JPS6062136A - Arranging method of cell on design of lsi - Google Patents

Arranging method of cell on design of lsi

Info

Publication number
JPS6062136A
JPS6062136A JP58171484A JP17148483A JPS6062136A JP S6062136 A JPS6062136 A JP S6062136A JP 58171484 A JP58171484 A JP 58171484A JP 17148483 A JP17148483 A JP 17148483A JP S6062136 A JPS6062136 A JP S6062136A
Authority
JP
Japan
Prior art keywords
cells
arrangement
cell
lines
lsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58171484A
Other languages
Japanese (ja)
Inventor
Hisashi Kanbe
神戸 尚志
Tsuneo Inubushi
犬伏 恒雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58171484A priority Critical patent/JPS6062136A/en
Publication of JPS6062136A publication Critical patent/JPS6062136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Abstract

PURPOSE:To obtain the arrangement of cells, through which convergence is accelerated to a large-scale information, by repeating and improving operation at the collective unit of the cells, preventing so-much dependence on an initial arrangement of a final cell arrangement and considering a classification in the improvement of arrangement at the collective unit of the cells. CONSTITUTION:Pairs of cells with few terminals, which must be connected at the same potential, in cells 21...2n are formed, and allotted to m lines B. The pairs are divided so that an interline connection is minimized at that time. Lines Bj and Bj+1 are united temporarily to form a line Bj,j+1, a redivision is executed while other lines are left as they are, and the total number of signal lines S not connected to any cell while penetrating the lines B is minimized. An improvement in the unit fundamental operation is repeated thoroughly, Y coordinates are obtained from the best arrangement, and operation is improved partially so as to reduce total signal line length by the exchange of adjacent cells and the inversion of the cells on the basis of the kinds of the arrangement of the selected cells in each line and X coordinates are acquired. When a division into classes of the cells is classified and an optimization is slowly progressed partially after an arrangement under the whole situation, the efficiency of processing can be enhanced. According to the constitution, the arrangement and design of a complicate LSI can also be automated.

Description

【発明の詳細な説明】 く技術分野〉 本発明はLSI設計におけるセルの配置方法に関し、特
にポリセル方式のLSI設計に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of arranging cells in LSI design, and particularly to polycell type LSI design.

〈従来技術〉 LSIの設計自動化手法のひとつにポリセル方式LSI
設計がある。
<Prior art> Polycell type LSI is one of the LSI design automation methods
There is a design.

ポリセル方式り、Slとは、論理機能単位(例えば、論
理ゲートや7リツプンロツプノごとにレイアウトセルが
あらがじめ設計されてライブラリに登録されており、与
えられた論理回路図のゲート’k コレC) tD セ
ルに割付け、かつこれらのセルに7レイ状に配置し、相
互配線することによって与えられた論理回路を実現する
ようなLSIを言う。
In the polycell system, Sl is a layout cell designed in advance for each logical function unit (for example, a logic gate or 7 circuits) and registered in a library, and a gate 'k' of a given logic circuit diagram. ) tD An LSI that realizes a given logic circuit by allocating cells, arranging these cells in 7-lays, and interconnecting them.

この方式の特徴はセルの高さをほぼ一定にし、幅は実現
する論理機能に応じて変化してもよいこと、またセルの
絶対位置が可能であるから配線要求に応じてチャネル巾
を変える事が出来るという点にある。
The characteristics of this method are that the height of the cell is kept almost constant, but the width can vary depending on the logical function to be realized, and since the absolute position of the cell is possible, the channel width can be changed according to the wiring requirements. The point is that it is possible.

