JPS6062984A - Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase - Google Patents

Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase

Info

Publication number
JPS6062984A
JPS6062984A JP17107783A JP17107783A JPS6062984A JP S6062984 A JPS6062984 A JP S6062984A JP 17107783 A JP17107783 A JP 17107783A JP 17107783 A JP17107783 A JP 17107783A JP S6062984 A JPS6062984 A JP S6062984A
Authority
JP
Japan
Prior art keywords
galactosidase
dna
heat
coli
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17107783A
Other languages
Japanese (ja)
Inventor
Haruhisa Hirata
晴久 平田
Hirosuke Okada
岡田 弘輔
Seiji Negoro
根来 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakamoto Pharmaceutical Co Ltd
Original Assignee
Wakamoto Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakamoto Pharmaceutical Co Ltd filed Critical Wakamoto Pharmaceutical Co Ltd
Priority to JP17107783A priority Critical patent/JPS6062984A/en
Publication of JPS6062984A publication Critical patent/JPS6062984A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Abstract

PURPOSE:To produce heat-resistant beta-galactosidase in bacterial cells, by cultivating novel coliform bacilli having a heat-resistant galactosidase gene. CONSTITUTION:A recombinant DNA having DNA carrying genetic information about heat-resistant beta-galactosidase obtained from Bacillus thermophilus IAM 11001 is introduced into a vector plasmid for coliform bacilli to give Escherichia coil 294-43(pHG1) [FERM-P No.7232] and Escherichia coli 294-43(pHG2) [FERM- P No.7233]. The resultant bacteria are then cultivated by the conventional method and collected. The resultant bacterial cells are crushed and extracted to give the aimed heat-resistant beta-galactosidase.

Description

【発明の詳細な説明】 本発明は耐熱性β−ガラクトンダーゼ遺伝子を有する新
規な大腸菌及び耐熱性β−ガラクトシダーゼの製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel Escherichia coli having a thermostable β-galactosidase gene and a method for producing thermostable β-galactosidase.

β−ガラクトシダーゼは乳糖をガラクトースとグルコー
スに加水分解する作用を有する酵素で、低乳糖牛乳の製
造に用いられたり、チーズ製造の際、副産物として大量
に生成する乳清(Whey)中の乳糖から利用価値の高
いガラクトース、又はグルコースを製造するために用い
られる等食品加工に広く利用されている。食品加工に用
いられる酵素としては加工中の微生物汚染を防ぐ観点か
ら高温使用に耐え得る耐熱性酵素が望ましい。そこで本
発明者らは、耐熱性β−ガラクトシダーゼを製造する方
法について鋭意研究した結果、好熱菌パシルス・ステア
ロサーモフィラスから得た耐熱性β−ガラクトシダーゼ
の遺伝情報を担うDNAをベクターを介して大腸菌に導
入させることに成功するとともに。
β-galactosidase is an enzyme that has the ability to hydrolyze lactose into galactose and glucose. It is used in the production of low-lactose milk, and is utilized from lactose in whey, which is produced in large quantities as a byproduct during cheese production. It is widely used in food processing, such as for producing high-value galactose or glucose. As enzymes used in food processing, thermostable enzymes that can withstand high temperature use are desirable from the viewpoint of preventing microbial contamination during processing. As a result of intensive research into a method for producing thermostable β-galactosidase, the present inventors discovered that the DNA carrying the genetic information for thermostable β-galactosidase obtained from the thermophilic bacterium Pacilus stearothermophilus was transferred via a vector. and succeeded in introducing it into E. coli.

この大腸菌を培養して得られた菌体がら耐熱性β−ガラ
クトシダーゼを工業的有利に取得することに成功し、本
発明を完成するに至った。
The present inventors succeeded in industrially advantageously obtaining heat-stable β-galactosidase from the bacterial cells obtained by culturing this Escherichia coli, thereby completing the present invention.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

耐熱性β−ガラクトシダーヅの遺伝情報を担う1) N
 A (以下、染色体1) N Aと称する)のバシル
ス°ステアロサーモフィラスがらの単RIM製は常法に
従って行うことができる。例えばBiocbim、 B
iopbys、 Acta、 72.619−629 
(1963)に記載のフェノール法により行うことがで
きる。
1) N that carries the genetic information of heat-resistant β-galactosidase
A (hereinafter referred to as chromosome 1) NA) can be produced by a single RIM from Bacillus stearothermophilus cells according to a conventional method. For example, Biocbim, B
iopbys, Acta, 72.619-629
(1963).

この染色体DNAのベクターDNAへの組込みは染色体
DNAおよびベクターDNAを制限酵素で切断して染色
体DNA断片およびベクターDNA断片を調製したのち
1両者の混合物をDNAリガーゼで処理することにより
行うことができる。ここで用いられるベクター1) N
 Aとよびその誘導体(例えばpHR322,I)AC
YC177等)やλファージ等があげられ、とりわけp
HR322゜pACYC177が好適に用いられる。ま
た制限酵素としてはBamH1,BgLIJ、 Eco
Rl、 Pst l、 Mlu l。
This chromosomal DNA can be integrated into vector DNA by cutting the chromosomal DNA and vector DNA with restriction enzymes to prepare chromosomal DNA fragments and vector DNA fragments, and then treating a mixture of the two with DNA ligase. Vector used here 1) N
A and its derivatives (e.g. pHR322, I) AC
YC177, etc.) and λ phage, among others, p
HR322°pACYC177 is preferably used. In addition, restriction enzymes include BamH1, BgLIJ, Eco
Rl, Pst l, Mlu l.

