JPS6065796A - Hard carbon film and its production - Google Patents

Hard carbon film and its production

Info

Publication number
JPS6065796A
JPS6065796A JP58172145A JP17214583A JPS6065796A JP S6065796 A JPS6065796 A JP S6065796A JP 58172145 A JP58172145 A JP 58172145A JP 17214583 A JP17214583 A JP 17214583A JP S6065796 A JPS6065796 A JP S6065796A
Authority
JP
Japan
Prior art keywords
carbon film
substrate
hard carbon
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58172145A
Other languages
Japanese (ja)
Inventor
Hideo Yoshihara
秀雄 吉原
Iwao Watanabe
巌 渡辺
Shojiro Miyake
正二郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58172145A priority Critical patent/JPS6065796A/en
Publication of JPS6065796A publication Critical patent/JPS6065796A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To obtain a carbon film having excellent hardness, lubricity, abrasion resistance, etc., by forming a hard carbon film composed of a mixed crystal of hexagonal diamond and graphite on a substrate using C2H4 plasma. CONSTITUTION:The substrate 2 for forming a hard carbon film, a filament 4 and an electrode 3 for maintaining plasma discharge are arranged in a vacuum bell jar 1. The bell jar 1 is evacuated to high vacuum, and fed with C2H4 gas or a mixture of C2H4 gas and H2 gas through the inlet pipe 8. The filament 4 is heated with the DC source 15, and the electrode 3 for maintaining plasma discharge is charged to positive potential by the DC source 14 to generate C2H4 plasma between the electrode 3 and the filament 4. At the same time, the substrate 2 is charged to a negative potential by the high-voltage source 13 to produce a hard carbon film composed of a mixed crystal of hexagonal diamond and graphite on the substrate 2.

Description

【発明の詳細な説明】 本発明は、硬質カーボン膜およびその製造方法に関する
もので1%に高い硬度性とともに、優れた潤滑性、耐摩
耗性および耐薬品性?有し、かつ、微細バタン形成が容
易な硬質カーボン膜及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hard carbon film and a method for producing the same, which has a hardness as high as 1%, as well as excellent lubricity, wear resistance, and chemical resistance. The present invention relates to a hard carbon film that has the same characteristics and that allows easy formation of fine battens, and a method for manufacturing the same.

例えば、機構部品の摺動部品や切削工具などは材料自体
の耐摩耗性、潤滑性をより高めるため、部品の表面を硬
質膜や固体潤滑膜で処理することが行われている。この
f!Iig品の硬質膜として、従来からTiN 、 T
iC、B4C、8rC、Si3N4 。
For example, in order to further improve the wear resistance and lubricity of the materials of the sliding parts and cutting tools of mechanical parts, the surfaces of the parts are treated with hard films or solid lubricant films. This f! Traditionally, TiN and T are used as hard films for Iig products.
iC, B4C, 8rC, Si3N4.

Aj203等の材料ヲ、スパッタリング、イオンデレー
ティ/グ、化学蒸層(以下、rCVDJという。)など
の方法で部品表面に被膜していた。
Materials such as Aj203 have been coated on the surface of parts by methods such as sputtering, ion derating, and chemical vapor deposition (hereinafter referred to as rCVDJ).

しかし、このような方法で、部品表面に被膜した硬質膜
を、機構部品の摺動部や切削工具の表面に形成しても、
これら硬質膜に潤滑性がないため、使用時に凝着が生じ
、かつ、応力が集中するため、下地−膜境界面で剥離す
る欠点があった。
However, even if a hard film is formed on the sliding parts of mechanical parts or the surface of cutting tools using this method,
Since these hard films do not have lubricity, adhesion occurs during use, and stress is concentrated, resulting in peeling at the base-film interface.

また、固体潤滑膜を1機構部品や切1j1]工具に使用
することも試みられているが、高精度化のため、潤滑膜
を薄くすると、膜破断を起し短寿命になる欠点があp、
膜を厚くすると、摩耗による精度低下が問題となる。
In addition, attempts have been made to use solid lubricant films for mechanical parts and cutting tools, but if the lubricant film is made thinner in order to achieve higher precision, it has the disadvantage of causing film breakage and shortening the lifespan. ,
If the film is made thicker, a decrease in accuracy due to wear becomes a problem.

また、これらの硬質膜、固体潤滑膜は、通常、耐薬品性
が必ずしも高くないので、侵食性の強い薬品雰囲気で使
用する部品、工具に使用することができない。
Further, these hard films and solid lubricant films usually do not necessarily have high chemical resistance, so they cannot be used for parts and tools that are used in a highly corrosive chemical atmosphere.