このようなポリセル方式LSIのセル配置問題は、配線
後のチップ面積を最小にする目的で、チップ上でのセル
の相対的位置全決定することである。しかし、実際の設
計では、セル配置後に配線してみなければ、チップ面積
全正確に知る事ができない事から、配線せずに配置の良
さを評価するためには目的関数を必要とする。:jだ最
適配置をめることは実際には困難であり、従来から用い
られるセル配置手法では、いずれも全体の配置設計を初
期配置とその反復改善とに分け、初期配置に対して1つ
のセルの移動、l対lの交換、セル移動の連鎖等によシ
反復改善を行うのが一般的である。しかしこのようなセ
ル配置手法では、相互配線要求を多くもつセル集合に対
しては配置改善が適用されず、局所的な配置改善に落ち
入る傾向があった。また反復改善後の配置が初期配置の
良さに強く依存しており、たとえ改善処理を施こしたと
しても充分に目的が達成されず、t S lの設計がい
かに良い初期配置を得るに川っているという不都合があ
った。
The problem with cell placement in polycell type LSIs is to completely determine the relative positions of cells on the chip in order to minimize the chip area after wiring. However, in actual design, the entire chip area cannot be accurately known unless wiring is performed after cell placement, so an objective function is required to evaluate the quality of placement without wiring. It is actually difficult to determine the optimal placement, and in conventional cell placement methods, the overall placement design is divided into an initial placement and its iterative improvement. It is common to perform iterative improvements by moving cells, exchanging l for l, chaining cell moves, etc. However, in such cell placement methods, placement improvements are not applied to cell sets with many interconnection requirements, and tend to result in local placement improvements. In addition, the placement after iterative improvement strongly depends on the quality of the initial placement, and even if improvements are made, the purpose will not be fully achieved, and the design of tSl will be difficult to obtain a good initial placement. There was an inconvenience that

〈発明の目的〉 本発明は、セルの集合単位での反復改善全行な−、最終
のセル配置が初期配置にあまり依存せず、セル集合単位
での配置改善に階層化をはかることにより、大規模なデ
ータに対しても収束が速めセル配置手法を提供する。
<Objective of the Invention> The present invention is capable of iterative improvement in units of cell sets, by making the final cell arrangement less dependent on the initial arrangement, and by hierarchizing the arrangement improvement in units of cell sets. We provide a cell placement method that converges quickly even for large-scale data.

〈実施例〉 本発明によるセル配置方法は、シャツ1ルグ(後述する
〕という配置改善手法を階層的に実行するもので、まず
、セルの全体集合ヲメクっがの犬きる事全くシカ・えし
、行数に一致する集合数がまるまで行なう。よって、ま
ず大ま力・なセル配置を得、次第に、より詳細な配置を
めていくことになるので局所解に落ち入ることを防ぐこ
とができる。
<Example> The cell arrangement method according to the present invention hierarchically executes the arrangement improvement method called Shirt 1 Lug (described later). , until the number of sets that match the number of rows is reached.Thus, we first obtain a general cell arrangement and then gradually work out a more detailed arrangement, which prevents us from settling on a local solution. can.

上記のように配置手法全実行するため、目的関数として
第1図に示すよう・多数のセル21・22・・・2nが
複数行のアレイ状に配置されたチップIf対して仮想的
なカットラインJ!1..l!2・lkを考え、このカ
ットラインを横切る信号線の本数を最小化するように配
置全反復改善する。図中隣接する行間の水平領域はチャ
ネルで、セルとセルの間の垂直領域と共に配線領域とし
て用いられる。
In order to execute all the placement methods as described above, as shown in Fig. 1, the objective function is a virtual cut line for a chip If in which a large number of cells 21, 22, . . . 2n are arranged in an array of multiple rows. J! 1. .. l! 2.lk, the arrangement is improved through all iterations so as to minimize the number of signal lines that cross this cut line. In the figure, the horizontal region between adjacent rows is a channel, which, together with the vertical region between cells, is used as a wiring region.

本実施例による配置手法は2つの処理よりなる。The arrangement method according to this embodiment consists of two processes.