SaL l 、 Xbo 1等があげられる。さらに]
) N AリガーゼとしてはT 4フアージ由来のD 
N Aリガーゼが好適に用いられる。
Examples include SaL l and Xbo 1. moreover]
) N A ligase is D derived from T4 phage.
NA ligase is preferably used.

上記方法で得られた組換え体DNAの大腸菌への導入は
Proc、 NatムAcad、 Sci、 U、S、
A、、 69゜2110−2114 (1972)に記
載のカルシウムイオン処理により行うことができる。組
換え体DNA(すなわち、耐熱性β−ガラクトシダーゼ
の遺伝情報を担うDNA断片を組込んだベクターDNA
)を有する菌株の選択方法は、当該組換え体DNAを調
製するのに際して使用した制限酵素やベクターDNAの
種類によっても異なるが9例えば、制限酵素としてXh
o lを用い、ベクターDNAとしてpAcYc177
を用いた場合には。
The recombinant DNA obtained by the above method was introduced into E. coli according to Proc. Nat. Acad. Sci. U.S.
A, 69°2110-2114 (1972). Recombinant DNA (i.e., vector DNA incorporating a DNA fragment carrying genetic information for thermostable β-galactosidase)
) The method for selecting a strain having
pAcYc177 as vector DNA
If you use .

次のようにして行うことができる。すなわち菌株をトリ
プトン・イースト・エクストラクト培地(以下T Y 
E寒天培地という)に培養し、アンピシリン耐性でカナ
マイシン感受性の菌株を第一次選択する。次いでこの菌
株を5−ブロモ−4−クロロ−3−インドリル−β−D
−ガラクトピラノシド(以下Xgatという)とアンピ
シリンを含むT Y E寒天培地に培養し、青色を呈す
るコロニーを選択し、最終的にはβ−ガラクトシダーゼ
活性の有無を確認する。
This can be done as follows. That is, the bacterial strain was transferred to tryptone yeast extract medium (hereinafter referred to as TY
The ampicillin-resistant and kanamycin-sensitive strains are first selected. This strain was then treated with 5-bromo-4-chloro-3-indolyl-β-D.
- Cultivate on a TYE agar medium containing galactopyranoside (hereinafter referred to as Xgat) and ampicillin, select blue colonies, and finally confirm the presence or absence of β-galactosidase activity.

次いで、」二記方法で得られた組換え体DNA含有菌株
より組換え体1)NAを単離する。組換え休1) N 
Aの単離は常法に従って行うことができる。例えばNu
cleic Ac1ds Re5earch、 voL
−7,pl)1513−J523 (1979)に記載
のアルカリ抽出法により行うことができる。この様にし
て得られた組換え休]) N Aを大腸菌に導入すれば
1組換え体DNAを含有する大腸菌を調製することがで
きる。組換え体DNAを含有する大腸菌はアンピシリン
とXgalを含むTYE寒天培地に出現する青色コロニ
ーとして取得することができる。
Next, recombinant 1) NA is isolated from the recombinant DNA-containing bacterial strain obtained by the method described in Section 2. Recombination break 1) N
Isolation of A can be carried out according to conventional methods. For example, Nu
cleic Ac1ds Re5earch, vol.
-7, pl) 1513-J523 (1979). By introducing the thus obtained recombinant DNA into E. coli, E. coli containing the recombinant DNA can be prepared. E. coli containing recombinant DNA can be obtained as blue colonies appearing on a TYE agar medium containing ampicillin and Xgal.

このようにして得られた組換え体DNAを含有する大腸
菌は、それらの代表的菌株として次の2株が工業技術院
微生物工業技術研究所に寄託されている。
The following two representative E. coli strains containing the recombinant DNA thus obtained have been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology.

エシェリヒア・コ9294−43(pH01)〔徽工研
菌寄第7232号〕 エシェリヒア・コリ294−43 (plIG 2 )
〔微工研菌寄第7233号〕 本発明による耐熱性β−ガラクトシダーゼの製造は、上
記のようにして得られた新規な遺伝子組換大腸菌を常法
により培養し、集菌したのち、常法により菌体を破砕し
、無細胞抽出液をとることにより行われる。かくして得
られた耐熱性β−ガラクトシダーゼの精製は、熱処理お
よび通常のタンパク質の精製法1例えばイオン交換クロ
マトグラフィー、ゲル沢過等の方法により行われるが、
特に熱処理が有効である。この熱処理による精製法はパ
シルス・ステアロサーモフィラスやサーマス・サーモフ
ィラスから耐熱性β−ガラクトシダーゼを取得するのに
従来行われている方法とは異なり、新規かつ有効な方法
である。
Escherichia coli 9294-43 (pH 01) [Hui Industrial Research Institute Bacteria No. 7232] Escherichia coli 294-43 (plIG 2)
[Feikoken Bibori No. 7233] The heat-stable β-galactosidase according to the present invention is produced by culturing the novel genetically modified Escherichia coli obtained as described above by a conventional method, harvesting the bacteria, and then using a conventional method. This is done by disrupting the bacterial cells and obtaining a cell-free extract. The thermostable β-galactosidase thus obtained is purified by heat treatment and conventional protein purification methods 1, such as ion exchange chromatography, gel filtration, etc.
Heat treatment is particularly effective. This purification method by heat treatment is a new and effective method, unlike the conventional method for obtaining heat-stable β-galactosidase from Pacillus stearothermophilus or Thermus thermophilus.