高い硬度性を有し、耐摩耗性、潤滑性、耐薬品性に優れ
た被膜材料としてカーd?ン膜が知られている。
Car d? is a coating material with high hardness, excellent wear resistance, lubricity, and chemical resistance. The membrane is known as

たとえば、米国物理学会発行の学術雑誌「ジャーナル・
オプ・アプライド・フィジックス(Journal o
f Applied Physics ) J第42巻
(1971年発行)、第2953頁に掲載されたイオン
ビーム蒸着法、応用物理学会騒苛の[第29回応用物理
す全講演予稿集1a−E−4Jに掲載されているイオン
化蒸着、同「第、29回応用物理学会講演予稿集1a−
E−5」に掲載されている減圧CVD法等が知られてい
る。
For example, the academic journal “Journal of Physics” published by the American Physical Society
Op Applied Physics (Journal o
Ion beam evaporation method published in Applied Physics) J Vol. 42 (published in 1971), p. 2953, Published in the 29th Applied Physics Lecture Proceedings 1a-E-4J of the Japan Society of Applied Physics. Ionized vapor deposition, Proceedings of the 29th Japan Society of Applied Physics 1a-
The low pressure CVD method described in "E-5" is known.

上記のイオンビーム蒸着法は、イオン化室で固体供給源
からスパッタリングでC+ 、イオンを生成し、それを
試別室(10−6Torr以上のiE真空)に電界に工
って引き出し、カーピン膜を基板上に形成する。この方
法では、C+イオンビームに不純物の混入を避けるため
、イオン化室内の電極等の部品全すべて炭素にするなど
の面倒な構成にしなければならない。また、炭素面に帯
電する正電荷と中和するために、基板に高周波全印加し
ている。このため一定の運動エネルギーのイオンが得ら
れず、安定した膜特性が得られない欠点があった。
In the above ion beam evaporation method, C+ ions are generated by sputtering from a solid source in an ionization chamber, and then drawn out by applying an electric field to a separation chamber (iE vacuum of 10-6 Torr or higher) to form a carpin film on a substrate. to form. In this method, in order to avoid contamination of the C+ ion beam with impurities, it is necessary to adopt a complicated structure such as making all parts such as electrodes in the ionization chamber carbon. Further, in order to neutralize the positive charges on the carbon surface, a high frequency is fully applied to the substrate. For this reason, ions with a constant kinetic energy cannot be obtained, and stable film characteristics cannot be obtained.

イオン化蒸着法では、円筒状磁気回路の内側に生ずる磁
界によって熱電子をザイクロイド運動させ、原料ガス全
イオン化し、基板に印加した負電圧と基板近傍に設置し
たグリッドによって、C+、tオンを制御し、カーボン
膜の付層を行なっている。この方法では、イオン化率が
大きいので、膜形成中に膜表面に正の電荷が蓄積しやす
く、絶縁破壊を生じ易い。絶縁破壊全防止する目的でグ
リッドによシ、基板に入射するイオン量を制御している
。しかしながら、グリッドを設けたことにより、グリッ
ド材がスフ9ツクされ膜中に混入する。また、グリッド
の影の部分で膜厚の不均一が発生する等の問題点を有し
ている。
In the ionization deposition method, a magnetic field generated inside a cylindrical magnetic circuit causes thermoelectrons to move in a zykroid to completely ionize the source gas, and C+ and t-on are controlled by a negative voltage applied to the substrate and a grid installed near the substrate. , carbon film is applied. In this method, since the ionization rate is high, positive charges tend to accumulate on the film surface during film formation, which tends to cause dielectric breakdown. In order to completely prevent dielectric breakdown, the grid controls the amount of ions that enter the substrate. However, due to the provision of the grid, the grid material is blown up and mixed into the film. Further, there are other problems such as non-uniformity in film thickness in the shadow areas of the grid.

以上、二つの方法で形成したカーざン躾は、非常に硬く
、無定形炭素又は立方晶系のダイヤモンド(以下、単に
「立方晶ダイヤモンド」という。)おるいはこれらが混
在した微結晶からなっている。したがって、これらの方
法で得られたカーボン膜の耐摩耗性は大きいが潤滑性が
ないという欠点があった。
The Karzan-jitsu formed using the two methods described above is extremely hard and consists of amorphous carbon, cubic diamond (hereinafter simply referred to as "cubic diamond"), or microcrystals containing a mixture of these. ing. Therefore, although the carbon films obtained by these methods have high wear resistance, they have the disadvantage of lacking lubricity.

減圧CVD法は、炉内温度を700℃〜1,100℃に
上げ、さらに2,000℃近くに加熱したタングステン
フイラメン)k基板近傍に配置して、(:’2H4とH
2の混合ガスを導入して、基板上に立方晶ダイヤモンド
全形成する。この方法では、基板が高温になるので、基
板材料に制約があり、この方法で作製した物質は立方晶
ダイヤモンドと無定形炭素とが混在しておシ、基板上に
形成される被膜は、平滑な膜全形成しない。
In the low-pressure CVD method, the furnace temperature is raised to 700°C to 1,100°C, and a tungsten filament heated to nearly 2,000°C is placed near the substrate (:'2H4 and H
A mixed gas of 2 is introduced to completely form cubic diamond on the substrate. In this method, the substrate is heated to a high temperature, so there are restrictions on the substrate material.The material produced by this method contains a mixture of cubic diamond and amorphous carbon, and the film formed on the substrate is smooth. A complete film is not formed.

以上述べたように、従来のカーボン膜製造方法で形成さ
れたカーボン膜は無定形炭素又は立方晶ダイヤモンド゛
の微結晶から成る膜であシ、硬度は高いが、潤滑性がな
いため、前述した。
As mentioned above, the carbon film formed by the conventional carbon film manufacturing method is a film made of amorphous carbon or cubic diamond microcrystals, and although it has high hardness, it has no lubricity. .