処理1′″Cはセルを行へ割付けてセル位置のY座標を
決め、処理2では各セルの行内での配置を行ないセル位
置のX座標を決める。処理1と2はさらにそれぞれ初期
配置と配置改善の処理よシなる。
Process 1'''C allocates cells to rows and determines the Y coordinate of the cell position, and Process 2 arranges each cell within the row and determines the X coordinate of the cell position. This is a process for improving placement.

処理1の初期配置では、行数金mとすると、まず相互に
共有するネット(同電位に接続すべき端子)が少ないセ
ルfm個求め、それffi 種とし、m個のセルの集合
(以下組と呼ぶ)を生成し、それを行に割付ける。この
とき各行間のネット共イf数が最小となるように分割す
る。次に処理lにおける配置改善ではこれらのセルの行
への再割fj’ k後述するシャフリング手法によって
行なう。処理2は処理1と同じ手法を用いるがセルの行
に処理1でめた位置を保存する。
In the initial arrangement of process 1, assuming that the number of rows is m, first find fm cells with few mutually shared nets (terminals to be connected to the same potential), set them as ffi seeds, and form a set of m cells (hereinafter referred to as a group). ) and assigns it to a row. At this time, the division is performed so that the net common f number between each row is minimized. Next, in order to improve the arrangement in process 1, these cells are redistributed into rows fj'k by a shuffling method to be described later. Process 2 uses the same method as Process 1, but stores the position determined in Process 1 in the cell row.

以下・第2図(a) 、 (b) 、 (c)を用いて
シャフリング手法を説明する。
The shuffling method will be explained below using FIGS. 2(a), (b), and (c).

1番目の行に割付けられたセルの組をBiとし、k番目
の行を貫通し、Bk中のどのセルにも接続されない信号
線SI+S2・・の総数’5H1(とする。
The set of cells allocated to the first row is Bi, and the total number of signal lines SI+S2, .

〔基本操作〕〔basic operation〕

第2図(a)に示すようなセル21.22・・・、21
1,212・・を含むセルの集合Bi 、 Bi+lに
ついてfll セルの組Bi、Bi+lを一時的に1つ
の組Bi。
Cells 21, 22..., 21 as shown in FIG. 2(a)
For a set of cells Bi, Bi+l containing 1,212, etc., temporarily set the set of cells Bi, Bi+l as one set Bi.

i+1に併合する。(第2図(b)〕 f2) Bi + B i+l以外のセルのmをそのま
まに゛して再分割後のテHkが最小となるようにBi。
Merge into i+1. (FIG. 2(b)] f2) Bi + Bi Keep m of cells other than i+l unchanged and Bi such that TeHk after re-division is minimized.

k°工l B i+l をB11.Bi′l−■ に再分割し、新
たにBi←B ’i + B i+l ←B 1’+1
 とする。(第2図(C))シャフリングの単位操作と
は、上記の基本操作”t i ’、1 lから(m−t
)まで、次に(m−2)かう1−.4で行なうことをい
う。
k°engine B i+l to B11. Re-divide into Bi′l−■ and create a new Bi←B 'i + B i+l ←B 1'+1
shall be. (Figure 2 (C)) The unit operation of shuffling is the above basic operation "t i ', 1 l to (m-t
), then (m-2) 1-. This refers to what is done in step 4.

シャフリングによる配置改善は改善がなくなるまで行な
−、最良の配置を得てY座標がめられる。
The arrangement is improved by shuffling until there is no further improvement, and the best arrangement is obtained and the Y coordinate is determined.

上記配置改善によって各行に割付けられたセルの組に対
して、各行内でのセル配置が実行されX座標がめられる
。即ち各行で種の選択が実行され、選択された種をもと
にして隣接セルの交換、セルの反転によって線信号線長
が削減されるように局所的改善を実行してX座標をめる
Cell placement within each row is executed for the set of cells allocated to each row by the placement improvement described above, and the X coordinate is determined. That is, in each row, seed selection is performed, and based on the selected seed, local improvement is performed such that the line signal line length is reduced by exchanging adjacent cells and inverting cells, and the X coordinate is determined. .