即ち、好熱菌の生産する蛋白質は全て熱安定性が良いの
で、細胞抽出液を熱処理しても全・蛋白質が徐々に変性
するのみで、特にβ−ガラクトシダーゼのみが精製され
ることはない。
That is, since all proteins produced by thermophilic bacteria have good thermostability, heat treatment of a cell extract only gradually denatures all the proteins, and in particular, only β-galactosidase is not purified.

これに対し、常温菌の大腸菌に好熱菌の遺伝子を組込ん
だ本発明の新規微生物が産生ずるβ−ガラクトシダーゼ
は熱安定性の点で1元の大腸菌の蛋白質とは大差があり
、約70℃30分程度の加熱処理で大腸菌の蛋白質は大
部分変性して沈殿となるが、β−ガラクトシダーゼはほ
とんど変性せず熱処理液中に溶解している。
On the other hand, the β-galactosidase produced by the novel microorganism of the present invention, in which genes from a thermophilic bacterium are incorporated into the thermophilic Escherichia coli, has a large difference in thermostability from the original Escherichia coli protein, with approximately 70% Most of the E. coli proteins are denatured and precipitated by heat treatment for about 30 minutes at °C, but β-galactosidase is hardly denatured and is dissolved in the heat-treated solution.

この熱処理液を遠心分離するだけで、上清に純度の上昇
したβ−ガラクトシダーゼが得られる。
By simply centrifuging this heat-treated solution, β-galactosidase with increased purity can be obtained as a supernatant.

この熱処理による簡便かつ効率の良いβ−ガラクトシダ
ーゼの分離精製法は本発明の遺伝子組換技術により初め
て可能になった新規技術である。
This simple and efficient method for separating and purifying β-galactosidase using heat treatment is a new technology made possible for the first time by the genetic recombination technology of the present invention.

以下に本発明の実施例を掲げる。Examples of the present invention are listed below.

実施例1゜ 本実施例は、DNA供与体としてバシルス・ステアロサ
ーモフィラスIAMI100IをベクターDNAとして
pACYC177を、制限酵素としてXho lを、宿
主大腸菌として、エシェリヒア・コリ294 (ATC
C31446)のニトロソグアニジン変異処理により得
たβ−ガラクトシダー、ゼ欠損株〔以下゛′エシェリヒ
ア・コリ294−43 (rk−mk )”という〕を
用いて行った例である。
Example 1 This example uses Bacillus stearothermophilus IAMI100I as a DNA donor, pACYC177 as a vector DNA, Xhol as a restriction enzyme, and Escherichia coli 294 (ATC) as a host E. coli.
This is an example in which a β-galactosidase-deficient strain (hereinafter referred to as ``Escherichia coli 294-43 (rk-mk)'') obtained by nitrosoguanidine mutation treatment of C31446) was used.

(1)耐熱性β−ガラクトシダーゼの遺伝情報を担う染
色体DNAの調製と切断 バシルス・ステアロサーモフィラスJAM11001を
乳糖0.2チを含む’r Y E培地(トリプトン1%
、酵母エキス0.5%、 NaCzO,5%、p!17
.0)4を中、60℃で6時間振とう培養した。菌体を
集洗菌後、200−の1 m9/lnε リゾチーム入
りの20 mM’Tris−HCt(pH7,5) 、
 5 mMI(DTA緩衝液に懸濁し、15℃、15分
間放置する。20%SDS溶液を5−加えて、溶菌させ
、この溶菌液に205m/のフェノール(使用直前に2
0mMTris −HCt(plI8.0)で飽和して
おいたもの)を加え、おだやかに攪はん後、遠心分離す
る。(7,OOQ rpm。
(1) Preparation and cutting of chromosomal DNA carrying the genetic information of thermostable β-galactosidase Bacillus stearothermophilus JAM11001 was grown in YE medium containing 0.2% lactose (1% tryptone).
, yeast extract 0.5%, NaCzO, 5%, p! 17
.. 0) 4 was cultured with shaking at 60°C for 6 hours. After collecting and washing the bacterial cells, 20 mM'Tris-HCt containing 200-1 m9/lnε lysozyme (pH 7,5),
5 mM (suspended in DTA buffer and left at 15°C for 15 minutes. Add 20% SDS solution to lyse the bacterium, add 205 m/m of phenol (205 mM/ml immediately before use)
Add 0mM Tris-HCt (saturated with plI 8.0), stir gently, and centrifuge. (7,OOQ rpm.

10分)水層(上層)をとり、さらにフェノール抽出を
数回くり返して得られた水層に、2倍容量の95チエタ
ノールを加え、生じた白色沈殿をガラス棒にまきつけ回
収する。このDNAを0.1xSSC溶液100+jニ
溶解り、200πeのエタノールを加え再度エタノール
沈殿を行う。生じた沈殿を」1記と同様に回収し、45
−の0.lX5SC溶液に溶解後、5m7!の10 X
 8SCを加える。(終濃度1xS8Cとなるように)
得られたI) N A溶液’50meをエチジウムブロ
マイド−塩化セシウム平衡密度勾配遠心にかけ。
10 minutes) Take the aqueous layer (upper layer) and repeat the phenol extraction several times.Add 2 times the volume of 95-thiethanol to the resulting aqueous layer, and collect the resulting white precipitate by scattering it around a glass rod. This DNA was dissolved in 100+j of 0.1×SSC solution, 200×e of ethanol was added, and ethanol precipitation was performed again. Collect the resulting precipitate in the same manner as in 1.
-0. After dissolving in lX5SC solution, 5m7! 10X
Add 8SC. (So that the final concentration is 1xS8C)
The resulting I) NA solution '50me was subjected to ethidium bromide-cesium chloride equilibrium density gradient centrifugation.