機構部品の摺動部や切削工具に利用しようとしても一潤
滑性に難点があった。
When trying to use it for sliding parts of mechanical parts and cutting tools, there was a problem with lubricity.

このような事情に鑑み1本発明者等鉱、硬度性、潤滑性
、耐摩耗性、耐薬品性に浸れたカーピン膜について検討
を重ねた結果、六方晶系のダイヤモンド゛(以下、単に
「六方晶ダイヤモンド」という。)の硬度性と、耐摩j
工性、耐食性に優れた性質およびグラファイトの有する
渭シ性、薬品に対する安定性に優れた性質を併用するこ
とにより理想的なカーボン膜を形成しうるとの知見金得
、本発明會児成することができた。
In view of these circumstances, the inventors of the present invention have repeatedly studied the carpin film, which has excellent hardness, lubricity, wear resistance, and chemical resistance. hardness and abrasion resistance of
The present invention was established based on the knowledge that it is possible to form an ideal carbon film by combining the properties of excellent workability and corrosion resistance with graphite's properties of durability and stability against chemicals. I was able to do that.

すなわち、本発明は、硬度が高く、m1m性。That is, the present invention has high hardness and m1m properties.

耐摩耗性および耐食性に優れたカーボン膜およびその製
造方法を提供することを目的としておシ、六方晶ダイヤ
モンドとグラファイトの混晶からなる硬質カーボン膜で
あることを特徴とするものである。また、この硬質カー
ボン膜は、カーボン膜形成用部材と、熱電子放出手段と
The purpose of this invention is to provide a carbon film with excellent wear resistance and corrosion resistance, and a method for producing the same, and is characterized by being a hard carbon film made of a mixed crystal of hexagonal diamond and graphite. Moreover, this hard carbon film serves as a carbon film forming member and a thermionic emission means.

プラズマ維持電極とを配置した真空雰囲気内に、C2H
,ガスとH2若しくは不活性ガスのいずれが一方又は両
者の混合ガス又はC2H4ガスのみを導入し、上記熱電
子放出手段とプラズマ維持電極間にプラズマを発生させ
ると共に、カーボン膜形成用部材に負の高電圧を印加す
ることにより、カーボン膜形成用部材上に、六方晶ダイ
ヤモンドとグラファイトの混晶からなるカーメン膜全生
成せしめることによって、六方晶ダイヤモンドとグラフ
ァイトの混晶からなる硬質カーボン膜を製造するもので
ある。
In a vacuum atmosphere in which a plasma sustaining electrode is placed, C2H
, gas and H2 or an inert gas, or a mixture of both of them, or only C2H4 gas is introduced to generate plasma between the thermionic emission means and the plasma sustaining electrode, and at the same time, a negative charge is applied to the carbon film forming member. A hard carbon film made of a hexagonal diamond and graphite mixed crystal is produced by applying a high voltage to completely generate a carmen film made of a hexagonal diamond and graphite mixed crystal on the carbon film forming member. It is something.

以下、実施例に基づいて、本発明の内容を具体的に説明
する。
Hereinafter, the content of the present invention will be specifically explained based on Examples.

第1図は、本発明にかかる硬質カーボン膜を基板上に被
膜する際に使用する装置の概略構成図を示す。
FIG. 1 shows a schematic diagram of an apparatus used for coating a substrate with a hard carbon film according to the present invention.

この装置は、真空ベルジャ1と、ベルジャ1の上下方向
に順次配列した硬質カーボン膜形成用基板2、プラズマ
放電維持用電極3.熱電子放出手段としてフィラメント
4が設けられてお〕、この他必要に応じて、基板ホルダ
5.ホルダ5と放電維持用電極3間にはシャッタ6、フ
ィラメント4の下方には永久磁石7が配置される。
This device includes a vacuum belljar 1, substrates 2 for forming a hard carbon film arranged in order in the vertical direction of the belljar 1, electrodes 3 for maintaining plasma discharge. A filament 4 is provided as a thermionic emission means], and a substrate holder 5 is provided as required. A shutter 6 is disposed between the holder 5 and the discharge sustaining electrode 3, and a permanent magnet 7 is disposed below the filament 4.

そして真空ベルジャ1には、図示されないBzH4ガス
源およびヤヤリャガス源と接続するガス導入管8および
9が付設されており、導入管8お工び9にはそれぞれ流
量−m百バルブ10お工び11が設けられている。さら
にベルジャ1下方には、図示されない排気装置と接続す
る排気管12が設けられている。
The vacuum belljar 1 is equipped with gas introduction pipes 8 and 9 that connect to a BzH4 gas source and a Yayariya gas source (not shown). is provided. Further, below the bell jar 1, an exhaust pipe 12 is provided which is connected to an exhaust device (not shown).

さらに、基板2はベルジャ1外の高圧電源13に接続し
、ホルダー5上に支持された基板2に対し負の高電圧を
供給する構成になっている。
Further, the substrate 2 is connected to a high voltage power source 13 outside the belljar 1, and is configured to supply a negative high voltage to the substrate 2 supported on the holder 5.

