and sent to the detector through the half mirror. , in a spectrometer that performs Fourier transform spectroscopy by giving an optical path difference to the two lights, both of the one mirror and the other mirror are fixed mirrors, and there is a space between one of the fixed mirrors and the half mirror. 1. A Fourier transform spectrometer, characterized in that a gas cell for sealing gas is provided, and the optical path difference is changed by changing the pressure of the gas in the gas cell.
JP8466176U 1976-06-29 1976-06-29 Fourier transform spectrometer Expired JPS606744Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8466176U JPS606744Y2 (en) 1976-06-29 1976-06-29 Fourier transform spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8466176U JPS606744Y2 (en) 1976-06-29 1976-06-29 Fourier transform spectrometer

Publications (2)

Publication Number Publication Date
JPS533533U JPS533533U (en) 1978-01-13
JPS606744Y2 true JPS606744Y2 (en) 1985-03-05

Family

ID=28695903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8466176U Expired JPS606744Y2 (en) 1976-06-29 1976-06-29 Fourier transform spectrometer

Country Status (1)

Country Link
JP (1) JPS606744Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125226U (en) * 1984-02-03 1985-08-23 富士機工株式会社 Seat slide locking device
JPH0524581Y2 (en) * 1987-04-23 1993-06-22

Also Published As

Publication number Publication date
JPS533533U (en) 1978-01-13

Similar Documents

Publication Publication Date Title
Plateaux et al. Reims high resolution Fourier transform spectrometer. Data reduction for ozone
US4329055A (en) Interferometer apparatus for measuring the wavelengths of optical radiation
Okamoto et al. A photodiode array Fourier transform spectrometer based on a birefringent interferometer
JPS606744Y2 (en) Fourier transform spectrometer
Ballard et al. The effect of sample emission on measurements of spectral parameters using a Fourier transform absorption spectrometer
Giacomo The michelson interferometer
JPS60157027A (en) Interferometer by michelson principle
Milward A small lamellar grating interferometer for the very far-infrared
JP2657906B2 (en) Non-contact light wave interferometry of block gauge
Hurley Interferometric spectroscopy in the far infrared
Hlubina et al. Spectral interferograms including equalization wavelengths processed by autoconvolution method
JPH0358052B2 (en)
GB1010277A (en) Improvements in and relating to optical interforometers
JP2703921B2 (en) Interferometer
Tank Pathlength alteration in an interferometer by rotation of a retroreflector
Khaskan Channelled spectrum with the double-layer interferometer
Burton et al. Determination of the optical constants of solids in the visible by dispersive Fourier transform spectroscopy
Hlubina White-light spectral interferometry with the equalization wavelength determination used to measure distances and displacements
GB2294778A (en) Improved spectrometer
Shaalan et al. The application of multiple-beam, white-light fringes to the study of surfaces
Freeman Michelson interferometry in the vacuum UV at λ= 147 nm
JPH07113583B2 (en) Wide wavelength simultaneous measurement spectrometer using Fabry-Perot interferometer
SU114105A1 (en) Interferometer
Milward A complete system for interferometric Fourier spectroscopy in the far-infrared
Till et al. A double-pass Sisam spectrometer for the near infrared