染色体1) N A 750μVを得た。染色体DNA
を切断するため、10 pffのI)NAに対し10 
u (7)Xho 1を加え、10mMTris−14
(1(IA17.4)、 50mMNaC110mM 
MgCl2の反応液50pt中で、37℃にて3時間反
応を行わせ、65℃で10分間加熱して。
Chromosome 1) N A of 750 μV was obtained. chromosomal dna
to cut 10 pff of I) NA
u (7) Add Xho 1, 10mM Tris-14
(1 (IA17.4), 50mM NaC110mM
The reaction was carried out in 50 pt of MgCl2 reaction solution at 37°C for 3 hours, and then heated at 65°C for 10 minutes.

)(ho lを失活させ、DNAをエタノール沈殿させ
た後、251Ltの10mMTris−HCt(pT(
7,5)1mMEDTA (以下TE緩衝液と称T)に
とかす。
) (ho I was inactivated and the DNA was precipitated with ethanol, then 251Lt of 10mM Tris-HCt (pT(
7,5) Dissolve in 1mM EDTA (hereinafter referred to as TE buffer).

(2)ベクターDNAの調製と切断 アンピシリン耐性及びカナマイシン耐性を有するpAc
Yc 177プラスミドのDNAを下記のようにして調
製した。
(2) Preparation and cleavage of vector DNA pAc with ampicillin and kanamycin resistance
The DNA of Yc 177 plasmid was prepared as follows.

pAcYc177をプラスミドとして持つエシェリヒア
−コリC600(rk−・mk−) [A、 C,Y、
 Chang。
Escherichia coli C600 (rk-/mk-) carrying pAcYc177 as a plasmid [A, C, Y,
Chang.

et al、、 J、 Hacteriol、 134
1141−1156 (H)78)−]をM9培地(N
a2HPO45,8W/l、 KH2PO43f/l。
et al., J. Hacteriol, 134
1141-1156 (H)78)-] was added to M9 medium (N
a2HPO45.8W/l, KH2PO43f/l.

NaCt5jμ、 NH4Cl 1 f/l、 Ca 
cz211m9/L、 Mg 80495 m9/l、
 17’e C/−31,6m9/l、カサミノ酸57
μ、グルコース4 f/L ) 150 me中で 3
7℃で培養液の5QQnrnの吸光度が0.6〜1.0
になるまで培養後。
NaCt5jμ, NH4Cl 1 f/l, Ca
cz211m9/L, Mg 80495m9/L,
17'e C/-31,6m9/l, casamino acids 57
μ, glucose 4 f/L) 3 in 150 me
The absorbance of 5QQnrn of the culture solution at 7°C is 0.6 to 1.0.
After culturing until

200μ秒賃のクロラムフェニコールを添加して一夜培
養を続けた。菌体な集注菌後、2mq/m1(Dリゾf
−ムを含む25mMTris−HCt(pl(8,0)
Chloramphenicol was added for 200 μs and the culture was continued overnight. After collecting bacteria, 2 mq/m1 (D lyso f
-25mM Tris-HCt (pl(8,0)
.

50mMグーtレコ−ス、10mMEDTA15mgに
懸濁し。
Suspend in 15mg of 50mM GTA and 10mM EDTA.

0℃で30分間放置後、0.2NNa011.1%5D
S(ラウリル硫酸ブ゛トリウム)30−を加え溶菌させ
、0℃で5分間放置した。次いで3M酢酸ナトリウム(
pH4,8) 22.5 ml加え、0℃で1時間放置
後、遠心分離(8,00Orpm、 20分)して上清
を得た。上清に2.5倍量のエタノールを加えDNAを
沈殿させた後、5mgの10mMTris−HCt(p
)17.5)に溶かした。このDNA溶液をエチジウム
ブ(Jマイト−塩化セシウム平衡密度勾配遠心ニカけ、
l]AcYc177プラスミド1)NA100μfを得
た。ベクター1)N−Aを切断するためpACYC17
71/7りに文JL、511のXbo lを力11えr
 10mMTris−Ilct(pH7,4)、 50
mMNaCt、10mMMg(22の反応液20μを中
で、37℃、2時間反応を行わせ。
After standing at 0℃ for 30 minutes, 0.2NNa011.1%5D
S (butorium lauryl sulfate) 30- was added to lyse the bacteria, and the mixture was left at 0°C for 5 minutes. Then 3M sodium acetate (
After adding 22.5 ml (pH 4.8) and leaving it at 0°C for 1 hour, centrifugation (8.00 rpm, 20 minutes) was performed to obtain a supernatant. After adding 2.5 times the volume of ethanol to the supernatant to precipitate the DNA, 5 mg of 10 mM Tris-HCt (p
) 17.5). This DNA solution was subjected to ethidium bromide (J mito-cesium chloride equilibrium density gradient centrifugation,
l] AcYc177 plasmid 1) 100 μf of NA was obtained. Vector 1) pACYC17 to cut N-A
71/7 ri JL, 511's Xbox l, force 11er
10mM Tris-Ilct (pH 7,4), 50
The reaction was carried out at 37°C for 2 hours in 20μ of the reaction mixture of mMNaCt and 10mMMg (22).