放電維持用電極3はベルジャl外の直流電源14に接続
し、電源14から供給される正の電圧によp、電源15
と接続するフィラメント4との間にプラズマを発生する
機能をもつ。
The discharge sustaining electrode 3 is connected to a DC power source 14 outside the bell jar, and the positive voltage supplied from the power source 14 causes the electrode 3 to be connected to a DC power source 14 outside the bell jar.
It has the function of generating plasma between the filament 4 and the connected filament 4.

シャッタ6は、開閉操作によって、基板2表面に達する
C、H,プラズマを開又は閉鎖する機能をもつ。
The shutter 6 has a function of opening or closing C, H, and plasma reaching the surface of the substrate 2 by opening and closing operations.

さらに永久磁石7は、放電維持用電極3と、フィラメン
ト4との間に印加される電界と兼行に磁界を加えるよう
に配置され、この磁界に沿って電子から施運動し、ベル
ジャ1内に導入したc、H,、rス粒子との衝突回数を
高め、イオン化率を大にする働き七゛する。
Further, the permanent magnet 7 is arranged so as to apply a magnetic field at the same time as the electric field applied between the discharge sustaining electrode 3 and the filament 4, and the electrons are moved along this magnetic field and introduced into the bell jar 1. This serves to increase the number of collisions with the c, H, and r particles, thereby increasing the ionization rate.

上記装置を使用して、カーボン膜形成用基板上に硬質カ
ーがン膜を形成するには、次のゾロセスにしたがって製
造する。
A hard carbon film is formed on a carbon film forming substrate using the above apparatus according to the following process.

カーボン膜形成用基板2を、真壁ベルジャ1内のホルダ
5に載置し、真空ベルジャ1内を5XIQTorr以上
に排気する。
The carbon film forming substrate 2 is placed on the holder 5 inside the Makabe bell jar 1, and the inside of the vacuum bell jar 1 is evacuated to 5XIQTorr or higher.

ついで、流量調節バルブlli開状態にし、導入管19
:ヲ通してkrlfス全真空ベルジャ内へ導入し、その
ガス圧f 10−8Torr にする。
Next, the flow rate adjustment valve lli is opened, and the introduction pipe 19 is opened.
: The krlf gas is introduced into the full vacuum bell jar through the gas, and the gas pressure is set to f 10-8 Torr.

次に、直流電源15からフィラメント4へ電流を送シ加
熱するとともに、直流電#、14から放電維持用電極3
に、正電圧(50〜100V)i送シ、上記フィラメン
ト4との間に、Mガスプラズマを発生させる。
Next, a current is sent from the DC power supply 15 to the filament 4 to heat it, and at the same time, from the DC power supply #14 to the discharge sustaining electrode 3.
Then, a positive voltage (50 to 100 V) is applied to generate M gas plasma between the filament 4 and the filament 4.

この状態において、高圧電M13がら基板2へ負の高電
圧(−1〜−3kV)を加え、 Ar+イオンによるス
ノやツタクリーニング葡10〜30分間行ない、前処理
としての基板クリーニング全終了する。
In this state, a negative high voltage (-1 to -3 kV) is applied to the substrate 2 from the high-voltage electric M13, and Ar+ ions are used to clean the substrate for 10 to 30 minutes, thereby completing the entire substrate cleaning as pretreatment.

スパッタクリーニング終了後、流量調節バルブ10を開
状態にし、導入管8?I:通して真空ベルジャ1内にC
2H4ガスを4泰入し、ガス圧2io−3Torr 〜
10−”Torr ノ’41Q囲に設定する。
After sputter cleaning is completed, the flow rate control valve 10 is opened, and the introduction pipe 8? I: C into vacuum bell jar 1 through
Add 4 tons of 2H4 gas and set the gas pressure to 2io-3Torr ~
Set around 10-” Torr.

次に、Arガスによるスパッタリングの場合と同じ手順
にしたがって、放電維持電極3とフィラメント4との間
に、C2H4プラズマ全発生させるときに、基板2に負
の高電圧(−0,2〜−3,5kV )を印加した後、
シャッタ6を開状態にすることによって、基板2上に六
方品ダイーヤモンドとグラファイトの混晶からなる硬質
カーボン膜を形成することができる。
Next, according to the same procedure as in the case of sputtering with Ar gas, a negative high voltage (-0, 2 to -3 , 5kV),
By opening the shutter 6, a hard carbon film made of a hexagonal diamond and graphite mixed crystal can be formed on the substrate 2.

このようにして形成された硬質カーがン膜全X+W回折
法および電子線回折法にょシ分析した結果を第2図およ
び第3図に示す。ただし、@!質カーゴン膜形成に使用
した基板は(100)81ウエハである。また、X線回
折に使用したX線はCu−に線を用いた。
The hard carbon film thus formed was analyzed by total X+W diffraction and electron beam diffraction, and the results are shown in FIGS. 2 and 3. however,@! The substrate used for forming the carbon film was a (100)81 wafer. Moreover, the X-ray used for X-ray diffraction was a line for Cu-.