」二記セルの組分けに対して処理を階層化し、大局的配
置を優先的にめ徐々に局所的配置の最適化を進めること
によって処理の高性能化ケ図ることが出来る。以下に階
層化の概要を述べる。+giを1番目の階層での組数と
する。
It is possible to improve the performance of the processing by hierarchizing the processing for the cell grouping described above, giving priority to the global arrangement, and gradually optimizing the local arrangement. An overview of layering is given below. Let +gi be the number of sets in the first layer.

■ g11固の組にセル集合を分は上記シャフリング手
法によシ反復改善する。
(2) Iteratively improve the cell set in the g11 set using the above shuffling method.

■ ある階層での組分けの数をgi とする吉g1個の
組からg1+1個の組を次のようにして生成する。
(2) Generate g1+1 groups from the lucky g1 groups, where gi is the number of groupings in a certain hierarchy.

g1個の組のセルを第3図に示すようにセルIJの総和
がほぼ均等としなからg i−11個の絹に再分割する
As shown in FIG. 3, the set of g1 cells is subdivided into g i -11 silks, with the total sum of cells IJ being approximately equal.

■ gi+I[固の組についてシャフリング金石なう。■ gi + I [Shuffling Kanaishi for the solid group now.

以上の操作を適当な階層数1について行なう。The above operations are performed for an appropriate number of layers (1).

例えばgi = 5 、 g2 = I O、g3=m
=’20 とすると、最初5個の組を生成し、シャフリ
ングによ9その組分は全改善した抜上の手順に示すよう
に5個の組より10個の組を生成、その組分けを反復改
善する。そして10個の組より20個の組を生成し、反
復改善した結果、m=20個の組分けが達成される。
For example, gi = 5, g2 = I O, g3 = m
='20, initially 5 sets are generated, and the remaining 9 sets are generated by shuffling, as shown in the fully improved selection procedure, 10 sets are generated from 5 sets, and the groups are divided. Improve iteratively. Then, 20 sets are generated from 10 sets, and as a result of iterative improvement, m=20 sets are achieved.

く効 果〉 以上本発明によれば、LSI設計のセル配置において、
最終的な配置が初期配置にあまり依存することなくすぐ
れた結果を得ることができ、また処理操作においてもセ
ル集合単位での配置改善の階層化かにかられるため、デ
ータの処理が極めて速やかに行われ、実行速度が速く、
複雑なLSIに対しても設計の自動化を図ることができ
る。
Effect> According to the present invention, in the cell arrangement of LSI design,
Excellent results can be obtained without the final placement being too dependent on the initial placement, and the processing operations also depend on layered placement improvements for each cell set, so data processing is extremely quick. is performed, has a fast execution speed,
Design can be automated even for complex LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1)少なくとも1つの論理機能単位を含b・セルが、チ
ップ内に複数個配置されなるL S Iにおいて、各セ
ルに初期配置を与えてセル集合を生成し、該セル集合の
所望組を併合させて併合セル集合を生成!−1該併合セ
ル集合と残りのセル集−合とを最適化が進んだ配置に再
分割して各セルに配置を与えることを特徴とするLSI
設a1のセル配置方法。 2〕 前記セル配置を最適化するための111分けは、
大局的配置から局所的配置に徐々Vこ最適化を進めて階
層処理されることを特徴とする特π1請求の範囲第1項
記載のLSI設割のセル配置方法。 3)前記セル集合の最適化は、予めセルに設定されたラ
インを横切る信号線数を最小することによって与えられ
ることを特徴とする特許請求の範囲第1項記載のLSI
設計のセル配置方法。
[Claims] 1) In an LSI in which a plurality of cells including at least one logical functional unit are arranged in a chip, an initial arrangement is given to each cell to generate a cell set, and the cell Generate a merged cell set by merging desired sets of sets! -1 LSI characterized in that the merged cell set and the remaining cell set are subdivided into highly optimized placements and a placement is given to each cell.
Cell arrangement method for setup a1. 2] The 111 division for optimizing the cell arrangement is as follows:
2. The cell placement method for LSI design according to claim 1, wherein hierarchical processing is performed by gradually advancing optimization from global placement to local placement. 3) The LSI according to claim 1, wherein the optimization of the cell set is achieved by minimizing the number of signal lines that cross lines set in advance in the cells.
How to place cells in your design.
JP58171484A 1983-09-16 1983-09-16 Arranging method of cell on design of lsi Pending JPS6062136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171484A JPS6062136A (en) 1983-09-16 1983-09-16 Arranging method of cell on design of lsi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171484A JPS6062136A (en) 1983-09-16 1983-09-16 Arranging method of cell on design of lsi