65℃で10分間加熱し、1)NAをエタノール沈殿さ
せた後、20pLの’ll’E緩衝液にとかす。
Heat at 65° C. for 10 minutes to precipitate 1) NA with ethanol, and then dissolve in 20 pL of 'll'E buffer.

(3) 染色体DNA断片のベクターDNAへの挿入 (1)で得た染色体1)NAIOμ2と (2)で得た
ベクターDNA0.57jりを混合しe 66mMTr
is −He(pH7,5)、 10rnMMgC/−
z、10mMジチオスレイト−# 、1 mM A T
 Pの反応液50pt中で0.20のT4−DNAリガ
ーゼにより4℃、16時間反応させた後、65℃、10
分間加熱し、DNA溶液とした。
(3) Insertion of chromosomal DNA fragment into vector DNA Mix the chromosome 1) NAIOμ2 obtained in (1) with 0.57j of the vector DNA obtained in (2).
is -He (pH 7,5), 10rnMMgC/-
z, 10mM dithiothreate-#, 1mM AT
After reacting at 4°C for 16 hours with 0.20 T4-DNA ligase in 50pt of P reaction solution, the reaction was carried out at 65°C for 10 hours.
The mixture was heated for a minute to form a DNA solution.

(4)組換え体プラスミドによる大腸菌の形質転換 エシェリヒア・コリ294−43をL培地(トリプトン
1チ、酵母エキス0.5 %t Na(Jo、51−グ
ルコース0.1チ、 p)■7.0 ) 507!中3
7℃で培養液の5QQ nmの吸光度が0.6〜1,0
になるまで振とう培養し、集菌する。12.5mgの0
.1 M MgCl2で洗浄後、12.5 ml 0J
J) 0.1 M Ca C12に懸濁し、0℃。
(4) Transformation of Escherichia coli with recombinant plasmids Escherichia coli 294-43 was grown in L medium (1 g of tryptone, 0.5% tNa (Jo, 51-glucose, 0.1 g, p))7. 0) 507! 3rd year middle school
At 7°C, the absorbance of the culture solution at 5QQ nm is 0.6 to 1.0.
Culture by shaking until the bacteria are collected. 12.5mg of 0
.. After washing with 1 M MgCl2, 12.5 ml 0J
J) Suspended in 0.1 M Ca C12 at 0°C.

20分間放置する。遠心集菌後、2.!5mlの15%
グリセリンs o、I M Ca Ct、に懸濁する。
Leave for 20 minutes. After centrifugation, 2. ! 15% of 5ml
Suspend in glycerin SO, I M Ca Ct.

この懸濁液0.2−に(3)で得たDNA溶液10μt
を加え。
Add 10 μt of the DNA solution obtained in (3) to 0.2 μm of this suspension.
Add.

0℃で1時間放置後42℃で3分間処理する。After being left at 0°C for 1 hour, it was treated at 42°C for 3 minutes.

この懸濁液をL・培地″にて10倍に希釈し、37℃で
30〜90分間涼持後、アンピシリン(50pf7旬)
を含むTYB寒天培地に塗布した。37℃で一夜培養し
、アンピシリン耐性となった大腸菌を得る。
This suspension was diluted 10 times with L medium and kept cool at 37°C for 30 to 90 minutes, then ampicillin (50pf 7th season)
It was spread on a TYB agar medium containing. E. coli that has become ampicillin resistant is obtained by culturing at 37° C. overnight.

(5) 耐熱性β−ガラクトシダーゼ産生能を有する大
腸菌の選択分離 上記のようにして得られたアンピシリン耐性の大腸菌の
うちカナマイシン(5μf/me)を含むTYE寒天培
地で生育できないものを選び。
(5) Selective isolation of Escherichia coli capable of producing thermostable β-galactosidase Among the ampicillin-resistant Escherichia coli obtained as described above, those that cannot grow on TYE agar medium containing kanamycin (5 μf/me) were selected.

Xgal (4o μf/mg)とアンビシリy (5
0pt/me)を含むTYE寒天培地に植菌し、37℃
で培養する。
Xgal (4o μf/mg) and Ambisiliy (5
TYE agar medium containing 0 pt/me) and incubated at 37°C.
Cultivate with

β−ガラクトシダーゼ産生能を有する大腸菌のコロニー
は青色を呈する。かくして得られた新規な大腸菌はエシ
ェリヒア・コ9294−43(psIGl)と名付け、
工業技術院微生物工業技術研究所に寄託した。〔微工研
菌寄第7232号: 1M5cliericha co
li 294−43 (pH01)−)(6)大腸菌の
保持する組換え体DNAの解析(5)で得られた形質転
換株をアンピシリン(50μケ賃)を含むM9培地15
0mg中で37℃で培養し、(2)と同様にしてプラス
ミドD N A 100μ2を得た。このプラスミドD
NAを用いて。
Colonies of E. coli that have the ability to produce β-galactosidase exhibit a blue color. The new Escherichia coli thus obtained was named Escherichia co9294-43 (psIGl).
Deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology. [Microtechnical Research Institute No. 7232: 1M5cliericha co
li 294-43 (pH 01) -) (6) Analysis of recombinant DNA retained by E. coli The transformed strain obtained in (5) was placed in M9 medium 15 containing ampicillin (50μ).
The cells were cultured in 0 mg at 37°C, and 100 μ2 of plasmid DNA was obtained in the same manner as in (2). This plasmid D
Using N.A.