第2図は、(100)81ウエハ上に生成した硬質カー
ボン膜のX線回折線図であシ、横軸は回折角度(2θ)
を度単位で示し、縦軸は強度を任意単位(arb、un
it )で示した。−1,り第2図の曲線aはグラファ
イトの(101)面の回折’ffMk示し、曲線すは六
方晶ダイヤモンドの(102)面からの回折線でちシ、
形成された硬質カービン膜が六方晶ダイヤモンドとグラ
ファイトからなることを示している。
Figure 2 is an X-ray diffraction diagram of a hard carbon film formed on a (100)81 wafer, where the horizontal axis is the diffraction angle (2θ).
is shown in degrees, and the vertical axis shows the intensity in arbitrary units (arb, un
it). -1, The curve a in Figure 2 shows the diffraction 'ffMk of the (101) plane of graphite, and the curve is the diffraction line from the (102) plane of hexagonal diamond.
This shows that the hard carbine film formed is composed of hexagonal diamond and graphite.

また、第3図は、上記硬質カービン膜の電子線回折の写
真である。この電子線回折法真には、非晶質の存在全示
すハローバタンかなく、リング状回折バタンのみしか現
われていない。これは、形成した硬質カーフ)′ン膜が
混晶であることを示すもので、第2図および第3図から
硬質カーボン膜が六方晶ダイヤモンドとグラファイトの
混晶であることが判る。これに反し、従来のカーがン膜
は混晶ではなく、立方晶ダイヤモンドと無定形炭素が混
在しているにすぎない。
FIG. 3 is an electron diffraction photograph of the hard carbine film. In this electron diffraction method, only a ring-shaped diffraction pattern appears, without a halo pattern indicating the presence of amorphous material. This shows that the formed hard carbon film is a mixed crystal, and it is clear from FIGS. 2 and 3 that the hard carbon film is a mixed crystal of hexagonal diamond and graphite. On the other hand, conventional carbon films are not mixed crystals, but merely contain a mixture of cubic diamond and amorphous carbon.

なお、硬質カーボン膜を形成した基板が、金属、絶縁物
のときは、基板上に生成し、たカーピン膜のX線回折の
結果によると、基板材質の違いに、Cシ、六方晶ダイヤ
モンドとグラファイトの面方位が異なっている。しかし
、基板利賀の相違に関係なく、生成したカー日?ン映は
六方晶ダイヤモンドとグラファイトの混晶からなるイf
質のカーボン膜であった。
In addition, when the substrate on which the hard carbon film is formed is a metal or an insulator, the results of X-ray diffraction of the carpin film formed on the substrate show that carbon, hexagonal diamond, and hexagonal diamond differ depending on the substrate material. The plane orientation of graphite is different. But regardless of the differences in the board Toga, the generated car day? The film is composed of a mixed crystal of hexagonal diamond and graphite.
It was a high quality carbon film.

なお、上記の六方晶ダイヤモンドとグラファイトの混晶
からなるカーボン膜生成時に、I■2ガス全添加すると
、相対的にH+イオン泉が増加するため、不安定な形で
ib版板上付着した炭素は、炭化水素として除かれ、硬
質カーボン膜の結晶性が向上する。また、Ar等の不活
性ガスを添加すると、放電が安定化する一方、不活性ガ
スイオンの衝撃効果にょ9.生成する硬質カービン膜の
結晶性が向上する。
In addition, when the above-mentioned carbon film consisting of a mixed crystal of hexagonal diamond and graphite is generated, if all the I■2 gas is added, the amount of H+ ion springs increases relatively, so that the carbon deposited on the IB plate in an unstable form is removed as a hydrocarbon, improving the crystallinity of the hard carbon film. Furthermore, when an inert gas such as Ar is added, the discharge is stabilized, but due to the impact effect of the inert gas ions.9. The crystallinity of the produced hard carbine film is improved.

また、放電維持用電極3とフィラメント4との間に印加
される電界と並行に磁界全印加する永久磁石7全設けた
場合、磁界に沿って電子がら施運動をし、C2H4ガス
粒子との衝突回数が多くなるので、当該ガス粒子のイオ
ン化率が大きくなる。したがって、フィラメント4の負
荷が軽減され、長寿命化される。
In addition, if all permanent magnets 7 are installed to apply a full magnetic field in parallel to the electric field applied between the discharge sustaining electrode 3 and the filament 4, the electrons will move along the magnetic field and collide with the C2H4 gas particles. As the number of times increases, the ionization rate of the gas particles increases. Therefore, the load on the filament 4 is reduced and its lifespan is extended.