Publications (1)

Publication Number Publication Date
JPS6062136A true JPS6062136A (en) 1985-04-10

Family

ID=15923955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171484A Pending JPS6062136A (en) 1983-09-16 1983-09-16 Arranging method of cell on design of lsi

Country Status (1)

Country Link
JP (1) JPS6062136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117277A (en) * 1989-01-27 1992-05-26 Hitachi, Ltd. Semiconductor integrated circuit device with improved connection pattern of signal wirings
EP0707343A3 (en) * 1994-10-14 1997-05-14 Ibm Structure and method for connecting to integrated circuitry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117277A (en) * 1989-01-27 1992-05-26 Hitachi, Ltd. Semiconductor integrated circuit device with improved connection pattern of signal wirings
EP0707343A3 (en) * 1994-10-14 1997-05-14 Ibm Structure and method for connecting to integrated circuitry
US5773856A (en) * 1994-10-14 1998-06-30 International Business Machines Corporation Structure for connecting to integrated circuitry

Similar Documents

Publication Publication Date Title
US4890238A (en) Method for physical VLSI-chip design
JP2900359B2 (en) Multiprocessor system
JP2719509B2 (en) Graph partitioning system
US6336209B1 (en) Information processing system that processes portions of an application program using programmable logic circuits
US4839821A (en) Automatic cell-layout arranging method and apparatus for polycell logic LSI
JPS58153A (en) Device for deciding wiring route
DE102009053578A1 (en) Method and apparatus for performing parallel routing using a multithreaded routing procedure
US4700316A (en) Automated book layout in static CMOS
JPH04124855A (en) Semiconductor integrated circuit device and method of designing layout thereof and layout designing apparatus
Goto et al. All approach to the two-dimensional placement problem in circuit layout
JPS6062136A (en) Arranging method of cell on design of lsi
Kao et al. Cross point assignment with global rerouting for general-architecture designs
JPH03206563A (en) Hierarchical logic dividing method and hierarchical logic processor
US6074430A (en) Automatic cell placing method
Takahashi et al. Min-cut placement with global objective functions for large scale sea-of-gates arrays
JPH01302850A (en) Manufacture of semiconductor integrated circuit for easy testing
JPS5911670A (en) Semiconductor integrated circuit device
US20030046512A1 (en) Parallel computer system and method for assigning processor groups to the parallel computer system
US7017139B2 (en) Triangular assignment of pins used for diagonal interconnections between diagonal chips in a multi-chip module
KR20010024944A (en) A method for manufacturing and designing an electronic device and electronic apparatus
CN112257376A (en) Method and device for planning feed-through path, electronic equipment and storage medium
CN112131813A (en) FPGA wiring method for improving wiring speed based on port exchange technology
CN106383791B (en) A kind of memory block combined method and device based on nonuniform memory access framework
US11151298B1 (en) Metal track routing with buffer bank insertion
Palesko et al. Logic partitioning for minimizing gate arrays