エシェリヒア・コリ294−43を(4)と同様の方法
で形質転換したところ、得られた形質転換株は全てアン
ピシリン耐性でβ−ガラクトシダーゼ産生能を有してい
た。このことはプラスミドDNA上にβ−ガラクトシダ
ーゼの遺伝情報を担うDNA断片が組込まれていること
を示している。
When Escherichia coli 294-43 was transformed in the same manner as in (4), all of the resulting transformants were ampicillin resistant and had the ability to produce β-galactosidase. This indicates that a DNA fragment carrying genetic information for β-galactosidase has been incorporated into the plasmid DNA.

またこのプラスミドDNAを(2)と同様の方法で制限
酵素Xholで切断し、耐熱性β−ガラクトシダーゼの
遺伝情報を担うDNA断片の大きさを1%アガロースゲ
ル電気泳動法礁二より測定したところ6メガダルトン(
Md)であった。
In addition, this plasmid DNA was cut with the restriction enzyme Xhol in the same manner as in (2), and the size of the DNA fragment carrying the genetic information of thermostable β-galactosidase was measured using 1% agarose gel electrophoresis. Mega Dalton (
Md).

(7)大腸菌の産生するβ−ガラクトシダーゼの耐熱性 エシェリヒア・コリ294−43 (pmlGl )を
L培地150−中で、37℃、6時間振とう培養し。
(7) Thermostable β-galactosidase produced by Escherichia coli Escherichia coli 294-43 (pmlGl) was cultured with shaking in L medium 150- at 37°C for 6 hours.

集菌後、Z緩衝液(0,1Mリン酸緩衝液(pIt7.
o)。
After collecting bacteria, add Z buffer (0.1M phosphate buffer (pIt7.
o).

10mMKCt、 1mMMg5O+、50mM 2−
メルカプトエタノール〕3−に懸濁する。超音波処理に
より無細胞抽出液゛を調製した。
10mM KCt, 1mM Mg5O+, 50mM 2-
Suspend in mercaptoethanol]3-. A cell-free extract was prepared by ultrasonication.

この無細胞抽出液の70℃、30分間の熱処理前後のβ
−ガラクトシダーゼ活性を基質としてO−ニトロフェニ
ル−β−D−ガラクトピラノシド(以下0NPGと称す
)を用いて下記のようにして測定した。0.8mν駕の
0NPGを含むZ緩衝液2ゴと酵素液0.4 mlを混
合し。
β of this cell-free extract before and after heat treatment at 70°C for 30 minutes
- Galactosidase activity was measured as follows using O-nitrophenyl-β-D-galactopyranoside (hereinafter referred to as 0NPG) as a substrate. Mix Z buffer 2 containing 0.8 mν of 0NPG and 0.4 ml of enzyme solution.

65℃で一定時間放置後I MNa2 co31 tn
εを加え水冷し1反応により生じたソルトニトロフェノ
ールの量を420nmの吸光度により測定した。
After standing at 65℃ for a certain period of time, I MNa2 co31 tn
ε was added and cooled with water, and the amount of salt nitrophenol produced in one reaction was measured by absorbance at 420 nm.

1分間に1μモルのオルトニトロフェノールを遊離する
酵素量を10とした。
The amount of enzyme that releases 1 μmol of orthonitrophenol per minute was set to 10.

対照として野生株であるエシェリヒア°コリ294 (
A’l’CC31446)を乳糖0.2%を含むTYE
寒天培地で培養し、上記と同様にして得た無細胞抽出液
を用いた。
As a control, the wild strain Escherichia coli 294 (
A'l'CC31446) containing 0.2% lactose
A cell-free extract obtained by culturing on an agar medium in the same manner as above was used.

その結果はf81表の通りである。The results are shown in the f81 table.

第1表 70℃、30分間の熱処理後も80チの活性−残存して
おり、比活性は4.5倍に上昇してI/Xることか示さ
れた。
Table 1 shows that even after heat treatment at 70°C for 30 minutes, 80% of activity remained, and the specific activity increased by 4.5 times to I/X.

実施例2゜ 本実施例はDNA供与体としてプラスミドpIIGlを
制限酵素、としてPGlを、 ベクターDNAとしてp
BR322を、宿主大腸菌としてエシェリヒア・コリ2
94−43を用いて行った例である。
Example 2 This example uses plasmid pIIGl as a DNA donor, PGl as a restriction enzyme, and pIIGl as a vector DNA.
BR322 and Escherichia coli 2 as host E. coli.
This is an example using 94-43.

(1)プラスミドpl(Glの切断 実施例1の(6)で得たプラスミドDNA 1μf(二
対し、5uのpsL lを加え、2QmMTris−1
1Ct(pH7,5)、 10mMMg(E4z、 5
6mM (NH4)2804.0.1mV−牛血清アル
ブミンの反応液20μを中で37℃、3時間反応を行わ
せ、65℃、10分間加熱し、エタノール沈殿後、20
μtのTll緩衝液にとかす。
(1) Cleavage of plasmid pl (Gl) Plasmid DNA obtained in Example 1 (6) 1μf (2 pairs, 5u of psLl was added, 2QmMTris-1
1Ct (pH 7,5), 10mM Mg (E4z, 5
6mM (NH4) 2804.0.1mV - 20μ of bovine serum albumin reaction solution was reacted at 37℃ for 3 hours, heated at 65℃ for 10 minutes, and after ethanol precipitation, 20μ
Dissolve in μt Tll buffer.