上記の硬質カービン膜製造方法においては、フィラメン
ト4を赤熱させて熱電子放出を行わせ、放電された電子
が正に帯電した放電維持用電極3に引きつけられプラズ
マ全生成する。こ(Dため、プラズマ中に常時赤熱した
フィラメント4から熱電子が供給され、電子が過剰に存
在する状態となっている。しかし、この方法によるイオ
ン化率は10−5台で小さい。したがって、C+等のイ
オンによって蓄積される正電荷も少ないことに加えて、
電子による中和が膜形成中に起るので、チャージアップ
による膜の杷緑破壊が防止できる。さらに、基板2が絶
縁基板の場合、ホルダ5へのイオン衝撃によって発生す
る2次電子によって、絶縁基板の表面電位は負の電位に
なる。このため、絶縁基板上にも導電性基板上と同様大
きな付着力で、硬質カーボン膜が形成できる。
In the above-mentioned method for producing a hard carbine film, the filament 4 is made red hot to cause it to emit thermionic electrons, and the discharged electrons are attracted to the positively charged discharge sustaining electrode 3, thereby generating total plasma. Because of this (D), hot electrons are constantly supplied to the plasma from the red-hot filament 4, resulting in an excess of electrons.However, the ionization rate with this method is small, on the order of 10-5. In addition to the fact that the positive charge accumulated by ions such as
Since neutralization by electrons occurs during film formation, damage to the film due to charge-up can be prevented. Further, when the substrate 2 is an insulating substrate, the surface potential of the insulating substrate becomes negative due to secondary electrons generated by ion bombardment on the holder 5. Therefore, a hard carbon film can be formed on the insulating substrate with the same strong adhesion as on the conductive substrate.

St基板に上記方法によシ、硬質カーボン膜を形成した
ときの基板印加電圧とイオン電流の積対内部応力(カー
ボン膜における)の関係を第4図に示す。第4図におい
て横軸は、基板印加電圧とイオン電流の積を示し、たと
えば基板印加電圧が1 kVで、基板電流が10 mA
 ? 、りれば。
FIG. 4 shows the relationship between the product of the applied voltage to the substrate and the ion current versus the internal stress (in the carbon film) when a hard carbon film is formed on the St substrate by the above method. In FIG. 4, the horizontal axis indicates the product of the substrate applied voltage and the ion current; for example, when the substrate applied voltage is 1 kV and the substrate current is 10 mA,
? , if you get it.

基板に流入するエネルギは1 kVX 10mAに10
■・Aである。つまり、横軸は前記硬質カーボ゛ン膜が
堆積中にイオン衝撃によって供給されるエネルギ量′(
i:v−Aで表わしたものである。#軸は基板の硬質カ
ーボン膜中の内部応力つまシ、圧縮を示し、硬質カーボ
ン膜堆積中にイオンによって与えられるエネルギによっ
てコントロールできる。
The energy flowing into the board is 1 kV x 10 mA
■・A. In other words, the horizontal axis represents the amount of energy supplied by ion bombardment during the deposition of the hard carbon film.
It is expressed as i:v-A. The # axis represents the internal stress or compression in the hard carbon film of the substrate, which can be controlled by the energy provided by the ions during hard carbon film deposition.

たとえば、イオンによって与えられるエネルギ’150
V・AVCしたときには、内部応力を圧縮の#丘は10
 Kf/rLaまで低減できる。このように、硬質カー
がン膜堆積中のイオン衝撃量をコントロールすることに
よって、内部応力をコントロールでき、基板からの剥離
を防止できる。
For example, the energy given by ions '150
When V・AVC is applied, #hill of compression of internal stress is 10
It can be reduced to Kf/rLa. In this manner, by controlling the amount of ion bombardment during hard carbon film deposition, internal stress can be controlled and peeling from the substrate can be prevented.

炭素と化合物を形成しにくく、上記硬質カーボン膜の付
着力が得にくい基板利料に対しては、Arガスに↓るス
パッタクリーニング後に、ガス導入用の流量調節バルブ
11を開状態にし、導入管9全通してS+H4ガスを真
空ベルジャ1中に導入し、基板上にSie、2,0OO
A程度の厚さに堆積させた後、当該St @@、硬質カ
ーがン膜付着性確保のための中間膜とすればよい。
For substrates that are difficult to form compounds with carbon and difficult to obtain the adhesion of the hard carbon film, after sputter cleaning with Ar gas, open the flow rate control valve 11 for gas introduction, and open the introduction pipe. 9. Introduce S+H4 gas into the vacuum belljar 1 throughout the entire process, and place Sie, 2,000
After being deposited to a thickness of about A, the St@@ may be used as an intermediate film to ensure the adhesion of the hard carbon film.

また、材料が非常に酸化しやすいTlし基板2に利用す
る場合は、Arガスのスパッタクリーニングで表面酸化
膜を除いた後、N2プラズマを生成せしめ、とのN2プ
ラズマを利用して表面に窒化FM′f:形成せしめ、表
面状態が安定化してがら、硬質カーがン膜の付着力を高
める上で有効である。たとえば、TI元基板、Arガス
圧1o−3Torrの雰囲気の下でプラズマ全発生させ
て、基板表面全10〜30分間Ar+イオンにニジスパ
ッタクリーニングする。その後、N2ガス’(i=10
−3Torr台まで導入し、N+イオンにより表面窒化
処理全10〜30分間行ない、基板表面にIll iの
窒化物を形成した後に、硬質カーカ(ン膜形成すると、
伺着力の強い硬質カーボン膜孕形成できる。
In addition, when using the Tl substrate 2 whose material is very easily oxidized, after removing the surface oxide film by sputter cleaning with Ar gas, generate N2 plasma, and use the N2 plasma to nitride the surface. FM'f: Effective in increasing the adhesion of hard carbon films while stabilizing the surface condition. For example, on a TI source substrate, plasma is generated in an atmosphere with an Ar gas pressure of 10-3 Torr, and the entire surface of the substrate is cleaned by Ar+ ions by sputtering for 10 to 30 minutes. After that, N2 gas' (i=10
-3 Torr level, and perform surface nitriding treatment using N+ ions for a total of 10 to 30 minutes to form Illi nitride on the substrate surface, and then form a hard carton film.
A hard carbon film with strong adhesion can be formed.