(2)ベクター1) N Aの調製と切断アンビシ9ン
耐性及びテトラサイクリン耐性を有するp B I< 
322プラスミドのDNAをpBR322をプラスミド
として持つエシエリヒア−−7すC600(rlc−m
k−)を用いて実施例1の(2)に記した方法で調製し
た。その結果pBR322プラスミドDNA1111g
を得た。ベクターDNAを切断するためpBR322i
 pf +ニ一対し+ 5uノPst1を加え、20m
A4’l”ris−)ICt(p+17.5 )、 1
0mMMgC/−2゜50mM(NH4)2S04.0
.1my7,1牛血清アルブミンノ反応液20μを中で
:37℃、 3時間反応を行わせた後65℃、10分間
加熱し、エタノール沈殿後。
(2) Vector 1) Preparation and cleavage of NA pBI<
The DNA of the 322 plasmid was transferred to Escherichia-7C600 (rlc-m), which has pBR322 as a plasmid.
k-) according to the method described in Example 1 (2). As a result, 1111 g of pBR322 plasmid DNA
I got it. pBR322i to cut the vector DNA
Add pf + 2 pair + 5u no Pst1, 20m
A4'l"ris-) ICt(p+17.5), 1
0mMMgC/-2゜50mM(NH4)2S04.0
.. 1my7,1 bovine serum albumin reaction solution (20μ) was reacted at 37°C for 3 hours, heated at 65°C for 10 minutes, and precipitated with ethanol.

20μtの゛I’E緩衝液にとかす。Dissolve in 20μt of 'I'E buffer.

(3) DNA断片の結合 (1)で得たDNA0.5μ2と(2)で得たベクター
D N A 9.5 pfを混合し、66mMTris
−Hct(pH7,5)。
(3) Binding of DNA fragments Mix 0.5μ2 of the DNA obtained in (1) with 9.5 pf of the vector DNA obtained in (2), and add 66mM Tris.
-Hct (pH 7,5).

10fnMMg(J2. 10mM9 チオスレイト−
/l/、 1mMATPの反応液5QμA中で、0.2
uのT4’−DNAリガーゼにより4℃、16時間反応
させた後、65℃。
10fnMMg (J2. 10mM9 Thiothret-
/l/, 0.2 in 5QμA of 1mM ATP reaction solution.
After reacting with T4'-DNA ligase at 4°C for 16 hours, the temperature was increased to 65°C.

10分間加熱し、DNA溶液とした。The mixture was heated for 10 minutes to prepare a DNA solution.

(4)組換え体プラスミドによる大腸菌の形質転換 実施例1の(4)と同様にして、上記の如くして調製し
たDNA溶液をエシェリヒア・コリ294−43に導入
し、テトラサイクリン(5μ2/m7りとXgal (
40pf/me)を含むTYE寒天培地でコロニーが青
色を呈するものを選択した。かくして得られた新規な大
腸菌をエシェリヒア・コリ294−43 (p)lG2
 )と名付け、工業技術院微生物工業技術研究所に寄託
した。〔微工研菌寄第7233号: hscheric
hia coli 294−43(pH02) 、 ) (5)大腸菌の保持する組換え休]) N Aの解析(
4)で得られた形質転換株をテトラサイクリン(5μf
/ld)を含むM9培地15〇−中で37℃で培養し、
(2)と同様にしてプラスミド]JNA300μfを得
た。 このプラスミドDNAを(2)と同様の方法で制
限酵素PsL lで切断し、 耐熱性β−ガラクトシダ
ーゼ遺伝情報を担うDNA断片の大きさを1係アガロー
スゲル電気泳動法により測定したところ2Mdであった
(4) Transformation of E. coli with recombinant plasmid In the same manner as in (4) of Example 1, the DNA solution prepared as above was introduced into Escherichia coli 294-43, and tetracycline (5μ2/m7) was introduced. and Xgal (
Colonies exhibiting blue color were selected on TYE agar medium containing 40 pf/me). The new Escherichia coli thus obtained was transformed into Escherichia coli 294-43 (p)lG2.
) and deposited it with the Institute of Microbial Technology, Agency of Industrial Science and Technology. [Microtechnology Research Institute No. 7233: hscheric
hia coli 294-43 (pH 02), ) (5) Recombinant hia coli retained by E. coli ]) Analysis of NA (
The transformed strain obtained in 4) was treated with tetracycline (5 μf
/ld) at 37°C in M9 medium 150-
In the same manner as in (2), 300 μf of plasmid JNA was obtained. This plasmid DNA was cut with the restriction enzyme PsLl in the same manner as in (2), and the size of the DNA fragment carrying the heat-stable β-galactosidase genetic information was measured by 1-layer agarose gel electrophoresis, and it was found to be 2 Md. .

(6)大腸菌の産生するβ−ガラクトシダーゼエシェリ
ヒア・コリ294−43 (pH02)から実施例】の
(7)と同様にして調製した無細胞抽出液のβ−ガラク
トシダーゼ活性を測定したところ12.1 u/me 
(0,53u/my蛋白)であり、70℃。
(6) β-galactosidase produced by Escherichia coli The β-galactosidase activity of a cell-free extract prepared from Escherichia coli 294-43 (pH 02) in the same manner as in Example (7) was 12.1 u. /me
(0.53 u/my protein) at 70°C.

:30分間の熱処理後の活性はg、7 u/mA (2
,4”/’9蛋白)であった。
:The activity after heat treatment for 30 minutes was g, 7 u/mA (2
, 4''/'9 protein).

なお、」−記実施1及び2で創製した新規大腸菌エシェ
リヒア・コリ294−43 (p)Io 1 )及びエ
シェリヒア・コリ294−43 (pl(02)の菌学
的性質はいづれもアンピシリン耐性及び耐熱性β−ガラ
クトシダーゼ生産性を示す以外は普通の大腸菌の性質と
ほぼ同一である。
Furthermore, the mycological properties of the new Escherichia coli bacteria Escherichia coli 294-43 (p)Io 1 ) and Escherichia coli 294-43 (pl (02)) created in Examples 1 and 2 are ampicillin resistant and heat resistant. Its properties are almost the same as those of ordinary E. coli, except that it exhibits β-galactosidase productivity.

特許用N1人 わかもと製薬株式会社N1 person for patent Wakamoto Pharmaceutical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1) バシルス°ステアロザーモフィラスかう取得し
た耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA
断片を大腸菌用ベクターDNAに組込んだ新規組換え体
DNA0
(1) DNA carrying genetic information for thermostable β-galactosidase obtained by Bacillus stearothermophilus
New recombinant DNA0 in which the fragment was integrated into E. coli vector DNA
(2) バシルス・ステアロサーモフィラスから取得し
た耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA
断片を大腸菌用ベクターDNAに組込んだ組換え体DN
Aを導入させた新規な大腸菌。
(2) DNA carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus
Recombinant DNA in which the fragment was integrated into E. coli vector DNA
A new E. coli strain containing A.
(3) パシルス・ステアロサーモフィラスから取得し
た耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA
断片を大腸菌用ベクターDNAに組込んだ組換え体DN
Aを導入させた大腸菌を培養し、その培養菌体に蓄積し
た耐熱性β−ガラクトシダーゼを採取することを特徴と
する耐熱性β−ガラクトシダーゼの製造法。
(3) DNA carrying the genetic information of thermostable β-galactosidase obtained from Pacillus stearothermophilus
Recombinant DNA in which the fragment was integrated into E. coli vector DNA
1. A method for producing heat-stable β-galactosidase, which comprises culturing E. coli into which A has been introduced, and collecting heat-stable β-galactosidase accumulated in the cultured cells.
JP17107783A 1983-09-19 1983-09-19 Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase Pending JPS6062984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17107783A JPS6062984A (en) 1983-09-19 1983-09-19 Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17107783A JPS6062984A (en) 1983-09-19 1983-09-19 Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase

Publications (1)

Publication Number Publication Date
JPS6062984A true JPS6062984A (en) 1985-04-11

Family

ID=15916584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17107783A Pending JPS6062984A (en) 1983-09-19 1983-09-19 Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase

Country Status (1)

Country Link
JP (1) JPS6062984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176971A2 (en) * 1984-09-29 1986-04-09 Wakamoto Pharmaceutical Co., Ltd. Gene coding for thermostable beta-galactosidase, Bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163889A (en) * 1978-06-07 1979-12-26 Nat Res Dev Enzyme and utilization thereof
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163889A (en) * 1978-06-07 1979-12-26 Nat Res Dev Enzyme and utilization thereof
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176971A2 (en) * 1984-09-29 1986-04-09 Wakamoto Pharmaceutical Co., Ltd. Gene coding for thermostable beta-galactosidase, Bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof

Similar Documents

Publication Publication Date Title
EP0034470B1 (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
JP2664860B2 (en) Production of proteins or polypeptides by industrial Bacillus microbial species
KR930002887B1 (en) Bacterial enzymes
JPH04507346A (en) Alkaline proteolytic enzyme and its production method
FI79139C (en) Method of cloning a gene encoding a heat-resistant α-amylase into Escherichia coli and Bacillus subtilis
CA1150169A (en) Broad host range small plasmid rings as cloning vehicles
JP4856833B2 (en) Purification method for large scale plasmid DNA
EP0108301B1 (en) Method of heterologous cloning of gene in bacillus microorganism
JPS6062984A (en) Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase
JPS6356277A (en) Novel bacillus brevis and use thereof
US5049501A (en) Production method for PvuI restriction endonuclease
US4376164A (en) Process for preparing broad host range small plasmid rings as cloning vehicles
EP0073436A2 (en) Hybrid plasmid and preparation thereof
US4418194A (en) DNA Fragments for forming plasmids
JPS6181788A (en) Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase
JP2833793B2 (en) Plasmid encoding heparinase, heparinase-producing strain carrying this plasmid, and method for producing heparinase
JPH0235083A (en) Dna having genetic information of lipase
US4663285A (en) Chimeric plasmids
JP2601329B2 (en) Preparation of Bifidobacterium protoplasts
JPS6374491A (en) Production of protein
JPS5955186A (en) Preparation of heat-resistant enzyme
JPH07298881A (en) Thermostable pyroglutamyl peptidase and its gene
CA1177420A (en) Broad host range small plasmid rings as cloning vehicles
JPS62143685A (en) Novel heat-resistant beta-galactosidase and gene coding same
JPS62275684A (en) Recombinant vector and bacterial cell containing same