本発明の製造方法によって基板上に形成される硬質カー
ボン膜は、 ■ 膜形成榮件を変えることに工ρ、カーボン膜の硬さ
を自由にコントロールできる。たとえば、C2H4ガス
圧k 8 X 10−8Torr :C2)14 fJ
’ y−流鼠紫20 ccなh:放電維持用電極゛1荘
流葡0.2Aで一定にするとともに、基板印加電圧を−
0,5kV 、 −2,OkV 、 −2,5kVと変
えたとき、得られる硬質カーボン膜の硬さは2,070
゜2.630,3,300である。このように、基板上
に形成される硬質カーボン膜の硬度を膜形成条件によっ
て、自由にコントロールでキル。
The hard carbon film formed on the substrate by the manufacturing method of the present invention is: (1) By changing the film formation conditions, the hardness of the carbon film can be freely controlled. For example, C2H4 gas pressure k8 X 10-8Torr: C2)14 fJ
'y-flow 20 cc h: Discharge sustaining electrode ゛1 current 0.2 A constant, and the voltage applied to the substrate -
When changing the voltage to 0.5kV, -2,OkV, -2.5kV, the hardness of the obtained hard carbon film is 2,070
゜2.630, 3,300. In this way, the hardness of the hard carbon film formed on the substrate can be freely controlled by changing the film formation conditions.

■ この硬質カーボン膜は、グラファイトを含んでいる
ため、自己潤滑作用を有している。
■ This hard carbon film contains graphite, so it has a self-lubricating effect.

たとえば、直径5瓢の鋼球に、荷重を11’9加えて、
摺動摩擦係数を測定すると、ステンレスが0.25−石
英が0.3以上であるのに対し、硬質カーボン膜は0.
15である。これは硬質カーボ゛ン膜中のグラファイト
によるものである。
For example, if a load of 11'9 is applied to a steel ball with a diameter of 5 gourds,
When measuring the sliding friction coefficient, stainless steel has a coefficient of 0.25 - quartz has a coefficient of 0.3 or more, while hard carbon film has a coefficient of 0.25 - 0.3 for quartz.
It is 15. This is due to the graphite in the hard carbon film.

■ さらに、この硬質カーボン膜は、硫酸水浴液、弗酸
水溶液等の強酸溶液、苛性加里水溶液等の強アルカリ溶
液に対しても極めて優秀な耐食性を示す。
(2) Furthermore, this hard carbon film exhibits extremely excellent corrosion resistance against strong acid solutions such as sulfuric acid aqueous solution and hydrofluoric acid aqueous solution, and strong alkaline solutions such as caustic potassium aqueous solution.

■ また、この硬質カーボン膜は、合成釉にCzH4に
用いているので、その純度は非常によく、酸素を用いる
反応性スノクツタエッチテ容易に加工でき、加工性の面
でも優れている。
(2) Furthermore, since this hard carbon film is used as CzH4 in the synthetic glaze, its purity is very high, and it can be easily processed using a reactive etch technique using oxygen, and is excellent in workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の硬質カーボン膜の製造方法に使用する
装置の概略構成図、第2図は本)4明の硬質カーH(ン
膜の製造方法にしたがって作製した硬質カービン膜のX
線回折&S図、第3図は本発明の硬質カーボン膜製造方
法によって作製した硬質カーピン膜の電子回折写真、第
4図は本発明の硬質カーボン膜製造方法により作製した
硬質カーがン膜の基板印加電圧とイオン電流の積対内部
応力の関係を示す特性図である。 図面中。 1は真空ベルジャ。 2は基板(カーがン膜形成用部材)、 3はプラズマ放電維持用電極、 4はフィラメント(熱電子放出手段)、8.9はガス導
入管、 10.11は流量調節バルブ、 13は高圧電源、 14は直流電源、 15は電源である。 第1図 X 、8L 第2図 512斤角7つし (26) 第4図
Fig. 1 is a schematic diagram of the apparatus used in the method for producing a hard carbon film of the present invention, and Fig. 2 is a schematic diagram of a hard carbon film produced according to the method for producing a hard carbon film according to the present invention.
Linear diffraction &S diagram, Figure 3 is an electron diffraction photograph of a hard carpin film produced by the hard carbon film manufacturing method of the present invention, and Figure 4 is a substrate of the hard carpin film produced by the hard carbon film manufacturing method of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the product of applied voltage and ion current versus internal stress. In the drawing. 1 is a vacuum bell jar. 2 is a substrate (member for carbon film formation), 3 is an electrode for maintaining plasma discharge, 4 is a filament (thermionic emission means), 8.9 is a gas introduction tube, 10.11 is a flow rate control valve, 13 is a high pressure 14 is a DC power source; 15 is a power source. Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)六方晶系のダイヤモンドとグラファイトの混晶か
らなることを特徴とする硬質カーボン膜。
(1) A hard carbon film characterized by being composed of a hexagonal mixed crystal of diamond and graphite.
(2) カーボン膜形成用部材と、熱電子放出手段と、
プラズマ放電維持用電極とを真空雰囲気中に配置し、さ
らに真空雰囲気中にC2H4ガスとH2若しくは不活性
ガスのいずれか一方又は両者の混合ガス又h CzH4
ガスを導入した後、熱電子放出手段とプラズマ放電維持
用電極間空間にプラズマ金発生させるとともに、カーざ
ン膜形成用部材に負の高電圧を加えることによシ、カー
ゴン膜形成用部材に、大方晶系ダイヤモンドとグラファ
イトの混晶からなる硬質カーがン膜全生成せしめること
全特徴とする硬質カーボン膜の製造方法。
(2) A carbon film forming member, a thermionic emission means,
A plasma discharge sustaining electrode is placed in a vacuum atmosphere, and a mixture of C2H4 gas, H2, or an inert gas, or a mixture of both, is further placed in the vacuum atmosphere.
After introducing the gas, plasma gold is generated in the space between the thermionic emission means and the plasma discharge sustaining electrode, and a negative high voltage is applied to the Cargon film forming member. A method for producing a hard carbon film, which is characterized in that a hard carbon film consisting of a mixed crystal of macrogonal diamond and graphite is entirely formed.
JP58172145A 1983-09-20 1983-09-20 Hard carbon film and its production Pending JPS6065796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172145A JPS6065796A (en) 1983-09-20 1983-09-20 Hard carbon film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172145A JPS6065796A (en) 1983-09-20 1983-09-20 Hard carbon film and its production

Publications (1)

Publication Number Publication Date
JPS6065796A true JPS6065796A (en) 1985-04-15

Family

ID=15936391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172145A Pending JPS6065796A (en) 1983-09-20 1983-09-20 Hard carbon film and its production

Country Status (1)

Country Link
JP (1) JPS6065796A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
US5238705A (en) * 1987-02-24 1993-08-24 Semiconductor Energy Laboratory Co., Ltd. Carbonaceous protective films and method of depositing the same
WO1997013886A1 (en) * 1995-10-12 1997-04-17 He Holdings, Inc., Doing Business As Hughes Electronics Method for deposition of diamondlike carbon films
EP0846792A1 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US6200652B1 (en) 1997-07-07 2001-03-13 Cvd Diamond Corporation Method for nucleation and deposition of diamond using hot-filament DC plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143694U (en) * 1976-04-26 1977-10-31
JPS534888A (en) * 1976-07-01 1978-01-17 Miyawaki Arimi Device and method of guiding cable for interior wiring work
JPH0510023Y2 (en) * 1987-06-10 1993-03-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143694U (en) * 1976-04-26 1977-10-31
JPS534888A (en) * 1976-07-01 1978-01-17 Miyawaki Arimi Device and method of guiding cable for interior wiring work
JPH0510023Y2 (en) * 1987-06-10 1993-03-11

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238705A (en) * 1987-02-24 1993-08-24 Semiconductor Energy Laboratory Co., Ltd. Carbonaceous protective films and method of depositing the same
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
WO1997013886A1 (en) * 1995-10-12 1997-04-17 He Holdings, Inc., Doing Business As Hughes Electronics Method for deposition of diamondlike carbon films
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
EP0846792A1 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US5993919A (en) * 1996-12-04 1999-11-30 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US6200652B1 (en) 1997-07-07 2001-03-13 Cvd Diamond Corporation Method for nucleation and deposition of diamond using hot-filament DC plasma

Similar Documents

Publication Publication Date Title
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
US11875976B2 (en) Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US4673475A (en) Dual ion beam deposition of dense films
KR20170044174A (en) A high power impulse magnetron sputtering process to achieve a high density high sp3 containing layer
TWI636483B (en) Methods of implanting carbon in a substrate from a carbon-containing dopant material
CN112376024B (en) Preparation method of oxide film
US5601654A (en) Flow-through ion beam source
JPS6065796A (en) Hard carbon film and its production
JPH11256327A (en) Forming method of metallic compound thin film and film forming device
JP3684593B2 (en) Sputtering method and apparatus
US6495000B1 (en) System and method for DC sputtering oxide films with a finned anode
US4038216A (en) Material and method of making secondary-electron emitters
WO2002070776A1 (en) Deposition process
JPH11279758A (en) Formation of metallic compound thin film and film forming device
JPS61194180A (en) Hollow electric discharge vapor deposition device
JP2023521164A (en) Yttrium oxide-based coating composition
JPH04103754A (en) Ceramic-coated material and its production
Hurley Physical processes in the substrate dark space in biased deposition systems
US4115228A (en) Method of making secondary-electron emitters
JP3664472B2 (en) Coating processing method and aperture plate
JP4350480B2 (en) Doping method, semiconductor integrated circuit manufacturing method
JPH09165673A (en) Thin film forming device and thin film forming method
RU2463382C2 (en) Method and device to produce multilayer composite nanostructured coatings and materials
Rother Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings
JPS5910254B2 (en) Plasma position method